■鄭州市第十一中學(xué)1805班 魏晨光
數(shù)列即按照一定順序排列的一組數(shù),其通項(xiàng)公式為數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系式。而我們平常做題中經(jīng)常會(huì)給出一個(gè)遞推公式,以此來求解數(shù)列{an}的通項(xiàng)公式,那么由遞推公式求數(shù)列通項(xiàng)的常用方法有哪些呢?
1.已知a1,且an-an-1=fn(),n∈N*,則用累加法求解an。
已知數(shù)列{an}滿足a1=3,anan-1=2(n-1),n∈N*,求an的通項(xiàng)。
解析:由累加法可知an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=2[1+2+…+(n-1)]+3。
解得an=n(n-1)+3,n∈N*。
由an+1=kan+f(n),k≠1,派生出的幾種情況。
1.形如f(n)=d(d為常數(shù)),即an+1=ka+d。通過觀察探究,令,得a+λ=n+1k(an+λ)為一個(gè)新的數(shù)列{An},n∈N*。
且{An}是以a1+λ為首項(xiàng),公比為k的公比數(shù)列,由此求出 {An}的通項(xiàng),進(jìn)而求出{an}的通項(xiàng)。
2.形如f(n)=kn+b,即an+1=kan+kn+b,求通項(xiàng)方法如下。
不妨設(shè)an+1+x(n+1)+y=c(an+xn+y)。
解出k,b。再代入原式得到數(shù)列{An},其首項(xiàng)為a1+x+y,公比為c,進(jìn)而求出{an}的通項(xiàng)。
4.形如an+2=kan+1+dan時(shí),如何求?
設(shè)an+2-xan+1=y(an+1-xan),則:解得,。xy
可得到一個(gè)新的等比數(shù)列{An},進(jìn)而求解{an}的通項(xiàng)。
形如an+1=(a,b,c為常數(shù)),兩邊同時(shí)取倒數(shù)。
若a=c,則可以直接得出為等差數(shù)列,公差為。若a≠c,利用上文構(gòu)造新的數(shù)列,可求解。
練一練:
1.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=2,且Sn=+n+1,n∈N*,求解an通項(xiàng)。
2.已知數(shù)列{a}中,a=2,a=n∈N*,求解an通項(xiàng)。