徐建中,周宗福
(1.亳州學(xué)院 數(shù)學(xué)系,安徽 亳州 236800;2.安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230601)
一類具有多個(gè)偏差變?cè)唠A微分方程反周期解的存在唯一性*
徐建中1,周宗福2
(1.亳州學(xué)院 數(shù)學(xué)系,安徽 亳州 236800;2.安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230601)
偏差變?cè)?;Leray-Schauder度;反周期解
泛函微分方程反周期解問題在細(xì)胞神經(jīng)網(wǎng)絡(luò)、Hopfield神經(jīng)網(wǎng)絡(luò)、流體力學(xué)和非線性彈性力學(xué)等方面都有著廣泛的應(yīng)用.近年來,有許多學(xué)者都在致力于這方面的研究[1-6],但還很少見到有多個(gè)偏離變量的高階微分方程反周期解存在唯一性的文獻(xiàn).本文利用Leray-Schauder定理,討論了方程(1)的反周期解的存在和唯一性.這里T>0,n≥2,τi,e∈C(R,R),f∈(Rn,R),gi∈C(R2,R).
x(n)(t)+f(t,x(1)(t),x(2)(t),…,x(n-1)(t))+
(1)
為了方便研究,作出以下假設(shè):
(H0) 存在非負(fù)的常數(shù)ci,i=1,2,…,n-l,使得
≤
(H1) 存在非負(fù)常數(shù)bi,i=1,2,使得
?t,x1,x2∈R,i=0,1,2,…,m
(H2) 存在T>0,?t,x∈R,i=0,1,…,m,有
為了應(yīng)用方便,有以下注記:
證明 若x1(t)和x2(t)是方程(1)的兩個(gè)反周期解,令Z(t)=x1(t)-x2(t),則有
τi(t)))-gi(t,x2(t-πi(t)))=0
(2)
又因?yàn)閆(t)=x1(t)-x2(t)是R上的反周期函數(shù),則有
(3)
(4)
可得
(5)
(6)
由式(5)(6),可得
(7)
將式(2)兩邊同乘以Z(n)(t),并從0到T上積分,則有
(8)
(9)
既然Z(t),Z′(t),Z″(t),…,Z(n)(t)為連續(xù)反周期函數(shù),根據(jù)假設(shè)(H3),式(4)和式(9),可得
Z(t)≡Z′(t)≡Z″(t)≡…≡Z(n)(t)≡0,?t∈R
證明 考慮方程(1)的輔助方程:
x(n)(t)=-λf(t,x(1)(t),x(2)(t),…,x(n-1)(t))-
(10)
這里λ∈(0,1],由引理2知方程(1)至多有一個(gè)反周期解,接下來只要證明方程(1)至少有一個(gè)反周期解即可.為了應(yīng)用引理3,首先,要證明方程(10)所有可能的反周期解均為有界的.
(11)
將方程(10)兩邊同乘以x(n)(t)并從0到T上積分,根據(jù)式(11)(H3),Schwarz不等式和Wirtinger不等式,有
(12)
j=1,2,…,n
(13)
既然x(j)(0)=x(j)(T)(j=1,2,…,n),因此存在一個(gè)常數(shù)ζj∈[0,T],使得x(j)(ζj)=0.
(14)
這里j=0,1,2,…,n-1,t∈[0,T],聯(lián)立式(11)(13)和式(14)可知,存在一個(gè)正的常數(shù)D2,使得
即式(10)的所有反周期解x(t)都存在一個(gè)常數(shù)M使得
≤M
(15)
易知(Lx)(t)為反周期的,所以?t∈[0,T].
(16)
算子L是連續(xù)算子.定義算子
定義同倫變換:
根據(jù)式(15)知0?Hλ(?Ω),λ∈[0,1],由Brouwer度的同倫不變性,可得deg{I-F1,Ω,0}=deg{I,Ω,0}≠0.
例1 考慮方程:
(17)
[1] XU J Z,ZHOU Z F.Existence and Uniqueness of Anti-periodic Solutions to an Nth-order Nonlinear Differential Equation with Multiple Deviating Arguments[J].Annals of Differential Equations,2012(28):105-114
[2] SHEN P,YAO X J,YANG J C.Existence and Uniqueness of Anti-periodic Solutions for a Class of Higher-order Differential Equation with Two Deviating Arguments[J].Guangxi Sciences,2011(18):22-25
[3] LI Y Q,HUANG L H.Anti-periodic Solutions for a Class of Lienard-type Systems with Continuously Distributed Delays[J].Nonlinear Analysis: Real World Applications,2009(10):2127-2132
[4] LUO F Q.Existence and Uniqueness of Anti-periodic Solutions for a Class of Lienard-type Equation with a Deviating Argument[J].Guangxi Sciences,2010(17):27-31
[5] 徐建中,周宗福.一個(gè)具有多個(gè)時(shí)滯變量n階非線性微分方程僅周期函數(shù)解的存在唯一性[J].重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,27(6):545-550
XU J Z,ZHOU Z F.Anti-periodic Solutions for a Kind of Nonlinear Nth-order Differential Equation with Multiple Deviating Arguments[J].Chongqing Technology and Business University(Natural Science Edition),2010,27(6):545-550
[6] CHEN Y,NIETO J J,OREGAN D. Anti-periodic Solutions for Fully Nonlinear First-order Differential Equations[J].Math Comput Modelling,2007,46:1183-1190
[7] MAWHIN J.Periodic Solutions of Some Vector Retarded Functional Differential Equations[J].J Math Anal Appl,1974,45:588-603
[8] GUO D.Nonlinear Functional Analysis[M].Jinan:Shan dong Science and Technology Press,2002
責(zé)任編輯:李翠薇
Existence and Uniqueness of Anti-Periodic Solutions for a Class of High-order Differential Equation with Multiple Deviating Arguments
XU Jian-zhongl,ZHOU Zong-fu2
(1.Department of Mathematics, Bozhou University, Anhui Bozhou 236800,China;2.School of Mathematical Science, Anhui University, Hefei 230601,China)
deviating argument;Leray-Schauder degree;anti-periodic solution
2016-04-10;
2016-06-05.
國家自然科學(xué)基金(10771001);安徽省教育廳自然科學(xué)基金( KJ20138153,KJ20132218);安徽省質(zhì)量工程項(xiàng)目(2016jyxm0681,2016jxt01050,2016gxk093);亳州學(xué)院科研項(xiàng)目(BZSZKYXM201302,BSKY201539).
徐建中(1979-),男,安徽廬江人,副教授,碩士,從事泛函微分方程研究.
10.16055/j.issn.1672-058X.2017.0002.001
O
A
1672-058X(2017)02-0001-05