亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        回生抗性淀粉種類對(duì)米淀粉凝膠形成的影響

        2017-03-27 00:59:23易翠平劉小龍
        關(guān)鍵詞:錐栗直鏈綠豆

        謝 濤,李 英,易翠平,劉小龍

        ?

        回生抗性淀粉種類對(duì)米淀粉凝膠形成的影響

        謝 濤1,李 英2,易翠平3,劉小龍1

        (1. 湖南工程學(xué)院化學(xué)化工學(xué)院,湘潭 411104; 2. 湖南工程學(xué)院圖書館,湘潭 411104; 3. 長沙理工大學(xué)化學(xué)與生物工程學(xué)院,長沙 410015)

        為尋找改善普通米淀粉制品的結(jié)構(gòu)及品質(zhì)的新型食品添加劑,該文以普通米淀粉為原料,采用快速黏度分析儀、掃描電子顯微鏡、質(zhì)構(gòu)分析儀、全自動(dòng)X射線衍射儀及示差掃描量熱儀等手段,研究添加錐栗、馬鈴薯與綠豆回生抗性淀粉(retrograded resistant starch,RSⅢ)對(duì)米淀粉凝膠微觀結(jié)構(gòu)及理化性質(zhì)的影響。結(jié)果表明:添加錐栗、馬鈴薯及綠豆RSⅢ對(duì)米淀粉凝膠的結(jié)構(gòu)及性質(zhì)產(chǎn)生顯著影響(<0.01),以錐栗RSⅢ的作用最為突出。添加錐栗、馬鈴薯與綠豆RSⅢ對(duì)米淀粉糊的黏度特性沒有影響(>0.05)。未添加RSⅢ的米淀粉凝膠存在很多不規(guī)則、深淺不一的大洞,而加入RSⅢ使米淀粉凝膠的網(wǎng)狀結(jié)構(gòu)變得更為規(guī)整、致密,且其膠著性與黏聚性變化不大(>0.05);添加錐栗、馬鈴薯與綠豆RSⅢ后能加速米淀粉凝膠的形成,與未添加RSⅢ的米淀粉凝膠比,其硬度分別增加了2.38、1.97和1.25倍(<0.01),黏著性分別增加2.56、1.99和1.32倍(<0.01),彈性增加1.07、0.81和0.53倍(<0.01)。米淀粉以A-型晶體占優(yōu),錐栗RSⅢ以V-型晶體占優(yōu),馬鈴薯與綠豆RSⅢ均以B-型晶體占優(yōu);不加或加入RSⅢ的米淀粉凝膠粉末都轉(zhuǎn)變?yōu)橐訴-型晶體為主,且總相對(duì)結(jié)晶度沒有改變(>0.05)。加入RSⅢ后的米淀粉糊除有低溫吸熱峰外還出現(xiàn)高溫吸熱峰,是否添加RSⅢ對(duì)低溫吸熱峰的溫度參數(shù)影響不大(>0.05),但吸熱焓顯著降低(<0.01);而對(duì)于高溫吸熱峰,添加馬鈴薯與綠豆RSⅢ的各項(xiàng)參數(shù)沒有差別(>0.05),但比添加錐栗RSⅢ的顯著增高(<0.01)。可見添加不同來源的RSⅢ可以有效改善米淀粉凝膠的結(jié)構(gòu)與品質(zhì)。該研究結(jié)果為抗性淀粉用于提高米制品品質(zhì)與營養(yǎng)功能的研究和生產(chǎn)提供了重要參考。

        淀粉;凝膠;物理性質(zhì);化學(xué)性質(zhì);回生抗性淀粉;米淀粉

        0 引 言

        淀粉糊化是指當(dāng)?shù)矸垲w粒在過量水中被加熱到糊化溫度以上時(shí),顆粒吸水膨脹導(dǎo)致晶體有序結(jié)構(gòu)崩塌,而顆粒中的直鏈淀粉瀝濾出來,并隨著淀粉糊液的冷卻而形成三維凝膠網(wǎng)狀結(jié)構(gòu)[1]。淀粉凝膠在老化或回生過程中會(huì)產(chǎn)生結(jié)構(gòu)變化,包括直鏈與支鏈淀粉的重結(jié)晶[2]。淀粉起始糊化階段以可溶性直鏈淀粉的糊化為主,淀粉顆粒的結(jié)構(gòu)變化引起淀粉糊和凝膠的流變特性改變,溶脹的淀粉顆粒一旦冷卻則形成具有高剪切強(qiáng)度的緊密堆積的凝膠結(jié)構(gòu)[3]。淀粉凝膠結(jié)構(gòu)與淀粉來源及濃度、溶脹淀粉結(jié)構(gòu)、從淀粉顆粒中瀝濾出來的直鏈和支鏈淀粉數(shù)量、外源親水聚合物和加熱條件等因素有關(guān)[4-6]。

        抗性淀粉(resistant starch,RS)分為物理包埋淀粉(physically trapped starch,RSⅠ)、天然抗性淀粉顆粒(resistant starch granules,RSⅡ)、回生或老化抗性淀粉(retrograded resistant starch,RSⅢ)和化學(xué)改性淀粉(chemically modified starch,RSⅣ)4個(gè)類型[7-9]。RS在小腸內(nèi)不能消化但通過大腸益生菌發(fā)酵產(chǎn)生短鏈脂肪酸,可預(yù)防腸道疾病[10]。當(dāng)RS添加入淀粉基食品中,其結(jié)構(gòu)可能發(fā)生改變,如B-型的RSⅡ在過量水存在下因加熱而產(chǎn)生糊化,但RSⅢ、RSⅣ在正常烹飪條件下因其高熱穩(wěn)定性可能維持原有結(jié)構(gòu)[11-13]。淀粉-RS混合形成的凝膠特性受淀粉來源、淀粉與水的比例、RS類型及其含量等的影響[13-15]。例如,普通米淀粉正常情況下因其直鏈淀粉含量低(12%~20%,質(zhì)量分?jǐn)?shù))而不能形成黏彈性凝膠,若添加某些親水性多糖(如RS)能改善米淀粉凝膠的結(jié)構(gòu)[14-17]。在國外,已有RS應(yīng)用于米粉制品中的研究,發(fā)現(xiàn)添加RS不僅能提高年糕、米餅、米粉等傳統(tǒng)米制食品的膳食纖維含量,更能改善它們的品質(zhì)與營養(yǎng)價(jià)值,但其改善品質(zhì)的機(jī)理尚不十分清楚[11-14]。然而,國內(nèi)尚罕見這方面的研究報(bào)道。

        為了克服普通米淀粉在正常情況下不能形成黏彈性凝膠,且在硬度、彈性和黏著性等方面存在的缺陷。本文研究了制備自錐栗、馬鈴薯和綠豆的RSⅢ為代表的非米淀粉來源RSⅢ的添加對(duì)米淀粉凝膠的形成及其品質(zhì)的影響,從而為添加RS提高米制品品質(zhì)與營養(yǎng)功能的深加工提供科學(xué)依據(jù)與實(shí)踐基礎(chǔ)。

        1 材料與方法

        1.1 材 料

        米淀粉由購自超市的秈米實(shí)驗(yàn)室自制,其水分、粗蛋白、灰分、粗脂肪與直鏈淀粉質(zhì)量分?jǐn)?shù)分別為12.56%、0.25%、0.41%、0.06%和24.63%。錐栗淀粉由實(shí)驗(yàn)室自制,食用級(jí)馬鈴薯、綠豆淀粉購自四川友嘉食品有限公司,糖化酶(50 000 U/g)、高溫-淀粉酶(20 000 U/g)由無錫杰能科生物工程有限公司生產(chǎn),其他試劑均為分析純。

        1.2 RSⅢ的制備

        參照文獻(xiàn)[18-19]的方法。用蒸餾水配制質(zhì)量分?jǐn)?shù)為30%的淀粉乳液,調(diào)節(jié)pH值為6.0,沸水浴30 min后,121 ℃高溫高壓處理40 min。冷卻,4 ℃放置24 h,80 ℃烘干,粉碎過100目篩得粗抗性淀粉。取粗抗性淀粉用耐熱-淀粉酶在70 ℃水解1 h,加入過量糖化酶,55 ℃水解2 h,離心(3 000r/min,30 min),水洗離心多次,最后用95%乙醇清洗,干燥,粉碎,過200目篩,得純RSⅢ。經(jīng)碘吸收法測得錐栗、馬鈴薯與綠豆RSⅢ的平均聚合度分別為48、61和72。

        1.3 米淀粉凝膠的制備

        由于12%(質(zhì)量分?jǐn)?shù))的米淀粉不能形成正常凝膠,因此選用這個(gè)濃度研究回生抗性淀粉對(duì)米淀粉凝膠形成的影響。用去離子水配制12%(質(zhì)量分?jǐn)?shù),干基)的米淀粉漿,根據(jù)前期試驗(yàn)結(jié)果分別加入10%(質(zhì)量分?jǐn)?shù),淀粉基)的不同種類的回生抗性淀粉,密封于壓熱瓶中,于沸水浴中處理30 min。淀粉糊被灌入小段不銹鋼柱,注意糊中不能含有氣泡,且在上蓋玻璃板。淀粉凝膠在25 ℃放置6 h,然后小心移出即為樣品,用于測定其各項(xiàng)理化特性。

        1.4 測定方法

        黏度特性:采用RVA-4型快速黏度分析儀(澳大利亞Warriewood公司)。采用3 g含10%(質(zhì)量分?jǐn)?shù),淀粉基)RSⅢ的米淀粉與25 mL去離子水在一個(gè)小鋁罐內(nèi)混合均勻。每個(gè)樣品懸浮液在50 ℃保持1 min,以12 ℃/min快速加熱至95 ℃并維持2.5 min,再以12 ℃/min降溫至50 ℃。

        超微結(jié)構(gòu):將液氮真空干燥法制得的干燥樣品用導(dǎo)電膠粘在樣品座上,并置于離子濺射儀中,在樣品表面蒸鍍一層鉑金膜后,再在S-3400N型掃描電子顯微鏡(日本日立公司)下進(jìn)行觀察與拍照。

        質(zhì)構(gòu)特性:采用TA-XT Plus質(zhì)構(gòu)分析儀(英國Surrey公司)。設(shè)定發(fā)生50%的形變,形變速率1.5 mm/s。

        結(jié)晶特性:采用連續(xù)掃描法,D/max2500全自動(dòng)X射線衍射儀(日本理學(xué)株式會(huì)社)測定條件:掃描速率12°/min,掃描范圍5°~60°,步長0.04,管壓40 kV,管流30 mA。

        熱特性:稱取一定量含10%(質(zhì)量分?jǐn)?shù),淀粉基)RSⅢ的米淀粉,按質(zhì)量比1:2加入重蒸水,密封后置于4 ℃冰箱中隔夜平衡,再稱取5.0 mg左右(精確到0.1 mg)于鋁坩堝中,壓片。用DSC200型示差掃描量熱儀(德國NETZSCH公司)測定:掃描溫度范圍為20~180 ℃,掃描速率為10 ℃/min,以空坩堝為參比,載氣氮流速20 mL/min。

        所有數(shù)據(jù)為3個(gè)平行試驗(yàn)的平均值,且采用SPSS 20.0的Duncan’s multiple range test法進(jìn)行多組樣本間差異顯著性分析。

        2 結(jié)果與分析

        2.1 RSⅢ對(duì)米淀粉糊黏度特性的影響

        加入10%(質(zhì)量分?jǐn)?shù),淀粉基)的RSⅢ對(duì)米淀粉黏度特性的影響如表1所示。由表1可知,分別加入錐栗、馬鈴薯與綠豆RSⅢ對(duì)米淀粉糊的起始糊化溫度、峰值黏度、低谷黏度、冷卻黏度、崩解值與回生值的影響不大(>0.05),這是因?yàn)镽SⅢ是由直鏈淀粉在重結(jié)晶或回生過程中通過分子重排與重組形成的,而直鏈淀粉分子在加熱的淀粉糊中處于溶解狀態(tài),因此RSⅢ對(duì)米淀粉糊的黏度特性沒有明顯影響。

        表1 不加或加入RSⅢ的米淀粉糊的黏度特性

        注:表中不同字母表示存在顯著差別(<0.01),相同字母則表示差別不顯著(>0.05),下同。

        Note: Different letters in table mean significant difference (<0.01), while the same letter indicates no significant difference (>0.05), The following tables are all the same.

        2.2 RSⅢ對(duì)米淀粉凝膠超微結(jié)構(gòu)的影響

        據(jù)文獻(xiàn)[4-6]報(bào)道,淀粉凝膠的形成及其強(qiáng)度受到淀粉來源、直鏈淀粉含量、淀粉濃度、分子結(jié)構(gòu)、改性方法、添加其他物質(zhì)、受熱程度等因素的影響。另據(jù)Kim等[14]報(bào)道,高直鏈米淀粉在12%(質(zhì)量分?jǐn)?shù),干基)時(shí)能形成正常的凝膠,而普通米淀粉則不能,這是由于普通米淀粉除顆粒很?。?~8m)之外,特別是可溶性直鏈淀粉含量低;而親水性線性物質(zhì)如可溶性葡萄糖鏈、親水膠體的添加能改善凝膠的結(jié)構(gòu)與質(zhì)地。作者的前期研究[20]也發(fā)現(xiàn),壓熱法制備的錐栗、馬鈴薯與綠豆RSⅢ具有不規(guī)則的由雙螺旋直鏈淀粉形成的、致密牢固的片層結(jié)構(gòu),存在無定形區(qū)域和結(jié)晶區(qū)域,熱穩(wěn)定性好,對(duì)淀粉水解酶類有抗性;而且,RSⅢ的無定形部分保持較高的持水能力,容易被溶解。添加或未添加RSⅢ的米淀粉凝膠結(jié)構(gòu)如圖1所示,未添加RSⅢ的米淀粉凝膠存在很多不規(guī)則的、深淺不一的大洞(圖1a),而添加了RSⅢ的米淀粉凝膠結(jié)構(gòu)都有不同程度的改善,變得更為規(guī)整、致密(圖1b~1d),可能歸因于添加RSⅢ增加了凝膠體系中親水性直鏈淀粉的數(shù)量,與體系中線性聚合物鏈的相互作用變得更強(qiáng),有利于形成更牢固可靠的凝膠網(wǎng)絡(luò)結(jié)構(gòu)。

        a. 未加RSⅢa. No adding RSⅢb. 加入錐栗RSⅢb. Adding C. henryi RSⅢc. 加入馬鈴薯RSⅢc. Adding potato RSⅢd. 加入綠豆RSⅢd. Adding mung bean RSⅢ

        由圖1b~1d還可看出,加入錐栗、馬鈴薯與綠豆RSⅢ后,米淀粉凝膠網(wǎng)狀結(jié)構(gòu)由疏松不規(guī)整逐漸變得均勻致密。這是因?yàn)殄F栗、馬鈴薯與綠豆RSⅢ的平均聚合度分別為48、61和72,相同質(zhì)量條件下它們所含的直鏈淀粉數(shù)量依次減少,因此由直鏈淀粉數(shù)量遞減而發(fā)生的親水作用逐漸減弱[20]。綜上所述,添加錐栗、馬鈴薯與綠豆RSⅢ有助于低濃度普通米淀粉形成三維凝膠網(wǎng)狀結(jié)構(gòu)。

        2.3 RSⅢ對(duì)米淀粉凝膠質(zhì)構(gòu)特性的影響

        是否加入10%(質(zhì)量分?jǐn)?shù),淀粉基)的RSⅢ對(duì)12%(質(zhì)量分?jǐn)?shù),干基)米淀粉凝膠質(zhì)構(gòu)特性的影響見表2。由表2可看出,添加RSⅢ對(duì)米淀粉凝膠的膠著性與黏聚性影響不大(>0.05),而對(duì)硬度、彈性與黏著性的影響顯著(<0.01)。與未添加RSⅢ的對(duì)照比,添加錐栗、馬鈴薯與綠豆RSⅢ后能夠加速米淀粉凝膠的形成,使其硬度分別增加了2.38、1.97和1.25倍,黏著性分別增加了2.56、1.99和1.32倍,彈性也增加了1.07、0.81和0.53倍,但增加倍數(shù)隨添加RSⅢ的平均聚合度增加而逐漸降低,說明更高的可溶性親水直鏈淀粉含量更有利于改善米淀粉凝膠的結(jié)構(gòu)與質(zhì)地。因此,在米粉、年糕、米餅等米制品中加入RSⅢ是十分必要的,它們可以彌補(bǔ)普通米淀粉凝膠在硬度、彈性和黏著性方面存在的不足,從而提高普通米制品的品質(zhì)與營養(yǎng)功能價(jià)值[11-14]。

        2.4 RSⅢ對(duì)米淀粉凝膠結(jié)晶特性的影響

        X-射線衍射峰的強(qiáng)度及半峰寬的變化反映了顆粒結(jié)晶度的大小、無定形化程度和晶格畸變等情況,且根據(jù)X射線衍射圖譜,將淀粉分為A-、B-和V-幾種類型:A型在衍射角15°、17°、18°和23°有較強(qiáng)的衍射峰,B型在衍射角5.6°、17°、22°和24°有較強(qiáng)的衍射峰,V型在衍射角7.4°、13°和20°有較強(qiáng)的衍射峰[21-24]。淀粉主要是由A-型、B-型與V-型晶體組成的混合物,各型晶體所占的比例不同[22,25]。圖2是普通米淀粉、RSⅢ及不加或加RSⅢ米淀粉凝膠粉末的X-衍射圖譜。普通米淀粉以A-型晶體占優(yōu)勢(shì),錐栗RSⅢ以V-型晶體占優(yōu)勢(shì),馬鈴薯與綠豆RSⅢ均以B-型晶體占優(yōu)勢(shì)(圖2a);但是,不加或加入RSⅢ的米淀粉凝膠粉末都轉(zhuǎn)變?yōu)橐訴-型晶體為主(圖2b),且加入RSⅢ與未加RSⅢ的米淀粉凝膠粉末的總相對(duì)結(jié)晶度基本沒有發(fā)生變化(表3),這表明在低溫下米淀粉凝膠的形成過程實(shí)際上就是在稀淀粉分散液中主要由無定形聚合物鏈形成三維網(wǎng)絡(luò)結(jié)構(gòu)的過程,在稀淀粉糊中線性淀粉分子不能像重結(jié)晶或回生的直鏈淀粉一樣形成穩(wěn)定的雙螺旋結(jié)構(gòu)[14]。

        表2 不加或加入RSⅢ的米淀粉凝膠的質(zhì)構(gòu)特性

        a. 米淀粉與回生抗性淀粉a. Rice starch and various RSⅢb. 未加與加入RSⅢ的米淀粉凝膠b. Rice starch gels without and with various RSⅢ

        1.米淀粉 2.錐栗RSⅢ 3.馬鈴薯RSⅢ 4.綠豆RSⅢ 5.未加RSⅢ的米淀粉凝膠 6.添加錐栗RSⅢ的米淀粉凝膠 7.添加馬鈴薯RSⅢ的米淀粉凝膠 8.添加綠豆RSⅢ的米淀粉凝膠

        1.Rice starch 2.RSⅢ 3.Potato RSⅢ 4.Mung bean RSⅢ 5.Rice starch gel no adding RSⅢ 6.Rice starch gel addingRSⅢ 7.Rice starch gel adding potato RSⅢ 8.Rice starch gel adding mung bean RSⅢ

        圖2 米淀粉、RSⅢ及不加或加入RSⅢ米淀粉凝膠粉末的X-射線衍射圖譜

        Fig.2 X-ray diffractograms of native rice starch, RSⅢ and rice starch gel powder without or with RSⅢ

        表3 幾種RSⅢ及其加入米淀粉形成的凝膠粉末的晶型及相對(duì)結(jié)晶度

        2.5 RSⅢ對(duì)米淀粉糊熱特性的影響

        文獻(xiàn)[20]已報(bào)道,綠豆與馬鈴薯RSⅢ的起始糊化溫度(T)、峰值糊化溫度(T)、終止糊化溫度(T)均要高于錐栗RSⅢ的T、T、T值,但3種RSⅢ的吸熱焓()差別不大,可能是綠豆與馬鈴薯抗性淀粉中A型晶體仍然占有較大比例的緣故(表3);而且,文獻(xiàn)[20]還報(bào)道了這3種RSⅢ的TT、T、值分別比其原淀粉的TT、T、值要高得多,這是因?yàn)镽SⅢ在制備過程中直鏈淀粉形成更為致密的結(jié)晶結(jié)構(gòu),導(dǎo)致破壞該晶體結(jié)構(gòu)需要的溫度更高[26-28]。在12%(質(zhì)量分?jǐn)?shù),干基)米淀粉中加入10%(質(zhì)量分?jǐn)?shù),淀粉基)的RSⅢ對(duì)其熱特性的影響見表4。

        表4 不加或加入RSⅢ的米淀粉糊的差示掃描量熱分析參數(shù)

        注:T為起始糊化溫度,T為峰值糊化溫度、T為終止糊化溫度、T - T為糊化溫差,為糊化焓,∑為總糊化焓。

        Note:Tis initial gelatinization temperature,Tis peak gelatinization temperature,Tis conclusive gelatinization temperature,T - Tis gelatinization temperature difference,is gelatinization enthalpy, and ∑is total gelatinization enthalpy.

        由表4可知,不加RSⅢ的米淀粉糊只有低溫吸熱峰出現(xiàn),但加入RSⅢ后還出現(xiàn)了高溫吸熱峰,說明它是由RSⅢ加入引起的,因?yàn)镽SⅢ的結(jié)構(gòu)較之米淀粉顆粒更為致密、牢固。對(duì)于低溫吸熱峰,是否添加RSⅢ對(duì)其T、TT值的影響不大(>0.05),而引起卻顯著降低(<0.01)。對(duì)于高溫吸熱峰,添加馬鈴薯與綠豆RSⅢ的差別不明顯(>0.05),但各個(gè)參數(shù)比添加錐栗RSⅢ的顯著增高(<0.01),這可能是因?yàn)橥ǔG闆r下B-型晶體比V-型晶體要更穩(wěn)定些[29-30],而馬鈴薯與綠豆RSⅢ中以B-型晶體比例較高,錐栗RSⅢ以B-型晶體比例較小,且其相對(duì)結(jié)晶度比前兩者要低。盡管添加RSⅢ導(dǎo)致低溫吸熱焓降低,但兩個(gè)吸熱峰的總吸熱焓卻明顯增大(<0.01)。

        3 結(jié) 論

        盡管制備方法相同,但由于原淀粉的組成、結(jié)構(gòu)與性質(zhì)的差別,相應(yīng)地回生抗性淀粉(retrograded resistant starch,RSⅢ)的組成、結(jié)構(gòu)與性質(zhì)也不同。在米淀粉凝膠中加入RSⅢ,無疑能夠增加其膳食纖維含量,更能改善其結(jié)構(gòu)與性質(zhì),而且這種改變的大小與RSⅢ的來源有關(guān)。

        1)加入10%(質(zhì)量分?jǐn)?shù),淀粉基)的錐栗、馬鈴薯與綠豆RSⅢ對(duì)米淀粉糊的起始糊化溫度、峰值黏度、低谷黏度、冷卻黏度、崩解值與回生值基本無影響(>0.05)。

        2)未添加RSⅢ的米淀粉凝膠存在很多不規(guī)則的、深淺不一的大洞,而加入RSⅢ后低濃度普通米淀粉凝膠網(wǎng)狀結(jié)構(gòu)變得更為規(guī)整、致密,以錐栗RSⅢ的作用最好、馬鈴薯RSⅢ居中。

        3)添加RSⅢ對(duì)米淀粉凝膠的膠著性與黏聚性影響不大(>0.05),而對(duì)硬度、彈性與黏著性的影響顯著(<0.01)。與未添加RSⅢ的相比,添加錐栗、馬鈴薯與綠豆RSⅢ后形成的米淀粉凝膠的硬度分別增加了2.38、1.97和1.25倍,黏著性分別增加了2.56、1.99和1.32倍,彈性也增加了1.07、0.81和0.53倍,且增加倍數(shù)以錐栗RSⅢ的最顯著。

        4)普通米淀粉以A-型晶體占優(yōu),錐栗RSⅢ以V-型晶體占優(yōu),馬鈴薯與綠豆RSⅢ均以B-型晶體占優(yōu);不加或加入RSⅢ的米淀粉凝膠粉末都以V-型晶體為主,且總相對(duì)結(jié)晶度基本沒有改變(>0.05)。

        5)不加RSⅢ的米淀粉糊只有低溫吸熱峰,加入RSⅢ后還出現(xiàn)高溫吸熱峰。是否添加RSⅢ對(duì)低溫吸熱峰的起始糊化溫度、峰值糊化溫度與終止糊化溫度影響不大(>0.05),但總糊化焓顯著降低(<0.01)。對(duì)于高溫吸熱峰,添加馬鈴薯與綠豆RSⅢ的幾無差別(>0.05),但起始糊化溫度、峰值糊化溫度與終止糊化溫度與總糊化焓值比添加錐栗RSⅢ的顯著增高(<0.01)。

        [1] Tester R F, Karkalas J, Qi X. Review starch composition, fine structure, and architecture [J]. J Cereal Sci, 2004, 39: 151-165.

        [2] Lee H J, Shin M. Comparison of the properties of wheat flours supplemented with various dietary fibers[J]. Food Sci Biotechnol, 2006, 15: 746-751.

        [3] Lu Z H, Sasaki T, Li Y Y, et al. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel[J]. Food Hydrocolloid, 2009, 23(5): 1712-1719.

        [4] Kim J O, Kim W S, Shin M S. A comparative study on retrogradation of rice starch gels by DSC, X-ray diffraction and α-amylase [J]. Starch-St?rke, 1997, 49(1): 71-75.

        [5] Liu Q, Thompson DB. Effects of moisture content and different gelatinization heating temperatures on retrogradatiion of waxy type maize starches[J]. Carbohyd Res, 1998, 314(1): 221-235.

        [6] Sodhi N S, Sasaki T, Lu Z H, et al. Phenomenological viscoelasticity of some rice starch gels[J]. Food Hydrocolloid, 2010, 24(2): 512-517.

        [7] Shu X, Jia L, Gao J, et al. The influences of chain length of amylopectin on resistant starch in rice (L.)[J]. Starch-St?rke, 2007, 59(2): 504-509.

        [8] F?ssler C, Arrigoni E, Venema K, et al. In vitro fermentability of differently digested resistant starch preparations[J]. Mol Nutr Food Res, 2006, 50(4): 1220-1228.

        [9] Zhang H, Jin Z. Preparation of products rich in resistant starch from maize starch by an enzymatic method[J]. Carbohyd Polym, 2011, 86: 1610-1614.

        [10] Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, et al. Resistant starch as functional ingredient: A review[J]. Food Res Int, 2010, 43(3): 931-942.

        [11] Ren C, Shin M. Effects of cross-linked resistant rice starch on the quality of Korean traditional rice cake[J]. Food Sci Biotechnol, 2013, 22(2): 697-704.

        [12] Pongjanta J, Utaipattanaceep A, Naivikul O, et al. Debranching enzyme concentration effected on physicochemical properties and-amylase hydrolysis rate of resistant starch type III from amylose rice starch [J]. Carbohyd Polym, 2009, 78(1): 5-9.

        [13] Ozturk S, Koksel H. Production of resistant starch from acid-modified amylotype starches with enhanced functional properties[J]. J Food Eng, 2011, 103(1): 156-164.

        [14] Kim JG, Zhang C, Shin MS. Forming rice starch gels by adding retrograded and cross-linked resistant starch prepared from rice starch[J]. Food Sci Biotechnol, 2015, 24(3): 835-841.

        [15] Mun SH, Shin M. Mild hydrolysis of resistant starch from maize[J]. Food Chem, 2006, 96(1): 115-121.

        [16] Huang M, Kennedy JF, Li B, et al. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study[J]. Carbohyd Polym, 2007, 69(2): 411-418.

        [17] Song J Y, Park J H, Shin M. The effects of annealing and acid hydrolysis on resistant starch level and the properties of cross-linked RS4 rice starch[J]. Starch-St?rke, 2011, 63(1): 147-153.

        [18] 曾紅華,謝濤,楊莉,等. 幾種薯類與豆類抗性淀粉的的抗消化性及其益生效應(yīng)[J]. 中國糧油學(xué)報(bào),2012,27(11):30-34.

        Zeng Honghua, Xie Tao, Yang Li, et al. Anti-digestibility of several tubers and legumes resistant starches and their proliferation of probiotics [J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(11): 30-34. (in Chinese with English abstract)

        [19] 謝濤,張淑遠(yuǎn),王美桂,等. 重結(jié)晶紅薯淀粉體外消化前后益生作用與結(jié)構(gòu)變化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):203-208.

        Xie Tao, Zhang Shuruan, Wang Meigui, et al. Probiotic functions and structure changes of recrystallised sweet potato starches before and after in vitro digestion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 203-208. (in Chinese with English abstract)

        [20] 謝濤,曾紅華,汪婕,等. 4種抗性淀粉的主要理化特性[J]. 中國糧油學(xué)報(bào),2014,29(9):78-84.

        Xie Tao, Zeng Honghua, Wang Jie, et al. Main physicochemical properties of 4 resistant starches[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(9): 78-84. (in Chinese with English abstract)

        [21] Cairns P, Sun L, Morris VJ. Physicochemical studies using amylase as an in-vitro model for resistant starch[J]. Journal of Cereal Science, 1995, 21(1): 37-47.

        [22] Lopez-Rubio A, Flanagan BM, Gilbert E P. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches[J]. Biomacromolecules, 2008, 9(7): 1951-1958.

        [23] Bian Linlin, Chung H J. Molecular structure and physicochemical properties of starch isolated from hydrothermally treated brown rice flour[J]. Food Hydrocolloids, 2016, 60: 345-352.

        [24] 劉貴蕭,牛凱,侯漢學(xué),等. 均質(zhì)壓力對(duì)玉米淀粉機(jī)械力化學(xué)效應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):271-278.Liu Guixiao, Niu Kai, Hou Hanxue, et al. Effect of homogenizing pressure on mechanochmical properties of corn starch [J]. Transactions of the Chinese Society for Agricultural Engineering (Tramsactions of TCSAE), 2017, 33(1): 271-278. (in Chinese with English abstract)

        [25] Ren C, Shin M. Effects of cross-linked resistant rice starch on the quality of Korean traditional rice cake[J]. Food Sci Biotechnol, 2013, 22: 697-704.

        [26] Li S L, Ward R, Gao Q Y. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean () starch[J]. Food Hydrocolloids, 2011, 25(6): 1702-1709.

        [27] Mutungi C, Rost E, Onyango C, et al. Crystallinity, thermal and morphological characteristics of resistant starch type Ⅲproduced by hydrothermal treatment of debranched cassava starch[J]. Starch-Starke, 2009, 61(11): 634-645.

        [28] 張斌,羅發(fā)興,黃強(qiáng),等. 不同直鏈含量玉米淀粉結(jié)晶 結(jié)構(gòu)及其消化性研究[J]. 食品與發(fā)酵工業(yè),2010(8):26-30.

        Zhang Bin, Luo Faxing, Huang Qiang, et al. Crystallinestructures and digestibility of corn starches with different amylose/amylopectin content[J]. Food and Fermentation Industries, 2010(8): 26-30. (in Chinese with English abstract)

        [29] Mutungi C, Rost E, Onyango C, et al. Crystallinity, thermal and morphological characteristics of resistant starch type Ⅲ produced by hydrothermal treatment of debranched cassava starch[J]. Starch-Starke, 2009, 61 (11): 634-645.

        [30] Mutungi C, Onyango C, Rost F, et al. Structural and physicochemical properties and in vitro digestibility of recrystallized linear-D-(1→4) glucans derived from mild-acid modified cassava starch[J]. Food Research International, 2010, 43(4): 1144-1154.

        Effect of retrograded resistant starch types on forming rice starch gel

        Xie Tao1, Li Ying2, Yi Cuiping3, Liu Xiaolong1

        (1.411104,; 2.411104,; 3.410015,)

        In order to improve the structure and qualities of general rice starch products, effects of retrograded resistant starches (RSⅢ) made from(), potato and mung bean on microstructure and physicochemical properties of rice starch gels were investigated by using modern analysis methods, including RVA-4 rapid viscosity analyzer, S-3400N scanning electron microscope, TA-XT Plus structure analyzer, D/max2500 automatic X-ray diffractometer and DSC200 differential scanning calorimeter. The results demonstrated that the structure and properties of rice starch gel had a significant change (<0.01)after adding, potato and mung bean RSⅢ, respectively. Especially the role ofRSⅢ was the most prominent. The, potato and mung bean RSⅢ had no effect (>0.05) on viscosity properties of rice starch pastes. Rice starch gel without RSⅢ had a lot of irregular, deep and shallow large holes, while the net structure of rice starch gel with RSⅢ became more uniform and dense. RSⅢ had little influence on gumminess and cohesiveness of rice starch gel (>0.05). The, potato and mung bean RSⅢ could accelerate the formation of rice starch gel. Compared with the rice starch gel without RSⅢ, their hardness increased by 2.38, 1.97 and 1.25 times (<0.01), stickness increased by 2.56, 1.99 and 1.32 times (<0.01), and spring increased by 1.07, 0.81 and 0.53 times (<0.01), respectively. A-type crystal was dominant in rice starch, and V-type crystal was dominant inRSⅢ, while B-type crystal was dominant in potato and mung bean RSⅢ. Whether or not adding RSⅢ, V-type crystal in rice starch gel powders was transformed as the main crystal shape, and their total relative crystallinities had not changed (>0.05). In addition to a low temperature endothermic peak, rice starch pastes with RSⅢ showed a high temperature endothermic peak. Whether or not to add RSⅢ, the change of temperature parameters of low temperature endothermic peak was a little (>0.05), but its endothermic enthalpy decreased significantly (<0.01). As for the high temperature endothermic peak, all parameters of rice starch pastes with potato and mung bean RSⅢ had no difference (>0.05), but they were significantly higher than those of rice starch paste withRSⅢ (<0.01). To sum up, adding RSⅢ with different sources can effectively improve the structure and quality of rice starch gel. The present results can provide an important reference for using the RS to improve the qualities and nutritional functions of the rice products.

        starch; gel; physical properties; chemical properties; retrograded resistant starch; rice starch

        10.11975/j.issn.1002-6819.2017.04.042

        TS235.2

        A

        1002-6819(2017)-04-0309-06

        2016-08-28

        2017-01-20

        湖南省長沙市科技計(jì)劃重點(diǎn)項(xiàng)目“雜糧新產(chǎn)品系列之土豆重組營養(yǎng)片開發(fā)”(2015)

        謝 濤,男,湖南漣源人,教授,博士,主要從事再生資源與食品、生物化工研究。湘潭 湖南工程學(xué)院化學(xué)化工學(xué)院,411104。 Email:xt1105@aliyun.com

        謝 濤,李 英,易翠平,劉小龍.回生抗性淀粉種類對(duì)米淀粉凝膠形成的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):309-314. doi:10.11975/j.issn.1002-6819.2017.04.042 http://www.tcsae.org

        Xie Tao, Li Ying, Yi Cuiping, Liu Xiaolong. Effect of retrograded resistant starch types on forming rice starch gel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 309-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.042 http://www.tcsae.org

        猜你喜歡
        錐栗直鏈綠豆
        小綠豆變身記
        撿錐栗
        異淀粉酶法高直鏈銀杏淀粉的制備
        清熱解毒綠豆香
        綠豆
        啟蒙(3-7歲)(2018年8期)2018-08-13 09:31:06
        打錐栗
        快樂語文(2018年14期)2018-06-06 06:05:19
        均相催化六氫苯酐與C10直鏈醇制備環(huán)保增塑劑及其性能
        中國塑料(2016年2期)2016-06-15 20:29:57
        綠豆成長記
        錐栗飄香
        錐栗栗癭蜂的危害及防治措施
        人妻熟妇乱又伦精品hd| 久久中文字幕亚洲精品最新| 亚洲国产综合精品久久av| 天涯成人国产亚洲精品一区av| 日日摸夜夜添夜夜添高潮喷水| 性生交大片免费看淑女出招| 亚洲色欲Aⅴ无码一区二区| 伊人久久大香线蕉综合av| 亚洲一区二区三区中文字幕网| 人人妻人人狠人人爽| 国产精品厕所| 日韩不卡无码三区| 九九精品国产亚洲av日韩| 丰满少妇被粗大猛烈进人高清| 精品久久人人爽天天玩人人妻| 日本不卡一区二区高清中文| 美女被强吻并脱下胸罩内裤视频 | 日韩av一区二区不卡| 精品伊人久久大香线蕉综合| 国产欧美日产久久| 亚洲福利第一页在线观看| 日中文字幕在线| 中文字幕一区二区黄色| 中国孕妇变态孕交xxxx| 欧美老妇牲交videos| 欧美大屁股xxxxhd黑色| 亚洲国产日韩在线人成蜜芽| 国产诱惑人的视频在线观看| 欧美日韩精品一区二区视频| 亚洲国产av一区二区三区四区| 抖射在线免费观看视频网站| 人妻av有码中文字幕| 日本少妇被黑人xxxxx| 97久久久久国产精品嫩草影院| 韩国一区二区三区黄色录像| 国产熟女内射oooo| 日韩h网站| 亚洲av色精品国产一区二区三区 | 日产亚洲一区二区三区| 另类一区二区三区| 亚洲av中文字字幕乱码软件|