亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        木屑及其水熱炭的熱解特性和動(dòng)力學(xué)對(duì)比

        2017-03-27 00:59:04邢獻(xiàn)軍范方宇李永玲張賢文

        邢獻(xiàn)軍,楊 靜,范方宇,李永玲,張賢文

        ?

        木屑及其水熱炭的熱解特性和動(dòng)力學(xué)對(duì)比

        邢獻(xiàn)軍1,2,楊 靜3,范方宇4,李永玲3,張賢文1,2※

        (1. 合肥工業(yè)大學(xué)先進(jìn)能源技術(shù)與裝備研究院,合肥 230009; 2. 合肥工業(yè)大學(xué)汽車與交通工程學(xué)院,合肥 230009; 3. 合肥工業(yè)大學(xué)機(jī)械工程學(xué)院,合肥 230009; 4. 合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥 230009)

        為全面了解木屑及其水熱炭的差異,獲取更多關(guān)于水熱炭作為化工燃料的使用特性。該文使用熱重分析儀和傅里葉紅外光譜儀對(duì)比研究了木屑及其水熱炭在熱解過(guò)程(10 ℃/min升溫速率)中的失重特性及其官能團(tuán)變化,分析了升溫速率(10、20、30 ℃/min)對(duì)2種樣品熱解失重過(guò)程的影響,采用DAEM(分布活化能模型)計(jì)算了2種樣品不同轉(zhuǎn)化率下的活化能。結(jié)果表明:1)在200℃反應(yīng)6 h得到的木屑水熱炭,化學(xué)結(jié)構(gòu)與木屑相似。2)在熱解過(guò)程(10 ℃/min升溫速率)中,木屑與水熱炭最大失重速率分別為0.817 %/℃和1.224 %/℃,溫度為353.57 ℃和363.42 ℃;不同終溫下半焦紅外光譜分析發(fā)現(xiàn),水熱炭更易解聚,其碳化速度更快。3)對(duì)比3種不同升溫速率下2種樣品的失重曲線可知,水熱處理沒(méi)有影響熱滯后現(xiàn)象,樣品焦炭生成量與升溫速率無(wú)關(guān),焦炭生成量平均值水熱炭大于木屑。4)DAEM模型適用于2種樣品熱解反應(yīng)活化能的求解,木屑及其水熱炭活化能分別為99.33~252.72 kJ/mol和63.77~211.68 kJ/mol,當(dāng)轉(zhuǎn)化率在0.30到0.80范圍時(shí),木屑的活化能高于水熱炭。研究結(jié)果為木屑水熱炭熱化學(xué)轉(zhuǎn)化制備焦炭提供理論依據(jù)。

        木屑;熱解;活化能;水熱炭;傅里葉紅外光譜

        0 引 言

        隨著人口增長(zhǎng)和工業(yè)化快速發(fā)展,化石燃料的大量消耗對(duì)環(huán)境和人類社會(huì)可持續(xù)發(fā)展構(gòu)成了嚴(yán)重的威脅。因此,尋找清潔高效的替代燃料成為人類社發(fā)展的迫切需求。生物質(zhì)作為世界上第四大能源[1-2],具有儲(chǔ)量豐富、潔凈性、可再生性和溫室氣體CO2的零排放等特點(diǎn)[3-4],引起了社會(huì)的廣泛關(guān)注。生物質(zhì)水熱炭化是在溫度為150~350 ℃、壓力為1 400~7 600 kPa下,將生物質(zhì)放入密閉的水溶液中反應(yīng)1 h以上以制取焦炭的過(guò)程[5-6]。與生物質(zhì)原料相比,水熱炭體具有較高的燃料特性,如固定炭含量增加、氧含量減少、能量密度增加,其品質(zhì)接近于泥炭和褐煤[7],但反應(yīng)活性更高,可作為復(fù)合固體燃料直接燃用;水熱炭化過(guò)程也使生物質(zhì)中的堿金屬溶解在水溶液中,減少了水熱炭在燃燒或熱解時(shí)對(duì)反應(yīng)器的腐蝕。因此,水熱炭可作為煤的替代品被應(yīng)用到液化、氣化和燃燒過(guò)程中。

        目前,國(guó)內(nèi)外對(duì)于生物質(zhì)水熱炭的研究主要集中在材料領(lǐng)域:如何制備形貌、功能各異的炭微球及其性能表征上,或者水熱炭化產(chǎn)物的產(chǎn)率和組分分析上。文獻(xiàn)[8]利用硫酸得到表面含有大量官能團(tuán)的水熱炭,該水熱炭活化后會(huì)表現(xiàn)出良好的電化學(xué)特性;文獻(xiàn)[9]研究了溫度和時(shí)間對(duì)于稻草水熱炭化的影響、稻草水熱炭化的機(jī)理,分析了氣相、液相和固相產(chǎn)物的產(chǎn)率;文獻(xiàn)[10]以葡萄糖為原料,分析了水熱炭化過(guò)程以及生成的焦炭表面官能團(tuán)物理結(jié)構(gòu)及微觀化學(xué)組成。對(duì)于熱反應(yīng)動(dòng)力學(xué)的研究多集中在生物質(zhì)原料方面,文獻(xiàn)[11]考察了玉米桿、玉米芯、稻草、龍眼枝、荔枝條及其混合燃料的燃燒、著火等特性,并計(jì)算了燃燒動(dòng)力學(xué)參數(shù);文獻(xiàn)[12]選用了Kissinger-Akahira-Sunose (KAS)、Ozawa-Flyn-Wall (OFW)和Coats-Redfern 3種動(dòng)力學(xué)方法對(duì)大豆秸稈的熱解動(dòng)力學(xué)參數(shù)進(jìn)行計(jì)算并模擬。以上,對(duì)水熱炭熱解特性及其動(dòng)力學(xué)進(jìn)行的研究很少,水熱處理對(duì)熱解過(guò)程的影響缺乏理論認(rèn)識(shí)。

        因此,本研究選取常見的松木木屑為原料,采用熱重分析和傅里葉紅外技術(shù)對(duì)比研究木屑及其水熱炭熱解過(guò)程中的失重特性和有機(jī)結(jié)構(gòu)變化,分析升溫速率(10、20、30 ℃/min)對(duì)該2種樣品失重特性的影響,采用DAEM方法對(duì)木屑及其水熱炭熱解反應(yīng)過(guò)程進(jìn)行對(duì)比研究,詳細(xì)探討2種樣品熱解活化能隨轉(zhuǎn)化率的變化規(guī)律以及存在的差異。以期為木屑水熱炭在熱化學(xué)轉(zhuǎn)化工藝中的參數(shù)優(yōu)化、能源品質(zhì)提高等提供參考依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)原料

        試驗(yàn)原料為安徽合肥某家具加工廠的松木余料,經(jīng)風(fēng)干、粉碎、過(guò)篩后,得到粒度為80~106m木屑,將該木屑(Sawdust, SD)置于105 ℃烘箱中干燥24 h,裝入密封袋中備用。

        水熱炭制備:稱取4 g木屑,放入60 mL反應(yīng)釜中,注入40 mL去離子水后攪拌至混合均勻,密封后將其置于200 ℃烘箱中保持6 h。待自然冷卻至室溫后分離出固體產(chǎn)物,分別用無(wú)水乙醇和去離子水各進(jìn)行3次清洗,所得水熱炭(Hydrochar,HC)置于105 ℃烘箱中干燥24 h,裝入密封袋備用。試驗(yàn)樣品元素分析和工業(yè)分析如表1所示。

        表1 試驗(yàn)樣品元素分析和工業(yè)分析(干基)

        注:氧元素含量以差減法獲得。

        Note: Content of O was determined by difference.

        1.2 表征及方法

        熱重測(cè)試采用Setaram公司生產(chǎn)的Setsys Evo型同步熱分析儀。高純度氮?dú)饬髁繛?0 mL/min,樣品質(zhì)量為15 mg,分別以10、20、30 ℃/min升溫速率將樣品從室溫程序升溫至800 ℃,同時(shí)進(jìn)行空白試驗(yàn)以消除系統(tǒng)誤差。

        傅里葉變換紅外光譜測(cè)試采用美國(guó)Thermo Nicole公司Nicolet 67型傅里葉變換紅外光譜儀,對(duì)2種樣品熱重試驗(yàn)(升溫速10 ℃/min)不同終溫下(200、400、600、800 ℃)熱解固體產(chǎn)物、原樣品進(jìn)行紅外光譜測(cè)試,紅外掃描區(qū)間為400~4 000 cm-1,采用金剛石晶體壓片,測(cè)試方法為傅里葉變換衰減全反射紅外光譜法(ATR-FTIR)。

        2 結(jié)果與分析

        2.1 木屑與水熱炭的熱解特性和結(jié)構(gòu)分析

        圖1為木屑及其水熱炭傅里葉紅外光譜圖和熱解失重(TG/DTG)曲線。

        由圖1a可見,SD與HC紅外光圖譜無(wú)明顯差異,表明HC的化學(xué)成分與SD相似。1 603、1 510和1 422 cm-1為木質(zhì)素中芳香環(huán)骨架上C=C伸縮振動(dòng),HC圖譜在上述位置處,峰的位置未發(fā)生變化,表明該溫度條件下HC中木質(zhì)素仍然保存著完整的芳香結(jié)構(gòu)。891、1 163 cm-1處為-(1→4)-糖苷鍵連接的C-O-C伸縮振動(dòng),主要用于連接纖維素中-D-吡喃葡萄糖,表明200℃保溫6 h水熱條件下,糖苷鍵連接的C-O-C未被破壞,纖維素中環(huán)狀-D-吡喃葡萄糖在該條件下仍較穩(wěn)定。1 730和1 639 cm-1處主要為半纖維素中C=O伸縮振動(dòng),HC圖譜中幾乎未發(fā)現(xiàn)該峰的存在,表明半纖維素中脂鍵斷裂,半纖維素完成了脫羰基反應(yīng)。1 160~900 cm-1(C-O-C、C-O)吸收峰增強(qiáng),在900~700 cm-1出現(xiàn)了新的C-H彎曲振動(dòng),表明發(fā)生了芳香環(huán)重整,有新的芳香環(huán)生成[13]。由以上結(jié)論可知,200℃保溫 6 h條件下發(fā)生的水熱炭化反應(yīng),未使木屑生物質(zhì)完全降解,纖維素與木質(zhì)素仍然存在并發(fā)生了芳香環(huán)重整,而半纖維素降解[14-15]。

        a. ATR-FTIR

        b. TG and DTG curves

        注:升溫速率為10 ℃/min;圖1b中失重曲線放大圖溫度在50~167 ℃;TG和DTG分別為熱重曲線和微分熱重曲線。

        Note: Heating rate is 10 ℃/min; The temperature range of larger version of figure 1b between 50-167 ℃; TG and DTG are thermogravimetric curve and differential thermogravimetric curve, respectively.

        圖1 木屑和水熱炭的ATR-FTIR圖譜和熱重曲線

        Fig.1 ATR-FTIR spectra and thermogravimetric curves of sawdust and hydrochar

        圖1b可見,10 ℃/min升溫速率下,2種樣品的TG和DTG曲線整體變化趨勢(shì)相似,主要分為3個(gè)階段,第1階段為樣品干燥預(yù)熱階段(50~200 ℃),樣品失重量不足2%,DTG峰值小,SD和HC最大質(zhì)量損失率分別為0.014%/℃和0.006%/℃,該階段失重速率的大小主要由含水量決定。第2階段為揮發(fā)分析出階段(200~390 ℃),樣品TG值隨溫度升高迅速減小。該階段2種樣品均存在一個(gè)明顯的DTG峰,對(duì)應(yīng)各自的熱解主反應(yīng)階段,主要為纖維素以及部分木質(zhì)素?zé)岱纸膺^(guò)程。揮發(fā)分析出量約占熱解階段失重總量的90%,HC和SD失重速率達(dá)到最大值,分別為1.224%/℃和0.817%/℃,對(duì)應(yīng)溫度分別為363.42 ℃和353.57 ℃;第3階段為碳化階段(390~800 ℃),隨溫度升高,失重速率放緩,TG、DTG曲線趨近于水平直線,熱解反應(yīng)結(jié)束。然而,2種樣品熱解失重曲線間存在明顯差異:在揮發(fā)分析出階段,HC的TG曲線向高溫側(cè)偏移,表明HC揮發(fā)分析出所需的溫度更高。這是因?yàn)?,HC在低溫段(200~400 ℃)熱解中[3,16],最易生成揮發(fā)分的低分子有機(jī)物和半纖維素等組分含量減少[17-18],揮發(fā)分含量降低(表1所示),在較高溫度范圍裂解的纖維素等組分,成為熱解階段析出揮發(fā)分的主要物質(zhì);HC的DTG峰形狀更加尖窄,表明HC熱解主要階段的反應(yīng)更集中劇烈,HC中纖維素等組分官能團(tuán)活性較高,當(dāng)受熱加強(qiáng)時(shí),揮發(fā)性物質(zhì)釋放更容易,熱解反應(yīng)越劇烈。

        圖2為10 ℃/min升溫速率下,木屑和水熱炭在不同終溫下的半焦ATR - FTIR圖。

        a. 木屑

        a. Sawdust

        b. 水熱炭

        b. Hydrochar

        注:升溫速率為10 ℃·min-1。

        Note: Heating rate is 10 ℃·min-1.

        圖2 木屑和水熱炭在不同終溫下半焦ATR-FTIR圖譜

        Fig.2 ATR-FTIR spectra of sawdust and hydrochar and their semi-char at different temperatures

        圖2可見,溫度為200 ℃時(shí),SD和HC各自的有機(jī)官能團(tuán)種類同其對(duì)應(yīng)的原料相比幾乎未發(fā)生變化,但強(qiáng)度降低,說(shuō)明當(dāng)溫度低于200 ℃時(shí),2種樣品熱解反應(yīng)溫和,主要發(fā)生干燥失水以及官能團(tuán)解聚[31]。溫度高于200 ℃時(shí),隨溫度升高,2種樣品半焦官能團(tuán)種類開始減少,直至消失,在圖2中表現(xiàn)為ATR - FTIR曲線逐漸變平坦。其中,苯環(huán)上C=C(1 603 cm-1)吸收峰強(qiáng)度隨溫度的升高先增強(qiáng)后減弱,說(shuō)明隨溫度升高,木質(zhì)素裂解,酚類等化合物增多;1 455~1 367 cm-1存在飽和烴基的C-H和C-O以及C-H(烯烴)鍵,溫度高于400 ℃時(shí)發(fā)生環(huán)化、小分子脫化等反應(yīng),生成CO2、H2O等小分子氣體;C-O-C(1 163 cm-1)伸縮振動(dòng)的吸收峰在400 ℃時(shí)基本消失,表明樣品中的纖維素在該溫度時(shí)幾乎完全裂解;1 100~1 030 cm-1為醇類C-OH伸縮振動(dòng),隨著溫度升高逐漸減弱,至800 ℃完全消失,表明脫羥基反應(yīng)發(fā)生;900~600 cm-1范圍內(nèi)的吸收峰隨著溫度的升高而發(fā)生變化,原因是芳香環(huán)在高溫段重新組合并生成H2等輕質(zhì)氣體。由圖2進(jìn)一步分析可知,200 ℃以下,HC官能團(tuán)強(qiáng)度降低更加明顯,表明HC中官能團(tuán)的活性位較多,低溫時(shí)官能團(tuán)連接鍵更容易解聚。在200~400 ℃范圍內(nèi),HC絕大部分官能團(tuán)消失更快,表明HC進(jìn)入碳化階段所需時(shí)間更短。

        2.2 不同升溫速率下木屑和水熱炭的熱解曲線

        圖3是木屑和水熱炭在3種不同升溫速率(10、20、30 ℃/min)下的熱解失重(TG/DTG)曲線。

        a. 木屑

        a. Sawdust

        圖3可見,隨著升溫速率增大,SD和HC熱解起始溫度、DTG峰值對(duì)應(yīng)溫度以及熱解終止溫度均向高溫側(cè)偏移。這是因?yàn)?,隨著升溫速率增大,樣品受傳熱溫差和溫度梯度影響增大,加重了熱滯后現(xiàn)象[19-20]。由TG曲線可知,3種升溫速率下2種樣品焦炭量變化不大,表明升溫速率對(duì)SD和HC熱解生產(chǎn)焦炭生成量無(wú)較大影響;3種升溫速率下SD和HC產(chǎn)生焦炭量的平均值分別為25.46%和27.16%,表明水熱炭熱解完成時(shí)失重量相對(duì)較少,與表1中揮發(fā)分結(jié)果一致。由DTG曲線可知,隨著升溫速率的增大,SD最大失重速率無(wú)規(guī)律性變化,而HC則呈明顯遞增趨勢(shì)。

        2.3 熱動(dòng)力學(xué)分析

        近年來(lái),利用分布活化能模型(distributed activation energy model, DAEM)研究活化能與轉(zhuǎn)化率之間的關(guān)系成為了新趨勢(shì)。該模型首先由Vand[21]提出,后經(jīng)過(guò)Anthony等[22-23]研究,建立了DAEM數(shù)學(xué)描述、理論推導(dǎo)分析,如階躍近似法[23]、拐點(diǎn)切線法[24]和Miura法[23,25]等。Cai等[26-27]將該方法運(yùn)用到生物質(zhì)熱解和燃燒反應(yīng)體系中。DAEM基于2點(diǎn)假設(shè):無(wú)限平行反應(yīng)和活化能分布, 即試驗(yàn)樣品的熱解或者燃燒反應(yīng)是由無(wú)限相互獨(dú)立的平行一級(jí)反應(yīng)組成;每一個(gè)反應(yīng)都有獨(dú)立的活化能,且活化能連續(xù)分布。分布式活化能模型如下

        式中為到時(shí)刻為止反應(yīng)物析出揮發(fā)分的量,%;V為整個(gè)反應(yīng)過(guò)程中反應(yīng)物的總揮發(fā)量,%;0為頻率因子,s-1;為活化能,kJ/mol;為氣體常數(shù),8.314J/(mol·K);為絕對(duì)溫度,K;()代表活化能分布函數(shù),其滿足。

        本文使用線性非等溫升溫程序,即溫度隨時(shí)間線性變化。將升溫速率帶入式(1)可得

        基于上述假設(shè)及模型,本文中木屑和水熱炭熱解過(guò)程的DAEM可描述為

        本文使用Miura-Maki[29]積分法對(duì)DAEM模型進(jìn)行處理,對(duì)式(5)化簡(jiǎn)得

        圖4給出了木屑及其水熱炭在3種不同升溫速率及部分轉(zhuǎn)化率下的Arrhenius圖;圖5為活化能隨轉(zhuǎn)化率的變化曲線,基本數(shù)據(jù)信息如表2所示。由圖4、表2可見,擬合直線的線性相關(guān)系數(shù)都較高,其均值都大于0.95,表明DAEM模型適用于求解木屑及其水熱炭熱解反應(yīng)活化能。

        a. 木屑

        a. Sawdust

        b. 水熱炭

        b. Hydrochar

        注:為溫度,K,為升溫速率,℃·min-1;每條直線代表一個(gè)轉(zhuǎn)化率,圖中僅選取了部分?jǐn)M合直線顯示。

        Note:is the temperature, K, andis the heating rate, ℃·min-1; Every line represents a conversion rate and part of data are showed in the figure.

        圖4 不同升溫速率下木屑和水熱炭熱解的ln(/2)?1/圖

        Fig.4 ln(/2) vs 1/T of pyrolysis for sawdust and hydrochar at different heating rates

        由圖5可見,2種樣品活化能并不隨轉(zhuǎn)化率增大呈單調(diào)遞增趨勢(shì),而是都經(jīng)歷了緩慢增大—平穩(wěn)—急劇增大的變化過(guò)程,對(duì)應(yīng)熱解揮發(fā)分緩慢析出階段、大量析出階段和碳化階段:1)當(dāng)轉(zhuǎn)化率在0.05~0.30時(shí),HC活化能在99.33~120.22 kJ/mol,大于SD在該范圍內(nèi)活化能,表明在熱解初始階段HC揮發(fā)分析出需要的能量較高。2)當(dāng)轉(zhuǎn)化率從0.30增大到0.80時(shí),該范圍內(nèi)熱解反應(yīng)進(jìn)入劇烈的主反應(yīng)階段,SD和HC的活化能在155和115 kJ/mol附近變化,表明熱解主反應(yīng)階段,水HC熱解需要的能量低于SD;3)當(dāng)轉(zhuǎn)化率在0.85~0.90附近時(shí),活化能急劇增大,熱解反應(yīng)進(jìn)入最耗能的碳化階段,表明隨溫度升高,原本無(wú)序的炭結(jié)構(gòu)逐漸趨于有序,官能團(tuán)反應(yīng)活性迅速降低,這與李社峰等[30-31]的研究結(jié)果一致。

        由上述分析可知,利用DAEM方法求得的2種樣品活化能未呈現(xiàn)線性變化關(guān)系,表明2種樣品的熱解過(guò)程不是簡(jiǎn)單的化學(xué)反應(yīng),而是眾多官能團(tuán)在一定溫度條件下,分子鍵斷裂的復(fù)雜連續(xù)反應(yīng)的綜合;木屑與水熱炭的活化能隨著轉(zhuǎn)化率的分布變不同,活化能分別為99.33~252.72、63.77~211.68 kJ/mol,表明熱解過(guò)程中2種樣品熱解反應(yīng)機(jī)理不同,進(jìn)一步說(shuō)明水熱炭化改變了木屑化學(xué)結(jié)構(gòu)和組分。

        表2 樣品在多個(gè)轉(zhuǎn)化率下的熱解活化能和相關(guān)系數(shù)

        3 結(jié) 論

        1)通過(guò)對(duì)木屑及其水熱炭的紅外光譜分析發(fā)現(xiàn),200 ℃保溫6 h發(fā)生的水熱炭化反應(yīng),未使木屑生物質(zhì)完全降解,纖維素與木質(zhì)素仍然存在并發(fā)生了芳香環(huán)重構(gòu),而半纖維素發(fā)生降解。

        2)2種樣品的熱解過(guò)程(10 ℃/min升溫速率)可分為干燥、揮發(fā)分析出和碳化3個(gè)階段,水熱炭和木屑最大失重速率分別為1.224 %/℃和0.817 %/℃,溫度為363.42 ℃和353.57 ℃,主熱解反應(yīng)更劇烈,進(jìn)入主熱解反應(yīng)所需溫度更高;不同終溫下半焦紅外光譜分析發(fā)現(xiàn),熱解過(guò)程是一系列復(fù)雜化學(xué)反應(yīng)的綜合體現(xiàn),與木屑相比,水熱炭官能團(tuán)更容易解聚,碳化速度更快。

        3)在3種不同升溫速率(10、20、30 ℃/min)下,木屑和水熱炭各自的焦炭生成量沒(méi)有發(fā)生明顯變化;隨升溫速率增大,2種樣品熱解失重曲線均向高溫側(cè)移動(dòng),表明水熱處理沒(méi)有對(duì)熱滯后現(xiàn)象產(chǎn)生影響。

        4)采用DAEM方法得到2種樣品擬合直線的線性相關(guān)系數(shù)平均值都大于0.95,表明DAEM模型適用于木屑及其水熱炭熱解反應(yīng)活化能的求解;其中,轉(zhuǎn)化率在0.30到0.80范圍內(nèi)木屑的活化能高于水熱炭,表明熱解主反應(yīng)階段,水熱炭揮發(fā)分析出所需能量更低。

        水熱炭化處理改變了木屑原有的熱解特性,降低了原材料在主熱解階段所需的能量,并使熱解反應(yīng)在更短的時(shí)間內(nèi)完成。為后續(xù)水熱炭熱解特性以及動(dòng)力學(xué)的分析研究提供理論參考。

        [1] 畢于運(yùn),高春雨,王亞靜,等. 中國(guó)秸稈資源數(shù)量估算[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):211-217.

        Bi Yuyun, Gao Chunyu, Wang Yajing, et al. Estimation of straw resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 211-217. (in Chinese with English abstract)

        [2] 孫克靜,張海榮,唐景春. 不同生物質(zhì)原料水熱生物炭特性的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(11):2260-2265.

        Sun Kejing, Zhang Hairong, Tang Jingchun. Properties of hydrochars from different sources of biomass feedstock[J]. Journal of Agra-Environment Science, 2014, 33(11): 2260-2265. (in Chinese with English abstract)

        [3] Mckendry P. Energy production from biomass (part 1): overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.

        [4] 何詠濤. 利用農(nóng)林廢棄物聯(lián)產(chǎn)生物油和生物炭[D]. 杭州:浙江工業(yè)大學(xué),2012.

        He Yongtao. Co-production of Activated Carbon and Bio-oil from Agricultural and Forestry Residues[D]. Hangzhou: Zhejiang University of Technology, 2012. (in Chinese with English abstract)

        [5] 吳倩芳,張付申. 水熱炭化廢棄生物質(zhì)的研究進(jìn)展[J]. 環(huán)境污染與防治,2012,34(7):70-75.

        Wu Qianfang, Zhang Fushen. Progress on hydrothermal carbonization of waste biomass[J]. Environmental Pollution & Control, 2012, 34(7): 70-75. (in Chinese with English abstract)

        [6] Titirici M M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 2010, 39(1): 103-116.

        [7] 高英,石韜,汪君,等. 生物質(zhì)水熱技術(shù)研究現(xiàn)狀及發(fā)展[J].可再生能源,2011,29(4):77-83.

        Gao Ying, Shi Tao, Wang Jun, et al. Research status and development of hydrothermal technology for biomass[J]. Renewable Energy Resources, 2011, 29(4): 77-83. (in Chinese with English abstract)

        [8] Wang L, Guo Y, Zhu Y, et al. A new route for preparation of hydrochars from rice husk[J]. Bioresource Technology, 2010, 101(24): 9807-9810.

        [9] Ding L, Wang Z, Li Y, et al. A novel hydrochar and nickel composite for the electrochemical supercapacitor electrode material[J]. Materials Letters, 2012, 74(5): 111-114.

        [10] 汪君,時(shí)瀾,高英,等. 葡萄糖水熱過(guò)程中焦炭結(jié)構(gòu)演變特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(7):191-198.

        Wang Jun, Shi Lan, Gao Ying, et al. Structure evolution of char obtained from hydrothermal treatment of glucose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 191-198. (in Chinese with English abstract)

        [11] 田紅,廖正祝. 農(nóng)業(yè)生物質(zhì)燃燒特性及燃燒動(dòng)力學(xué)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):203-212.

        Tian Hong, Liao Zhengzhu. Combustion characteristics and combustion kinetics of agriculture biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 203-212. (in Chinese with English abstract)

        [12] Parshetti G K, Hoekman S K, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J]. Bioresource Technology, 2012, 135(3): 683-689.

        [13] Huang X, Cao J P, Zhao X Y, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 120(4): A21-A21.

        [14] 彭云云,武書彬. TG-FTIR聯(lián)用研究半纖維素的熱裂解特性[J]. 化工進(jìn)展,2009,28(8):1478-1484.

        Peng Yunyun, Wu Shubin. Characteristics and kinetics of sugarcana bagasse hemicellulose pyrolysis by TG-FTIR[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1478-1484. (in Chinese with English abstract)

        [15] Baharuddin A S, Yunos N S H M, Mahmud N A N, et al. Effect of high-pressure steam treatment on enzymatic saccharification of oil palm empty fruit bunches[J]. Bioresources, 2012, 7(3): 3525-3538.

        [16] 何選明,王春霞,付鵬睿,等. 水熱技術(shù)在生物質(zhì)轉(zhuǎn)換中的研究進(jìn)展[J]. 現(xiàn)代化工,2014,34(1):26-29.

        He Xuanming, Wang Chuanxia, Fu Pengrui, et al. Research development of hydrothermal technology for biomass transform utilization[J]. Modern Chemical Industry, 2014, 34(1): 26-29. (in Chinese with English abstract)

        [17] 朱恂,李剛,馮云鵬,等. 重慶地區(qū)7種生物質(zhì)的成分分析及熱重實(shí)驗(yàn)[J]. 重慶大學(xué)學(xué)報(bào):自然科學(xué)版,2006,29(8):44-48.

        Zhu Xun, Li Gang, Feng Yunpeng, et al. Thermogravimetric experiments and component analysis of biomass in Chongqing[J]. Journal of Chongqing University: Natural Science Edition, 2006, 29(8): 44-48. (in Chinese with English abstract)

        [18] 白兆興,曹建峰,林鵬云,等. 秸稈類生物質(zhì)燃燒動(dòng)力學(xué)特性實(shí)驗(yàn)研究[J]. 能源研究與信息,2009,25(3):130-137.

        Bai Zhaoxing, Cao Jianfeng, Lin Pengyun, et al. Experimental study on the biomass combustion kinetics[J]. Energy Research and Information, 2009, 25(3): 130-137. (in Chinese with English abstract)

        [19] 盧洪波,戴惠玉,馬玉鑫. 生物質(zhì)三組分燃燒特性及動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):186-191.

        Lu Hongbo, Dai Huiyu, Ma Yuxin. Combustion characteristics and dynamic analysis of three biomass components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 186-191. (in Chinese with English abstract)

        [20] 姚錫文,許開立. 玉米芯的熱解特性及氣相產(chǎn)物的釋放規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):275-282.

        Yao Xiwen, Xu Kaili. Pyrolysis characteristics of corn cob and release rule of gas products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 275-282. (in Chinese with English abstract)

        [21] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proceedings of the Physical Society, 2002, 55(3): 222-246.

        [22] Anthony D B, Howard J B, Hottel H C, et al. Rapid devolatilization of pulverized coal[J]. Symposium on Combustion, 1975, 15(1): 1303-1317.

        [23] Miura K A. New and simple method to estimate() and0() in the distributed activation energy model from three sets of experimental data [J]. Energy Fuels, 1995, 9(2): 302-307.

        [24] Hashimoto K, Miura K, Watanabe T. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment[J]. Aiche Journal, 1982, 28(5): 737-746.

        [25] Miura K, Maki T. A simple method for estimating() and0() in the distributed activation energy model[J]. Energy Fuels, 1998, 12(5): 864-869.

        [26] Cai J, Wu W, Liu R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2014, 36: 236-246.

        [27] 劉旭光,李保慶. DAEM模型研究大同煤及其半焦的氣化動(dòng)力學(xué)[J]. 燃料化學(xué)學(xué)報(bào),2000,28(4):289-293.

        Liu Xuguang, Li Baoqing. Study on gasification kinetice of DaTong coal and its chars[J]. Journal of Fuel Chemistry and Technology. 2000, 28(4): 289-293. (in Chinese with English abstract)

        [28] Fischer P E, Jou C S, Gokalgandhi S S. Obtaining the kinetic parameters from thermogravimetry using a modified Coats and Redfern technique[J]. Industrial & Engineering Chemistry Research, 1987, 26(5): 1037-1040.

        [29] Narvaez I. Fresh Tar (from a Biomass Gasifier) Elimination over a commercial steam-reforming catalyst. kinetics and effect of different variables of operation[J]. Industrial & Engineering Chemistry Research, 1997, 36(2): 84.

        [30] 李社峰,方夢(mèng)祥,舒立福,等. 利用分布活化能模型研究木材的熱解和燃燒機(jī)理[J]. 燃燒科學(xué)與技術(shù),2006,12(6):535-539.

        Li Shefeng, Fang Mengxiang, Shu Lifu, et al. Pyrolysis and combustion mechanism of wood with distribution activation energy model[J]. Journal of Combustion Science and Technology, 2006, 12(6): 535-539. (in Chinese with English abstract)

        [31] 陳登宇,朱錫鋒. 生物質(zhì)熱反應(yīng)機(jī)理與活化能確定方法Ⅱ.熱解段研究[J]. 燃料化學(xué)學(xué)報(bào),2011,39(9):670-674.

        Chen Dengyu,Zhu Xifeng. The rmal reaction mechanism of biomass and de termination of activation energy II. Pyrolysis section[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 670-674. (in Chinese with English abstract)

        Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrochar

        Xing Xianjun1,2, Yang Jing3, Fan Fangyu4, Li Yongling3, Zhang Xianwen1,2※

        (1230009; 2,230009,; 3230009,; 4230009)

        Rapid industrialization and urbanization have brought a severe problem of energy shortage and environmental pollution into our life. As the fourth-largest energy, Nowadays,Lignocellulosic biomass is increasingly regarded as an eco-friendly renewable feedstock for producing various bio-based products. Recently, hydrothermal carbonization (HTC) as a hot topic has attracted a great deal of attention because the process requirements of HTC are comparably low and are able to treat wet feedstock without an energy extensive drying process. But so far, some literatures have focused on the morphology, chemical structure and adsorption capacity of hydrochar, etc. Only few reports have provided a detailed description on the kinetic analysis of hydrochar. Pyrolysis is considered as the first step of the process of gasification, liquefaction, carbonization, and combustion. On the other side, the knowledge of the pyrolysis kinetics is fundament for predicting the pyrolysis behavior of materials and the design of the suitable reactor. In this study, pinesawdust was provided by a factory in Anhui province in 2015. The hydrocharwas hydrothermally obtained from 5 g of sawdust immersed in 40 mL of distilled water in the stainless steel autoclave keeping temperature at 200 ℃ for 6 h, then as-prepared hydrochar was dried in an oven at 105℃ for 24 h. Pyrolysis characteristics and organic structure of both pine sawdust and hydrochar were investigated via thermogravimetric analysis and Fourier transformation infrared spectrometer, respectively. Different heating rates (10, 20, 30 ℃/min) were chosen to study the influence of pyrolysis process. Meanwhile, the distributed activation energy model (DAEM) was used to study the pyrolysis kinetics by means of the relation between conversion rate and activation energy. The results indicated that : 1) Compared with pine sawdust organic structure of hydrochar treated by hydrothermal carbonization process was changed, and the organic function groups of pine sawdust and hydrochar decreased in the different ways with the increase of pyrolysis temperature, but the organic function groups of hydrochar decreased faster than pine sawdust's when the temperature was over 200℃; 2) Thermogravimetric curves showed that hydrochar needed higher temperature and led to the faster loss weight rates than pine sawdust during the pyrolysis process, but the trend of thermogravimetric curves of both products changing with heating rates was same; 3) The values of pyrolysis activation energies of hydrochar and pine sawdust were different ranging within 99.33-252.72 and 63.77-211.68 kJ/mol, respectively. But the trends of the pyrolysis activation energies of hydrochar and pine sawdust were very similar with the increment of conversion rate. In summary, hydrothermal treatment process destroyed organic functional groups and lowered volatile content of pine sawdust, resulting in the changes of pyrolysis characteristics. Specifically, the whole pyrolysis process shifted to higher temperature, the reaction rate was accelerated and the main pyrolysis process occurred in a narrower temperature range shortening the pyrolysis time. Activation energy also was influenced due to the hydrothermal process, leading the reduction of the values at the dominating stage of volatile loss, however, the increase of the values at the initial and final stage of volatile loss. This study provides reference for pyrolysis and mechanism of hydrochar production.

        sawdust; pyrolysis; activation energy; hydrochar; fourier infrared spectrum

        10.11975/j.issn.1002-6819.2017.04.035

        TK6

        A

        1002-6819(2017)-04-0258-07

        2016-06-24

        2017-02-12

        國(guó)家科技支撐計(jì)劃(2012BAD30B01)

        邢獻(xiàn)軍,男,安徽無(wú)為人,博士,教授,博士生導(dǎo)師,主要從事高效清潔燃燒及能源轉(zhuǎn)化利用。合肥 合肥工業(yè)大學(xué),230009。

        張賢文,男,安徽亳州人,博士,研究員,碩士生導(dǎo)師,主要從事生物質(zhì)炭材料的研究。合肥 合肥工業(yè)大學(xué), 230009。 Email:xianwen.zhang@hfut.edu.cn.

        邢獻(xiàn)軍,楊 靜,范方宇,李永玲,張賢文. 木屑及其水熱炭的熱解特性和動(dòng)力學(xué)對(duì)比[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):258-264. doi:10.11975/j.issn.1002-6819.2017.04.035 http://www.tcsae.org

        Xing Xianjun, Yang Jing, Fan Fangyu, Li Yongling, Zhang Xianwen. Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 258-264. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.035 http://www.tcsae.org

        国产一级毛片卡| 性欧美大战久久久久久久久| 精品无码一区二区三区爱欲| 国产精品毛片一区二区三区| 久久久久久亚洲精品中文字幕| 亚洲精品国精品久久99热一| 一区二区无码中出| 国产免费人成网站在线播放| 亚洲性日韩一区二区三区| 国产农村妇女精品一区| √天堂中文官网在线| 亚洲第一av导航av尤物| 日产无人区一线二线三线新版| 中文字幕久久精品波多野结百度| 日本国主产一区二区三区在线观看 | 波多野结衣乳巨码无在线| 波多野结衣有码| 乱色视频中文字幕在线看| 国产国语一级免费黄片| 李白姓白白又白类似的套路| 免费观看成人欧美www色| 免费xxx在线观看| 天天躁日日操狠狠操欧美老妇| 97色人阁俺也去人人人人人| 男人天堂亚洲一区二区| 国产乱码人妻一区二区三区| 四虎国产精品永久在线国在线| 无遮高潮国产免费观看| 免费一级黄色大片久久久| 中文字幕精品乱码一二三区| 日韩中文字幕素人水野一区| 国产欧美成人一区二区a片| 亚洲尺码电影av久久| 国产精品一区成人亚洲| 麻豆成人久久精品二区三区免费| 亚洲精品人成中文毛片| 中文无码熟妇人妻av在线| 国产成人精品日本亚洲18| 西西人体大胆视频无码| 国产精品熟女少妇不卡| 国产综合色在线精品|