亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        干濕交替灌溉與施氮耦合對水稻根際環(huán)境的影響

        2017-03-27 00:58:22徐國偉陸大克孫會忠王賀正李友軍
        農(nóng)業(yè)工程學報 2017年4期
        關鍵詞:水氮有機酸根際

        徐國偉,陸大克,孫會忠,王賀正,李友軍

        ?

        干濕交替灌溉與施氮耦合對水稻根際環(huán)境的影響

        徐國偉1,2,陸大克1,孫會忠1,王賀正1,李友軍1

        (1. 河南科技大學農(nóng)學院,洛陽 471003;2. 揚州大學江蘇省作物遺傳生理重點實驗室,揚州 225009)

        為了探討不同水氮耦合對水稻根際土壤環(huán)境及根系分泌有機酸總量的影響,以新稻20號為材料,進行盆栽試驗,設置淺水層、輕度(?20 kPa)和重度干濕交替灌溉(?40 kPa)3種灌溉方式及不施氮肥,中氮(normal nitrogen, MN, 240 kg/hm2)和高氮(high nitrogen, HN, 360 kg/hm2)3種氮肥水平9個處理。結果表明:輕度干濕交替灌溉及中氮增加了土壤酶活性,提高土壤中微生物數(shù)量,根系分泌有機酸總量顯著提高(<0.05);重度干濕交替灌溉及重施氮肥則降低土壤酶活性及微生物的數(shù)量,顯著(<0.05)減少根系分泌有機酸的總量;相關分析表明:根際土壤酶活性及微生物數(shù)量與不同生育期根系分泌有機酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關關系。土壤酶活性、微生物數(shù)量及有機酸總量的供氮效應為正效應,輕度干濕交替灌溉供水效應及耦合效應均為正效應,而重度干濕交替灌溉的控水及耦合效應則為負效應。研究可為通過水氮耦合調(diào)控水稻良好的根際環(huán)境提供依據(jù)。

        灌溉;氮肥;微生物;水稻;土壤酶;有機酸

        0 引 言

        土壤酶在土壤養(yǎng)分的轉化、釋放及固定等方面起著非常重要的角色,是土壤肥力及微生物活性的重要標志[1-3]。土壤微生物直接參與有機質的分解、加速腐殖質產(chǎn)生吸收、固定并釋放營養(yǎng)物質,改善與調(diào)節(jié)植物根際營養(yǎng)狀況,在土壤肥力維持及生態(tài)系統(tǒng)修復中具有重要的作用[4-6],因此土壤酶與土壤微生物作為根際微生態(tài)系統(tǒng)的重要組成部分,已經(jīng)成為現(xiàn)代科學研究的一個熱點。水分與氮肥是作物生長發(fā)育過程中不可或缺的重要因素,水分和氮肥因子融為一體,對改善作物生長環(huán)境和提高肥料的利用效率有著重要作用[7]。國內(nèi)外學者就種植方式、施氮水平、根系分泌物運用、秸稈還田、灌溉方式、肥料類型等方面對土壤酶活性及微生物群落進行了眾多的研究[8-16],得出有機無機肥配施、秸稈還田、根系分區(qū)灌溉及適宜的施氮水平有利于提高土壤的酶活性提高和微生物數(shù)量增加,但有關水氮互作對于土壤酶及微生物影響的研究較少,且大多集中在番茄、黃瓜等蔬菜以及小麥、玉米、煙草等旱作作物上[17-21],這些作物水分管理方式與水稻完全不同。作物生長發(fā)育是水肥多因子交互作用的結果,其關系要比單因子作用復雜得多。根系分泌物中有機酸種類及含量與根系合成的激素等物質一起構成根系化學信號,向根際周圍及地上部輸出,從而對根際及地上部作物的生長起調(diào)控作用[22-25]。水氮耦合下根際分泌物中有機酸有何差異,與土壤酶活性及微生物數(shù)量有何關系,前人對此研究較少。本試驗通過對水分的動態(tài)控制,研究整個生育期不同水氮條件對水稻根際環(huán)境的影響及其耦合效應,以此探索水氮耦合機理,為水稻高產(chǎn)高效及根際生態(tài)提供理論及科學依據(jù)。

        1 材料和方法

        1.1 材料與試驗地點

        試驗于2014-2015年在河南科技大學盆栽場進行。供試品種為新稻20,常規(guī)粳稻品種。試驗地氣候屬溫帶半濕潤半干旱大陸性季風氣候,年降水量600 mm,年輻射量491.5 kJ/cm2,年日照時數(shù)2 300~2 600 h,無霜期215~219 d。試驗采用盆栽方式,塑料大棚擋雨。盆缽規(guī)格:直徑25 cm,高30 cm,盆缽內(nèi)裝過篩土15 kg左右。土壤為粘壤土,土壤有機質14.9 g/kg,堿解氮65.3 mg/kg,有效磷5.9 mg/kg,有效鉀115.6 mg/kg。

        1.2 試驗設計

        進行灌溉方式×氮肥水平2因素隨機試驗。設計3種灌溉方式:保持淺水層(分蘗末期進行曬田,其余生育期保持1~2 cm水層)、輕度干濕交替灌溉(分蘗末期進行曬田,其余生育期先灌1~2 cm水層,至土壤水勢降到?20 kPa再灌淺水層,如此反復)、重度干濕交替灌溉(分蘗末期進行曬田,其余生育期先灌1~2 cm水層,至土壤水勢降到?40 kPa再灌淺水層,如此反復),盆缽內(nèi)用負壓計以觀測土壤水勢,陶土頭底部置于15 cm土層處,生育期間塑料大棚擋雨。全生育期氮肥水平為3個水平:不施氮肥(0N),中氮(normal nitrogen, MN, 240 kg/hm2,以N計,下同)和高氮(high nitrogen, HN, 360 kg/hm2),氮肥運籌按照4∶1∶5于移栽前1 d、移栽后7 d和穗分化期施用。磷、鉀肥各處理均一致,移栽前施用過磷酸鈣(含P2O513.5%)300 kg/hm2和氯化鉀(含K2O 52%)195 kg/hm2。大田育秧:5月6日播種,6月10日進行移栽,每盆栽插3穴,每穴2苗,每個處理30盆,全生育期嚴格監(jiān)測水分及病蟲害,其余管理同高產(chǎn)田一致。

        1.3 測定項目與方法

        1.3.1土壤酶及微生物數(shù)量測定

        分別于分蘗盛期、穗分化始期、抽穗期和成熟期,各處理取樣3盆。每盆各取根際土樣5點混勻,稱取泥土500 g儲存于4 ℃冰箱中,用于土壤酶活性及微生物數(shù)量的測定。土壤脲酶用苯酚鈉比色法,堿性磷酸酶用苯磷酸二鈉比色法,過氧化氫酶用高錳酸鉀滴定法[26]。土壤中細菌測定采用牛肉膏蛋白胨培養(yǎng)基、真菌采用馬丁氏(Martin)培養(yǎng)基、放線菌采用改良高氏一號培養(yǎng)基測定[27]。

        1.3.2 根系分泌物中有機酸含量測定

        分別于分蘗盛期、幼穗分化始期、抽穗期和成熟期,各材料取樣3盆,用自來水和蒸餾水洗凈后,置于裝有去離子水的燒杯(800 mL)中并封上燒杯口,每杯放1穴(水分脅迫處理在水中加入PEG-6000,輕度水分脅迫為10%,重度水分脅迫為30%)。在光下(光強為700~800mol/(m2·s),冠層溫度28~30 ℃)培養(yǎng)4 h,收集燒杯中的溶液,用高效液相色譜測定溶液中有機酸濃度[28]。

        1.3.3 各因素效應的計算公式[29-30]

        供氮效應=[(土壤水分脅迫與氮肥處理-土壤水分脅迫與無氮肥處理)+(正常水分與氮肥處理-正常水分與無氮肥處理)]/2

        控水效應=[(土壤水分脅迫與氮肥處理-正常水分與氮肥處理)+(土壤水分脅迫與無氮肥處理-正常水分與無氮肥處理)]/2

        耦合效應=[(土壤水分脅迫與氮肥處理-正常水分與無氮肥處理)-(正常水分與氮肥處理-正常水分與無氮肥處理)-(土壤水分脅迫與無氮肥處理-正常水分與無氮肥處理)]/2

        1.4 數(shù)據(jù)處理與分析

        本試驗數(shù)據(jù)用SAS/STAT (version 6.12,SAS Institute,Cary,NC,USA)進行方差分析,SigmaPlot 10.0進行圖表繪制。

        2 結果分析

        2.1 水稻土壤酶及微生物數(shù)量的處理效應

        在2014 和2015 2a中,土壤酶活性、微生物數(shù)量及根系分泌有機酸總量在施氮水平、灌溉方式間存在顯著差異(<0.01),灌溉方式′氮肥水平存在互作效應,其余的互作效應均不顯著(表1)。所測定的主要指標年度間差異均不顯著,說明灌溉方式、施氮水平對根際特性的影響在年度間重演性較好。故本文土壤酶活性及微生物數(shù)量主要取2015年的數(shù)據(jù)。

        表1 水氮耦合下土壤酶活性、微生物數(shù)量及根系分泌有機酸總量的方差分析

        注:NS表示在在0.05 水平上不顯著。*與**表示在在0.05及 0.01 水平上差異顯著與極顯著。所有指標均為抽穗期測定數(shù)據(jù)。Y表示年度間,W表示灌溉方式,N表示施氮水平,下同。

        Note: NS, not significant (>0.05). * and** represents<0.05 and P<0.01, respectively. The indicator data were determined at heading stage. Y, W and N represents year, irrigation regime and nitrogen level, respectively, the same below.

        2.2 水氮耦合對土壤酶活性及耦合效應的影響

        2.2.1 水氮耦合對土壤脲酶活性影響

        土壤脲酶活力在水稻生育過程中表現(xiàn)為先增加后降低,在幼穗分化始期達到峰值(圖1a)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉總體增加土壤中脲酶活性,幼穗分化期(PI, panicle initiation)及成熟期尤為明顯,重度干濕交替灌溉則顯著(<0.05)降低酶活性,說明適宜的水分才能促進土壤脲酶活性的提高;在同一灌溉方式下,土壤脲酶活性隨著施氮量的增加而明顯提高,如幼穗分化期,土壤脲酶活性增加了20.2~28.1個酶活力單位,說明增施氮肥能顯著提高土壤脲酶活性。從水氮耦合來看,高氮輕度干濕交替灌溉下土壤脲酶活性最高。

        2.2.2 水氮耦合對蔗糖酶及過氧化氫酶活性影響

        土壤蔗糖酶及過氧化氫酶活性在水稻生育過程中表現(xiàn)為先增加后降低,抽穗期活性最高(圖1b、1c)。在同一氮肥水平下,與對照保持水層相比,輕度干濕交替灌溉增加土壤中蔗糖酶及過氧化氫酶活性,重度干濕交替灌溉則降低酶活性;在同一灌溉方式下,土壤蔗糖酶及過氧化氫酶活性在MN下最高,進一步增施氮肥反而降低蔗糖酶活性,如在抽穗期,HN處理蔗糖酶降低了5.8%~12.7%(圖1b),過氧化氫酶降低了9.1%~11.3%(圖1c),說明過量施用氮肥并不能顯著提高土壤蔗糖酶及過氧化氫酶活性。從水氮耦合來看,輕度干濕交替灌溉耦合中氮下土壤蔗糖酶及過氧化氫酶活性最高。

        注:0N:不施氮肥;MN:施氮240kg·hm-2;HN:施氮360kg·hm-2;0 kPa:淺水層灌溉;?20 kPa:水分脅迫?20kPa;?40 kPa:水分脅迫?40 kPa;同一生育期不同小寫字母表示各處理在0.05水平上差異顯著,下同。

        Note: 0N: No nitrogen applied. MN: Nitrogen 240 kg·hm-2. HN: Nitrogen 360 kg·hm-2. 0kPa: Submerged irrigation. ?20 kPa: Water stress ?20 kPa. ?40 kPa: Water stress ?40 kPa. Values within the same growth period followed by different lowercase letters are significantly different at 0.05 level, the same below.

        a. 水氮耦合對水稻土壤脲酶活性的影響

        a. Effect of water and nitrogen interaction on urease enzyme activity in rhizosphere soil

        b. 水氮耦合對水稻土壤蔗糖酶活性的影響

        b. Effect of water and nitrogen interaction on sucrose enzyme activity in rhizosphere soil

        2.2.3 水氮耦合下土壤酶耦合效應分析

        不同水氮處理條件下土壤酶效應表現(xiàn)不一(表2)。土壤酶的供氮效應均表現(xiàn)為正效應,說明施用氮肥可以提高土壤酶的活性。土壤脲酶供氮效應隨著施氮量的增加而提高。蔗糖酶供氮效應在施氮處理間差異較小,過氧化氫酶供氮效應在MN處理下最高,HN處理下反而降低,如:抽穗期過氧化氫酶在高氮下的供氮效應僅為中氮處理的66.3%(?20 kPa)及61.7%(?40 kPa),說明重施氮肥并不能顯著(<0.05)地增加土壤中過氧化氫酶的活性;輕度干濕交替灌溉控水效應為正效應,說明其促進土壤酶活性的增加,而重度干濕交替灌溉的控水效應為負效應,說明其抑制土壤酶活性的增加,不同的氮肥水平間表現(xiàn)一致;水氮耦合效應方面:輕度干濕交替灌溉土壤酶表現(xiàn)為正效應,而重度干濕交替灌溉土壤脲酶及蔗糖酶(抽穗前)則表現(xiàn)為負效應,說明輕度干濕交替與中氮耦合能夠促進土壤酶活性提高。

        表2 水氮耦合對土壤酶耦合效應的影響

        2.3 水氮耦合對土壤微生物數(shù)量及耦合效應的影響

        2.3.1 對細菌數(shù)量的影響

        隨著生育進程,土壤中細菌數(shù)量表現(xiàn)為先上升后降低的趨勢,在抽穗期達到峰值(圖2a)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中細菌的數(shù)量,這在幼穗分化時期及抽穗表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中細菌的數(shù)量,如分蘗盛期細菌數(shù)量降低7.7%~15.0%;在同一灌溉方式下,施用氮肥明顯增加了土壤中細菌數(shù)量,MN和HN下細菌數(shù)量增加了20.0%~30.0%(保持淺水層)、13.6%~22.7%(?20 kPa)與29.4%~41.2%(?40 kPa);與MN相比,高氮處理下土壤中細菌數(shù)量反而顯著性(<0.05)降低,這在成熟前表現(xiàn)尤為明顯,說明施用高氮并不能顯著(<0.05)提高土壤中細菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理細菌數(shù)量最多,如抽穗期,細菌數(shù)量達到65×106g-1,比對照(0N, 0 kPa)提高116.7%,可見中氮輕度干濕交替灌溉最有利于土壤細菌數(shù)量的提高。

        2.3.2 對真菌數(shù)量的影響

        土壤中真菌數(shù)量隨著生育進程,表現(xiàn)為先提高后下降的趨勢,抽穗期達到峰值(圖2b)。在同一施氮水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中真菌的數(shù)量,這在幼穗分化時期及抽穗表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中真菌的數(shù)量,如幼穗分化時期真菌數(shù)量降低12.5%~16.7%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中真菌數(shù)量,MN和HN下真菌數(shù)量平均增加了15.0%(保持淺水層)、8.4%(?20 kPa)與32.2%(?40 kPa);隨著施氮量的增加,土壤中真菌數(shù)量先增后降,MN處理下土壤中真菌數(shù)量最多,高氮處理下土壤中真菌數(shù)量反而顯著性(<0.05)降低,這在分蘗盛期以后表現(xiàn)尤為明顯,說明施用高氮并不能顯著性(<0.05)提高土壤中真菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理真菌數(shù)量最多,如抽穗期,真菌數(shù)量達到67×104g-1,比對照(0N,0 kPa)提高48.9%,可見中氮輕度干濕交替灌溉最有利于土壤真菌數(shù)量的提高。

        2.3.3 對放線菌數(shù)量的影響

        隨著生育進程,放線菌數(shù)量表現(xiàn)為先增加后降低的趨勢,在抽穗期最大(圖2c)。在同一氮肥水平下,與保持水層相比,輕度干濕交替灌溉提高土壤中放線菌的數(shù)量,這在抽穗期表現(xiàn)尤為明顯,而重度干濕交替灌溉則明顯降低土壤中放線菌的數(shù)量,如成熟期放線菌數(shù)量降低18.2%~21.4%;在同一灌溉方式下,施用氮肥增加了幼穗分化及抽穗期土壤中放線菌數(shù)量,MN和HN下放線菌數(shù)量增加了50.0%~60.0%(保持淺水層)、14.3%~28.6%(?20 kPa)與50.0%~75.0%(?40 kPa);隨著施氮量的增加,土壤中放線菌數(shù)量先增后降,MN處理下土壤中放線菌數(shù)量最多,高氮處理下放線菌數(shù)量反而顯著性降低,說明高氮并不能顯著(<0.05)提高土壤中放線菌數(shù)量。從水氮耦合方面分析,中氮耦合輕度干濕交替灌溉處理放線菌數(shù)量最多,如抽穗期,真菌數(shù)量達到64×105g-1,比對照(0N 0 kPa)提高60%,可見中氮輕度干濕交替灌溉最有利于土壤放線菌數(shù)量的提高。

        a. 水氮耦合對水稻土壤細菌數(shù)量的影響

        a. Effect of water and nitrogen coupling on bacteria quantity rhizosphere soil

        b. 水氮耦合對水稻土壤根際真菌數(shù)量的影響

        b. Effect of water and nitrogen coupling on fungi quantity in rhizosphere soil

        Fig 2 Effect of water and nitrogen coupling on microorganism quantity in rhizosphere soil

        2.3.4 水氮耦合對土壤微生物耦合效應的影響

        新稻20土壤微生物(細菌、真菌及放線菌)的供氮效應大都表現(xiàn)為正效應(表3),說明施用氮肥可以提高土壤微生物的數(shù)量,進一步觀察發(fā)現(xiàn):與MN相比,HN處理下土壤微生物的供氮效應均較低,如:分蘗中期土壤中真菌在高氮下的供氮效應僅為中氮處理的25%(?20 kPa)及30.7%(?40 kPa),說明重施氮肥并不能顯著增加土壤中微生物的數(shù)量;輕度干濕交替灌溉控水效應為正效應,說明其促進土壤中微生物數(shù)量的增加,而重度干濕交替灌溉為負效應,說明其抑制土壤中微生物數(shù)量的增加,不同的氮肥水平間表現(xiàn)一致;耦合效應方面:輕度干濕交替灌溉表現(xiàn)為正效應,而重度干濕交替灌溉整體表現(xiàn)為負效應(真菌抽穗期除外),說明適宜的水氮耦合能夠促進土壤中微生物數(shù)量的提高。

        表3 水氮耦合對土壤微生物耦合效應的影響

        2.4 水氮耦合對根系分泌物中有機酸總量及耦合效應的影響

        不同水氮肥耦合下根系分泌物中有機酸總量明顯存在差異[31]。新稻20根系分泌有機酸的供氮效應均表現(xiàn)為正效應(表4),說明增施氮肥可以促進根系有機酸的分泌。與MN相比,HN有機酸的供氮效應較低,說明重施氮肥并不能明顯增加根系分泌有機酸的量;輕度干濕交替灌溉控水效應為正效應,說明其促進根系有機酸總量的增加,而重度干濕交替灌溉控水效應則為負效應,說明其抑制根系分泌有機酸的能力,不同的氮肥處理間表現(xiàn)一致;耦合效應方面:輕度干濕交替灌溉表現(xiàn)為正效應,而重度干濕交替灌溉則表現(xiàn)為負效應,說明適宜的水氮耦合能夠促進根系分泌有機酸的量。

        表4 水氮耦合對根系分泌有機酸總量耦合效應的影響

        2.5 根際土壤酶活性及微生物數(shù)量與有機酸總量的相關性分析

        根際土壤中脲酶、蔗糖酶及過氧化氫酶活性與不同生育期根系分泌有機酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關關系(=0.778*~0.987**),同樣根際土壤中細菌、真菌及放線菌數(shù)量與不同生育期根系分泌有機酸總量呈顯著(<0.05)或極顯著(<0.01)的正相關關系(=0.757*~0.974**),表明根際土壤中微生物數(shù)量及酶活性與根系分泌有機酸量關系密切。

        表5 根際土壤微生物及酶活性與有機酸總量的相關分析

        3 討 論

        3.1 水氮耦合對水稻根際土壤酶及微生物數(shù)量的影響

        根際是靠近作物根系的微域土區(qū),是作物-土壤生態(tài)系統(tǒng)物質與能量交換的重要界面,也是土壤酶及微生物非?;钴S的區(qū)域[32]。Tang等[8]研究表明,施肥和耕作措施可以平衡土壤的C/N比,改善土壤水熱狀況,提高土壤酶活性。夏雪等[4]認為施用氮肥可以提高土壤微生物群落碳源利用率、微生物群落的豐富度、功能多樣性及土壤酶的活性;低量和中量氮肥能夠提高蔗糖酶和脲酶活性,而中量和高量氮肥可以增加堿性磷酸酶活性。本研究表明,增施氮肥顯著提高水稻根際土壤酶活性及微生物量。原因是氮肥能夠促進作物根系代謝,提高根系生理功能,使根系分泌有機酸、氨基酸、糖及高分子黏膠等物質增加,為微生物的繁殖提供豐富的營養(yǎng);同時根際土壤微生物的增加能夠固定并釋放營養(yǎng)物質,改善與調(diào)節(jié)根際養(yǎng)分,提高土壤酶活性[33]。本研究表明,中氮條件下土壤蔗糖酶、過氧化氫酶及微生物數(shù)量較多,進一步增施氮肥反而降低。原因可能是高氮條件下根系土壤處于較高濃度的養(yǎng)分,對根系土壤的微生物產(chǎn)生一定的毒害作用,降低其分解及礦化有機質的能力,影響根際養(yǎng)分水平,降低土壤酶的活性。說明氮肥對微生物數(shù)量的變化具有雙重性,合理的氮濃度對于土壤微生物的數(shù)量提高及酶活性的保持具有促進作用[33]。

        蔡曉紅等[34]研究認為,土壤酶及微生物生物量在淺水層連續(xù)灌溉模式下最小,控水模式和干濕交替模式下土壤微生物量碳最大[14]。本研究表明,輕度干濕交替灌溉下,土壤酶活性及微生物數(shù)量明顯增加,而重度干濕交替灌溉后土壤酶活性及微生物數(shù)量明顯下降。究其原因,一方面,輕度水分脅迫下根系土壤通透性增加,有利于土壤微生物的有氧呼吸,給微生物的生長提供良好的條件,有利于土壤酶活性的提高及維持;另一方面,輕度水分下水稻根系生理活性較強,產(chǎn)生較多的分泌物,這些分泌物反而促進土壤微生物的滋生及提供養(yǎng)分;重度干濕交替灌溉下土壤雖然通透性提高,但是根系生理能力降低,微生物賴以生存的物質減少,影響其數(shù)量的增加。故本研究結果與蔡曉紅等[34]研究不盡一致,是兩者之間所處的生長條件并不一致。

        3.2 水氮耦合對水稻根系分泌有機酸總量的影響

        關于根系分泌物中有機酸的研究,單因子的試驗較多,而對于水氮耦合下根系分泌特性研究仍然較少。常二華等[35]研究表明,水稻缺少氮素時會抑制根系有機酸的分泌,其研究的是低氮條件下根系分泌的特性,當?shù)睾枯^少時,水稻從土壤中可吸收的NO3-就比較少,根系分泌的有機酸含量就相對較低。本研究表明,MN條件下根系分泌的有機酸含量整體較高,而高氮則抑制了根系分泌,說明重施氮肥后根系活性降低,根系分泌受到抑制,不利于根系功能的發(fā)揮。中氮及高氮條件下的根系分泌特性,更加貼近生產(chǎn)實際,對于不同的氮肥下根系分泌觀察更為系統(tǒng)。

        Henry等[36]人認為,在干旱的情況下根系的有機酸分泌普遍的高于在淹水條件下的有機酸分泌,尤其是對富馬酸、馬來酸和丁二酸最為顯著。Huang[37]與Marzieh[24]等發(fā)現(xiàn)水分的脅迫可以增加根系分物的含碳量,甘藍型油菜的根系可以分泌出更多的有機酸??梢姴煌謱Ω捣置谟袡C酸的含量研究結果不盡一致。本試驗得出,輕度干濕交替灌溉后根系分泌物中有機酸含量明顯增加,而重度干濕交替灌溉則明顯降低。究其原因,在輕度水分脅迫下水稻的根系土壤中微生物數(shù)量及酶的活性得到提高,根系活性較高,能夠主動分泌有機酸的含量,從而提高根系的生理功能,為地上部的生長發(fā)育提供物質與能量;同時根系分泌物為根系周圍的微生物提供了大量的能源和營養(yǎng)物質,所以根系周圍成為了微生物的代謝活動旺盛場所,相關分析也表明,根系分泌有機酸含量與土壤酶及微生物數(shù)量呈顯著與極顯著正相關關系,可見根系分泌物對根際土壤酶活性及微生物數(shù)量具有選擇塑造作用,根際土壤酶及微生物區(qū)系變化也對作物根系分泌及信息傳遞有著重要的影響。

        3.3 水氮耦合對水稻根際耦合效應的影響

        關于耦合效應的分析一般采用回歸旋轉組合及值方差等方法,評價各試驗因子的效應[38-41]。本研究通過各因素效應公式計算出各因子大小,從直觀上反映各因素效應的有無及效應的高低。研究表明,土壤酶活性、微生物數(shù)量及有機酸總量的供氮效應為正效應,說明增施氮肥有利于根際環(huán)境的改善,但重施氮肥(360 kg/hm2)后土壤蔗糖酶、過氧化氫酶、微生物數(shù)量及根系分泌有機酸的供氮效應反而降低,說明過量施肥并不能顯著改善根際環(huán)境。輕度干濕交替灌溉供水效應為正效應,而重度干濕交替灌溉的控水效應則為負效應,說明適宜的水分控制能夠改善根際環(huán)境,過度的水分脅迫則惡化根系生態(tài)環(huán)境,不利于根系生長代謝。輕度干濕交替灌溉耦合中氮處理土壤酶活性、微生物數(shù)量及有機酸總量耦合效應最佳,說明輕度干濕交替灌溉和中氮相互作用產(chǎn)生正效應,有利于根系生長及地上部發(fā)育,進一步觀察發(fā)現(xiàn),重施氮肥后通過輕度干濕交替灌溉能提高土壤酶活性及微生物數(shù)量,能夠促進根系分泌,說明氮肥起到部分的“以肥調(diào)水”的作用,而重干濕交替下施用氮肥耦合效應為負值,說明其加劇土壤干旱脅迫程度,降低根系分泌功能及惡化土壤環(huán)境。這提示在生產(chǎn)實踐中,通過輕度干濕交替灌溉耦合中氮(240 kg /hm2)調(diào)控,促進根系有機酸的分泌,提高根系的代謝活性,為地上部的生長發(fā)育創(chuàng)造良好的環(huán)境,有利于水稻產(chǎn)量的提高及資源的高效利用。

        本試驗是在盆栽條件下觀察水氮耦合的根際效應,雖然整個生育期都有大棚擋雨,對水分的管理較嚴,能夠反映不同水氮耦合對根際環(huán)境的影響,但水稻生長發(fā)育狀態(tài)與大田條件仍有一定的差異,大田條件下水氮耦合對水稻根際效應的影響有待深入研究。

        4 結 論

        水稻根際環(huán)境及耦合效應在不同水氮處理間存在明顯差異。中氮輕度干濕交替灌溉處理創(chuàng)造良好的根際環(huán)境,土壤酶活性較強,微生物數(shù)量較多及根系分泌物中有機酸含量較高。重度干濕交替灌溉則降低土壤酶活性、微生物數(shù)量及根系分泌特性,降低“以肥調(diào)水”的效果。水稻根際土壤酶及微生物數(shù)量與主要生育期水稻根系分泌有機酸總量呈顯著或極顯著的正相關,表明通過適宜的水氮耦合提高水稻根系分泌能力,協(xié)調(diào)地上地下生長,為水稻生長創(chuàng)造良好的環(huán)境。

        [1] 卜洪震,王麗宏,尤金成,等. 長期施肥管理對紅壤稻田土壤微生物量碳和微生物多樣性的影響[J]. 中國農(nóng)業(yè)科學,2010,43(16):3340-3347.

        Bo Hongzhen, Wang Lihong, You Jincheng, et al. Impact of long-term fertilization on the microbial biomass carbon and soil microbial communities in paddy red soil[J]. Scientia Agricultura Sinica, 2010, 43(16): 3340-3347. (in Chinese with English abstract)

        [2] 馬曉霞,王蓮蓮,黎青慧,等. 長期施肥對玉米生育期土壤微生物量碳氮及酶活性的影響[J]. 生態(tài)學報,2012,32(17):5502-5511.

        Ma Xiaoxia, Wang Lianlian, Li Qinghui, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, 32(17): 5502-5511. (in Chinese with English abstract)

        [3] Ye Shaoping, Yang Yujie, Xin Guorong, et al. Studies of the Italian ryegrass–rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere[J]. Applied Soil Ecology, 2015, 90(6): 26-34.

        [4] 夏雪,谷潔,車升國,等. 施氮水平對塿土微生物群落和酶活性的影響[J]. 中國農(nóng)業(yè)科學,2011,44(8):1618-1627.

        Xia Xue, Gu Jie, Che Shengguo, et al. Effects of nitrogen application rates on microbial community and enzyme activities in lou soil[J]. Scientia Agricultura Sinica, 2011, 44(8): 1618-1627. (in Chinese with English abstract)

        [5] Yusuf A A, Abaidoo R C, Iwuafor E N , et al. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna[J]. Agriculture, Ecosystem and Environment, 2009, 129: 325-331.

        [6] 陶磊,褚貴新,劉濤,等. 有機肥替代部分化肥對長期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響[J]. 生態(tài)學報,2014,34(21):6137-6146.

        Tao Lei, Chu Guixin, Liu Tao, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield,soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146. (in Chinese with English abstract)

        [7] 徐國偉,王賀正,翟志華,等. 不同水氮耦合對水稻根系形態(tài)生理、產(chǎn)量與氮素利用的影響[J]. 農(nóng)業(yè)工程學報,2015,31(10):132-141.

        Xu Guowei, Wang Hezheng, Zhai Zhihua, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 132-141. (in Chinese with English abstract)

        [8] Tang H M, Xu Y L, Sun J M, et al. Soil enzyme activities and soil microbe population as influenced by long-term fertilizer management under an intensive cropping system[J]. Journal of Pure and Applied microbiology, 2014, 8(2): 15-23.

        [9] Liu E K, Zhao B Q, Mei X R, et al. Effects of no-tillage management on soil biochemical characteristics in northern China[J]. Journal of Agricultural Science, 2010, 148(2): 217-223.

        [10] 肖新,朱偉,肖靚,等. 適宜的水氮處理提高稻基農(nóng)田土壤酶活性和土壤微生物量碳氮[J]. 農(nóng)業(yè)工程學報,2013,29(21):91-98.

        Xiao Xin, Zhu Wei, Xiao Liang, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 91-98. (in Chinese with English abstract)

        [11] 趙亞麗,郭海斌,薛志偉,等. 耕作方式與秸稈還田對土壤微生物數(shù)量、酶活性及作物產(chǎn)量的影響[J]. 應用生態(tài)學報,2015,26(6):1785-1792.

        Zhao Yali, Guo Haibin, Xue Zhiwei, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese with English abstract)

        [12] 武際,郭熙盛,魯劍巍,等. 不同水稻栽培模式下小麥秸稈腐解特征及對土壤生物學特性和養(yǎng)分狀況的影響[J]. 生態(tài)學報,2013,33(2):565-575.

        Wu Ji, Guo Xisheng, Lu Jianwei, et al. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation[J]. Acta Ecologica Sinica, 2013, 33(2): 565-575. (in Chinese with English abstract)

        [13] 黃繼川,彭智平,于俊紅,等. 施用玉米秸稈堆肥對盆栽芥菜土壤酶活性和微生物的影響[J]. 植物營養(yǎng)與肥料學報,2010,16(2):348-353.

        Huang Jichuan, Peng Zhiping, Yu Junhong, et al. Impacts of applying corn-straw compost on microorganisms and enzyme activities in pot soil cultivated with mustard[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 348-353. (in Chinese with English abstract)

        [14] 王菲,袁婷,谷守寬,等. 有機無機緩釋復合肥對土壤微生物量碳、氮和群落結構的影響[J]. 生態(tài)學報,2016,36(7):2044-2051.

        Wang Fei, Yuan Ting, Gu Shoukuan, et al. Effects of organic and inorganic slow-release compound fertilizers on microbial biomass carbon and nitrogen, and microbial community structure in soil[J]. Acta Ecologica Sinica, 2016, 36(7): 2044-2051. (in Chinese with English abstract)

        [15] 于會泳,宋曉麗,王樹聲,等. 低分子量有機酸對植煙土壤酶活性和細菌群落結構的影響[J]. 中國農(nóng)業(yè)科學,2015,48(24):4936-4947.

        Yu Huiyong, Song Xiaoli, Wang Shusheng, et al. Effects of low molecular weight organic acids on soil enzymes activities and bacterial community structure[J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947. (in Chinese with English abstract)

        [16] Yu H Y, Liang H B, Shen G M, et al. Effects of allelochemicals from tobacco root exudates on seed germination and seedling growth of tobacco[J]. Allelopathy Journal, 2014, 33(1): 107-120.

        [17] 韋澤秀,梁銀麗,井上光弘,等. 水肥處理對黃瓜土壤養(yǎng)分、酶及微生物多樣性的影響[J]. 應用生態(tài)學報,2009,20(7):1678-1684.

        Wei Zexiu, Liang Yinli, Inoue M, et al. Effect of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and icrobial diversity[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1678-1684. (in Chinese with English abstract)

        [18] 郭永盛,李魯華,危常州,等. 施氮肥對新疆荒漠草原生物量和土壤酶活性的影響[J]. 農(nóng)業(yè)工程學報,2011,27(增刊1):249-256.

        Guo Yongsheng, Li Luhua, Wei Changzhou, et al. Effect of nitrogen fertilizer on biomass amount and soil enzymes activity of desert grassland in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 249-256. (in Chinese with English abstract)

        [19] 米國全,袁麗萍,龔元石,等. 不同水氮供應對日光溫室番茄土壤酶活性及生物環(huán)境影響的研究[J]. 農(nóng)業(yè)工程學報,2005,21(7):124-128.

        Mi Guoquan, Yuan Liping, Gong Yuanshi, et al. Influences of different water and nitrogen supplies on soil biological environment in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 124-128. (in Chinese with English abstract)

        [20] 謝英荷,李延亮,洪堅平,等. 不同水氮調(diào)控措施對旱地冬小麥產(chǎn)量形成及酶活性的影響[J]. 應用與環(huán)境生物學報,2013,19(3):339-403.

        Xie Yinghe, Li Yanliang, Hong Jianping, et al. Effects of different water and nitrogen control schemes on yield of winter wheat and soil enzyme activity in dryland[J]. Chinese Journal of Applied Environment Biology, 2013, 19(3): 339-403. (in Chinese with English abstract)

        [21] 王杰,李剛,修偉明,等. 氮素和水分對貝加爾針茅草原土壤酶活性和微生物量碳氮的影響[J]. 農(nóng)業(yè)資源與環(huán)境學報,2014,31(3):237-245.

        Wang Jie, Li Gang, Xiu Weiming, et al. Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in Stipa baicalensis steppe, inner mongolia of north china[J]. Journal of Agriculture Resources and Environment, 2014, 31(3): 237-245. (in Chinese with English abstract)

        [22] Sunghyun K, Hyewon L, Insook L. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. Journal of Bioscience and Bioengineering, 2010, 109(1): 47-50.

        [23] Zhou N, Liu P, Wang Z Y, et al. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil[J]. Crop Protection, 2011, 30(6): 631-636.

        [24] Marzieh T, Mohsen J. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155(7): 395-404.

        [25] Takashi L, Tsuyoshi O, Li D H, et al. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus Camaldulensis Dehnh[J]. Phytochemistry, 2013, 94(10): 142-147.

        [26] 關松蔭. 土壤酶及其研究法[M]. 北京:農(nóng)業(yè)出版社,1986.

        [27] 姚槐應,黃昌勇. 土壤微生物生態(tài)學及其實驗技術[M]. 北京:科學出版社,2006.

        [28] 戢林,李廷軒,張錫洲,等. 水稻氮高效基因型根系分泌物中有機酸和氨基酸的變化特征[J]. 植物營養(yǎng)與肥料學報,2012,18(5):1046-1055.

        Ji Lin, Li Tingxuan, Zhang Xizhou, et al. Characteristics of organic acid and amino acid in root exudates of rice genotype with high nitrogen efficiency[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1046-1055. (in Chinese with English abstract)

        [29] 陳新紅. 土壤水分與氮素對水稻產(chǎn)量和品質的影響及其生理機制[D]. 揚州:揚州大學,2004.

        Chen Xinhong. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism[D].Yangzhou:Yangzhou university, 2004. (in Chinese with English abstract)

        [30] 樊小林,史正軍,吳平. 水肥(氮)對水稻根構型參數(shù)的影響及其基因型差異[J]. 西北農(nóng)林科技大學學報:自然科學版,2002,30(2):1-5.

        Fan Xiaolin, Si Zhengjun, Wu ping. Effects of nitrogen fertilizer on parameters of rice (Oryza sativa L.) root architecture and their genotypic difference[J]. Journal of Northwest Sci-tech University of Agriculture and Forestry: Natural Science Edition, 2002, 30(2): 1-5. (in Chinese with English abstract)

        [31] 徐國偉,呂強,陸大克,等. 干濕交替灌溉耦合施氮對水稻根系性狀及籽粒庫活性的影響[J]. 作物學報,2016,42(10):1495-1505.

        Xu Guowei, Lü Qiang, Lu Dake, et al. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016, 42(10): 1495-1505. (in Chinese with English abstract)

        [32] 吳林坤,林向民,林文雄. 根系分泌物介導下植物-土壤-微生物互作關系研究進展與展望[J]. 植物生態(tài)學報,2014,38(3):298-310.

        Wu Linkun, Lin Xiangmin, Lin Wenxiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese with English abstract)

        [33] 郭天財,宋曉,馬冬云,等. 施氮量對冬小麥根際土壤酶活性的影響[J]. 應用生態(tài)學報,2008,19(1):110-114.

        Guo Tiancai, Song Xiao, Ma Dongyun, et al. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 110-114. (in Chinese with English abstract)

        [34] 蔡曉紅,楊京紅,馬維娜,等. 稻田根際微生物生物量碳與水分、氮素影響效應分析[J]. 浙江大學學報:農(nóng)業(yè)與生命科學版,2008,34(6):662-668.

        Cai Xiaohong, Yang Jinghong, Ma Weina, et al. Effects of nitrogen supply levels and water schemes on rice rhizosphere microbial biomass carbon in rice development stage at paddy field[J]. Journal of Zhenjiang University: Agriculture & Life Science, 2008, 34(6): 662-668. (in Chinese with English abstract)

        [35] 常二華,張慎鳳,王志琴,等. 結實期氮磷營養(yǎng)水平對水稻根系和籽粒氨基酸含量的影響[J]. 作物學報,2008,

        34(4):612-618. Chang Erhua, Zhang Shenfeng, Wang Zhiqin, et al. Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling[J]. Acta Agronomica Sinica, 2008, 34(4): 612-618. (in Chinese with English abstract)

        [36] Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress.[J]. Journal of Environmental Quality, 2007, 36(3): 904-912.

        [37] Huang C, Webb M J, Graham R D. Pot size affects expression of Mn efficiency in barley[J]. Plant & Soil, 1995, 178(2): 205-208.

        [38] Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield[M]//Turner N C, Kramer P J. Adaption of Plant to Water and High Temperature Stress.

        New York: John wiley, 1980: 341-352.

        [39] Sandhua S S, Mahalb S S, Vashistb K K, et al. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India[J]. Agricultural Water Management, 2012, 104(1): 32-39.

        [40] Sun Y J, Ma J, Sun Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127(1): 85-98.

        [41] Li Y J, Chen X, Shamsi I H, et al. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J]. Pedosphere, 2012, 22(5): 661-672.

        Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice

        Xu Guowei1,2, Lu Dake1, Sun Huizhong1, Wang Hezheng1, Li Youjun1

        (1.,471003,; 2.,,225009,)

        Soil moisture and nitrogen nutrient are the principal factors affecting rice (L.) production. Elucidation of their influences and coupling effects on grain yield of rice would have great significance for high yield and high efficiency. Domestic and foreign scholars have conducted extensive research on the interaction of water and fertilizer. The former focuses on the ground, such as crop growth development, physiological function, hormone change, nutrient absorption and utilization, water use efficiency and other aspects of the studies, few papers are for soil and root secretion characteristics, and their interaction and the conclusions are not consistent. The purposes of this study were to investigate the effects of water and nitrogen coupling on soil enzyme activity, microorganism quantity, root secretion and coupling effect.A mid-seasonrice cultivar of Xindao 20 was pot-grown. Three treatments of different nitrogen levels, i.e. 0N, MN (240kg/hm2) and HN (360 kg/hm2) and three irrigation regimes, i.e. submerged irrigation (0 kPa), alternate wetting and moderate drying (-20 kPa) and alternate wetting and severe drying (-40 kPa) were conducted in 2014 and 2015. Some indices, such as urease enzyme, sucrose enzyme, catalase enzyme, bacteria, fungi, actinomycetes quantity and total organic acid in root at different stages were investigated in the experiment. Results showed that there was a significant interaction between irrigation regimes and nitrogen levels, and no significant difference was observed between the 2 years. In the same nitrogen levels, urease enzyme, sucrose enzyme, catalase enzyme activity in soil at main growth stages were higher under the condition of alternate wetting and moderate drying compared with the submerged irrigation, and meanwhile bacteria, fungi and actinomycetes quantity in soil were also increased at main stages, and total content of organic acid was enhanced. So mild water stress and MN enhanced soil enzyme, microorganism and organic acid content, and formed the best mode in this paper, which was referred as the water-nitrogen coupling management model. The opposite result was observed under the condition of alternate wetting and severe drying. Soil enzyme, microorganism quantity and organic acid content in the root secretion at main stages were decreased significantly. In the same irrigation regime, soil enzyme and microorganism quantity at main growth stages were higher under the condition of MN treatment when compared with no nitrogen applied, and meanwhile total content of organic acid was enhanced significantly. The opposite result was observed under the condition of HN treatment, which indicated that heavy nitrogen application decreased soil enzyme and microorganism quantity, and organic acids of root secretion were also reduced significantly. Correlation analysis showed that there was significant or extremely significant positive correlation between soil enzyme, microorganism quantity and total organic acid content at main growth stages. Positive effects were observed in the effect of nitrogen fertilizer for soil enzyme activities, microbial quantity and total content of organic acid, and water stress and interaction effect were also positive under the condition of alternate wetting and moderate drying, while negative effect was observed under the condition of alternate wetting and severe drying. These results suggest increasing soil enzyme activity and microorganism quantity, and improving organic acids of root secretion through the appropriate regulation of water and nitrogen, will create a good rhizosphere environment for the growth of rice.

        irrigation; nitrogen; microorganisms; rice; soil enzyme; organic acid content

        10.11975/j.issn.1002-6819.2017.04.026

        S511

        A

        1002-6819(2017)-04-0186-09

        2016-6-30

        2016-12-29

        國家自然科學基金項目(U1304316);江蘇省作物栽培生理重點實驗室開放基金(027388003K11009);河南省教育廳科學技術研究重點項目(13A210266)。

        徐國偉,男,漢族,博士,副教授,主要從事作物栽培生理研究。洛陽 河南科技大學農(nóng)學院,471003。Email:gwxu2007@163.com

        徐國偉,陸大克,孫會忠,王賀正,李友軍. 干濕交替灌溉與施氮耦合對水稻根際環(huán)境的影響[J]. 農(nóng)業(yè)工程學報,2017,33(4):186-194. doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org

        Xu Guowei, Lu Dake, Sun Huizhong, Wang Hezheng, Li Youjun. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 186-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.026 http://www.tcsae.org

        猜你喜歡
        水氮有機酸根際
        根際微生物對植物與土壤交互調(diào)控的研究進展
        關注新生兒有機酸血癥
        金銀花總有機酸純化工藝的優(yōu)化
        中成藥(2018年5期)2018-06-06 03:12:15
        黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
        促植物生長根際細菌HG28-5對黃瓜苗期生長及根際土壤微生態(tài)的影響
        中國蔬菜(2016年8期)2017-01-15 14:23:38
        水氮耦合對煙株生長、產(chǎn)量及主要化學成分的影響
        白茶中的有機酸高效液相色譜分析方法的建立
        水氮交互作用對棉花產(chǎn)量的影響研究
        水氮耦合對膜下滴灌棉花干物質積累的影響研究
        添加有機酸加速2,4,6-三氯酚的生物降解
        中文字幕亚洲精品久久| 国产精品久久久久久久久岛| 久久久受www免费人成| 亚洲精品成人片在线观看| 亚洲AV无码一区二区三区天堂网| 亚洲av在线播放观看| 日本啪啪一区二区三区| 开心五月骚婷婷综合网| 精品人妻少妇av中文字幕| 深夜福利啪啪片| 98久9在线 | 免费| 欧美日韩激情在线一区二区| 国产精品美女主播在线| 4hu四虎永久免费地址ww416| 亚洲 欧美精品suv| 91精品国产91久久久无码95| 青青草视全福视频在线| 国产精品一区二区三区在线免费| 国产成人亚洲综合色婷婷| 狠狠躁夜夜躁AV网站中文字幕| 国产一区二区三区最新视频| 中文字幕乱码亚洲一区二区三区| 真实人与人性恔配视频| 最好看的最新高清中文视频| 国产小毛片| 欧洲乱码伦视频免费| 高清国产精品一区二区| 欧洲美女黑人粗性暴交视频| 真人与拘做受免费视频| 国产91在线精品福利| 果冻蜜桃传媒在线观看| 亚洲乱码av中文一区二区第八页 | 日本免费一区二区在线看片| 香港三日本三级少妇三级视频| 亚洲国产毛片| av手机在线天堂网| 骚货人妻视频中文字幕| 婷婷四虎东京热无码群交双飞视频 | 亚洲在AV极品无码天堂手机版| 亚洲色图综合免费视频| 少妇被粗大猛进进出出男女片 |