王 忠,趙懷北,瞿 磊,張登攀,馮 淵
?
柴油機(jī)燃燒甲醇/生物柴油尾氣顆粒物熱解特性分析
王 忠1,趙懷北1,瞿 磊1,張登攀1,馮 淵2
(1. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013; 2. 無錫職業(yè)技術(shù)學(xué)院汽車與交通學(xué)院,無錫 214121)
采集了甲醇/生物柴油(5%、10%、15%)混合燃料在柴油機(jī)燃燒的尾氣顆粒。采用熱重分析儀和切線法、Flynn-Wall-Ozawa(FWO)熱解動力學(xué)方法,研究顆粒揮發(fā)及氧化規(guī)律,分析了顆粒熱解特征溫度和活化能。結(jié)果表明:隨著甲醇摻混量的增加,顆粒中H2O的質(zhì)量分?jǐn)?shù)由2.6%增加到3.5%,可溶有機(jī)物(soluble organic fraction,SOF)質(zhì)量分?jǐn)?shù)由26.1%增加到32.5%,SOF的質(zhì)量變化速率增大,對應(yīng)的峰值溫度后移;在O2氛圍中,SOF揮發(fā)階段與在N2氛圍中的表現(xiàn)基本一致,但質(zhì)量變化速率明顯增大;碳煙(soot)質(zhì)量減小,由70.3%減少到63.8%,soot質(zhì)量變化率峰值增大;SOF析出溫度變化較小,soot起始燃燒溫度明顯降低,由488 ℃降低到458 ℃,SOF起始燃燒溫度與燃盡溫度均有所降低,顆粒的熱解總反應(yīng)時間縮短;顆粒的熱解反應(yīng)活化能由140.3 kJ/mol降低117.3 kJ/mol,顆粒的熱解性能增強(qiáng),顆粒更易被氧化。研究結(jié)果可為甲醇/生物柴油燃燒顆粒的處理及柴油機(jī)顆粒捕集器(diesel particulate filter,DPF)再生提供依據(jù)。
顆粒;動力學(xué);燃料;生物柴油;甲醇;熱重分析
含氧燃料作為替代燃料應(yīng)用于柴油機(jī),可一定程度地改善柴油機(jī)燃燒過程。甲醇、生物柴油作為柴油替代燃料,其含氧量分別約為50%、11%,制備方便,來源廣泛,有著廣泛的應(yīng)用前景。甲醇的汽化潛熱大,與生物柴油按一定體積百分比摻混后,可降低燃燒溫度,降低排氣污染顆粒物[1-5]。日益嚴(yán)格的排放法規(guī)使得柴油機(jī)顆粒物排放面臨“質(zhì)量”和“數(shù)量”的雙重考驗(yàn)。顆粒捕集器(diesel particulate filter,DPF)的應(yīng)用已成為減少柴油機(jī)顆粒物排放的技術(shù)措施。DPF的再生方案之一就是通過提高捕集器內(nèi)的溫度,使積存在載體上的顆粒發(fā)生熱解反應(yīng)而被清除,實(shí)現(xiàn)DPF的有效再生[6-8]。相關(guān)研究表明[9-11],顆粒的組分、微觀結(jié)構(gòu)等對DPF的轉(zhuǎn)換效率和載體再生有很大的影響。
國內(nèi)外學(xué)者針對柴油機(jī)顆粒物的熱解開展了大量的研究。Yezerets等[12]采用熱重分析、程序升溫解吸與氧化等方法,對柴油機(jī)燃燒顆粒氧化特性的影響因素進(jìn)行了分析。結(jié)果表明,氧化試驗(yàn)過程中,顆粒的化學(xué)反應(yīng)動力學(xué)參數(shù)指前因子和活化能均有所增加。Su等[13-14]采用熱重分析儀對柴油機(jī)的排氣顆粒進(jìn)行了氧化特性試驗(yàn)。結(jié)果表明,顆粒的微觀結(jié)構(gòu)和含氧基團(tuán)對顆粒氧化活性影響較大,顆粒物的結(jié)構(gòu)越規(guī)則,含氧基團(tuán)越少,氧化活性越低。馬志豪等[15]采用熱重分析儀,分析了生物柴油/柴油排氣顆粒中揮發(fā)性有機(jī)成分揮發(fā)特性。研究表明,在柴油中,隨生物柴油摻混量的增加,顆粒中揮發(fā)分生成量增多,析出溫度集中在150~180 ℃。譚建偉等[16]采用熱重分析儀研究了柴油和生物柴油燃燒顆粒中可溶有機(jī)物(soluble organic fraction,SOF)組分含量變化規(guī)律。試驗(yàn)表明,生物柴油顆粒吸附性較強(qiáng),SOF含量高于柴油機(jī)顆粒。
柴油機(jī)燃用甲醇/生物柴油可同時降低soot與NOx的排放,改善了soot和NOx的Trade-Off關(guān)系,為甲醇/生物柴油作為柴油機(jī)替代燃料提供一定理論依據(jù)[17-20]。生物柴油中添加甲醇,使顆粒的組分及活性發(fā)生改變,本文采用瑞士梅特勒公司的TGA/DSC1型熱分析儀對甲醇/生物柴油燃燒尾氣顆粒進(jìn)行熱解試驗(yàn),分析顆粒在升溫過程中的揮發(fā)和氧化規(guī)律。采用切線法、Flynn-Wall-Ozawa熱解動力學(xué)方法,對顆粒在反應(yīng)過程中的特征溫度、動力學(xué)參數(shù)進(jìn)行了計算與分析。以期為柴油機(jī)燃用甲醇/生物柴油降低顆粒排放及DPF的再生技術(shù)應(yīng)用提供參考。
試驗(yàn)用燃料為普通無水甲醇及江蘇卡特新能源有限公司生產(chǎn)的生物柴油。按照甲醇占甲醇/生物柴油混合燃料的質(zhì)量百分比分別為5%、10%、15%配制混合燃料,分別命名為BM5、BM10、BM15。表1為甲醇、生物柴油及甲醇/生物柴油混合燃料的理化特性。由表1可見,與生物柴油(B100)相比,甲醇的含氧量高,汽化潛熱較大,但十六烷值、動力黏度、低熱值均小于生物柴油。隨著甲醇摻混比的增大,混合燃料的含氧量增加,十六烷值、密度、動力黏度和低熱值均有所減小。
表1 試驗(yàn)用燃料的理化性質(zhì)
注:密度和動力黏度測定時溫度均為20 ℃。B100為生物柴油,BM5、BM10、BM15分別為甲醇/生物柴油按質(zhì)量百分比為5%、10%、15%配置的燃料,下同。
Note: Density and dynamicviscosity were tested at 20 ℃.Mark biodiesel as B100, BM5, BM10 and BM15 are methanol / biodiesel blended fuel of 5%, 10%, 15% according to the mass fraction, same as below.
2.1 顆粒采集
試驗(yàn)用機(jī)為一臺186F單缸風(fēng)冷試驗(yàn)用柴油機(jī),壓縮比為19,標(biāo)定轉(zhuǎn)速3 600 r/min,標(biāo)定功率為6.3 kW,最大扭矩轉(zhuǎn)速2 700 r/min。試驗(yàn)應(yīng)用顆粒采樣裝置(MOUDI),對柴油機(jī)燃用B100、BM5、BM10、BM15的排氣顆粒進(jìn)行采集。考慮到摻混甲醇后,混合燃料的熱值有所下降,試驗(yàn)時,略增加循環(huán)供油量,保持柴油機(jī)測量工況點(diǎn)的轉(zhuǎn)速、負(fù)荷不變,測量的柴油機(jī)轉(zhuǎn)速為3 000 r/min,100%負(fù)荷??紤]到甲醇/柴油混合燃料的實(shí)際應(yīng)用情況,沒有調(diào)整供油提前角。試驗(yàn)測試系統(tǒng)與顆粒采樣裝置如圖1所示。
試驗(yàn)過程中,保持柴油機(jī)的機(jī)油溫度為(85±5)℃。顆粒采集裝置(MOUDI)位置靠排氣口約為5倍排氣管處,依據(jù)排氣在實(shí)際環(huán)境中的擴(kuò)散過程,為了降低顆粒采集入口的溫度,采用空氣對采集系統(tǒng)進(jìn)行冷卻。試驗(yàn)時對空氣流量進(jìn)行標(biāo)定。排氣以30 L/min的恒體積流量進(jìn)入MOUDI顆粒采集器,采樣時間定為40 min,選取用于熱重試驗(yàn)的顆粒樣品為2 mg。為避免環(huán)境因素對顆粒組分的影響,采集的顆粒密封、避光保存于器皿內(nèi)。
2.2 熱重分析
試驗(yàn)采用瑞士METTLER公司生產(chǎn)的TGA/DSCI熱分析儀,對采集的顆粒分別進(jìn)行了熱重特性試驗(yàn)。試驗(yàn)前顆粒未經(jīng)預(yù)處理。試驗(yàn)過程中,在升溫程序控制下,分別在N2與O2氛圍下對顆粒進(jìn)行加熱,使顆粒受熱發(fā)生蒸發(fā)、氧化等質(zhì)量變化,并記錄樣品質(zhì)量隨加熱溫度與時間的變化情況。試驗(yàn)以氮?dú)猓∟2)作為保護(hù)氣,氧氣(O2)為反應(yīng)氣,進(jìn)氣流量設(shè)為50 mL/min,升溫速率為15 ℃/min,升溫范圍為40~750 ℃。
3.1 顆粒的揮發(fā)性分析
柴油機(jī)排氣顆粒中SOF組分主要是由支鏈烷烴和正烷烴組成的較為復(fù)雜的有機(jī)物,其含量受柴油機(jī)燃燒溫度影響較大[21]。當(dāng)燃燒溫度較低時,干碳煙易吸附和凝聚較多的SOF組分[22]。文獻(xiàn)[23-24]研究表明,甲醇燃燒過程中,SOF組分來源主要為未燃酯類的熱解。由于SOF對溫度變化較敏感,選擇在N2氛圍下通過溫度控制程序,考察顆粒樣品中SOF等揮發(fā)分的揮發(fā)特性。圖2為N2氛圍下,燃料B100、BM5、BM10、BM15的排氣顆粒的TG-DTG曲線。
a. TG曲線
a. TG curves
由圖2中TG曲線可以看出,燃燒顆粒質(zhì)量隨反應(yīng)溫度的升高不斷減小,對應(yīng)DTG曲線的絕對值反映了顆粒反應(yīng)過程中質(zhì)量變化速率的大小。由TG曲線可知,第1階段在40~110 ℃內(nèi),該階段為顆粒中水分的蒸發(fā)過程,根據(jù)表2數(shù)據(jù)可知,顆粒中H2O的質(zhì)量變化量約為2.6%~3.5%,說明隨著甲醇摻混比的增大,顆粒中水分含量有所增加。第2階段為SOF揮發(fā),溫度范圍為121~300 ℃,由DTG曲線及試驗(yàn)數(shù)據(jù)可以看出,B100、BM5、BM10、BM15的排氣顆粒在200 ℃附近出現(xiàn)明顯的質(zhì)量變化速率峰,且峰值對應(yīng)溫度增大,SOF質(zhì)量分?jǐn)?shù)由26.1%增至32.5%。這主要是因?yàn)?,甲醇的熱值較低,汽化潛熱大,在生物柴油中,隨著甲醇摻混比的提高,混合燃料的熱值降低,汽化潛熱增大。燃料燃燒過程中,最高燃燒溫度與熱效率有所降低,未燃燒的酯類含量增多,其熱解產(chǎn)生的有機(jī)成分增多,造成了排氣顆粒中SOF吸附增多。第3階段為400~750 ℃,表示N2氛圍下soot等物質(zhì)的質(zhì)量變化情況,隨著溫度的升高,TG曲線上,該階段未發(fā)生明顯質(zhì)量的變化,表明顆粒中揮發(fā)分已完全受熱析出,對應(yīng)DTG曲線上,與SOF揮發(fā)階段相比質(zhì)量變化速率總體較低,均出現(xiàn)趨于0現(xiàn)象,說明該階段soot在N2氛圍下基本未發(fā)生質(zhì)量變化。
表2 顆粒樣品各組分含量
3.2 顆粒的氧化特性分析
熱解是物質(zhì)受熱分解的熱化學(xué)轉(zhuǎn)化過程,為氣化或液化以及燃燒過程的初始及伴生反應(yīng)。圖3所示為O2氛圍下B100、BM5、BM10、BM15排氣顆粒的TG/DTG曲線。由TG曲線可知,顆粒在升溫過程中主要分為3個反應(yīng)階段,即水分蒸發(fā)階段(第1階段40~110 ℃)、SOF揮發(fā)階段(第2階段121~300 ℃)、soot氧化階段(第3階段418~635 ℃),在DTG曲線中明顯呈現(xiàn)出2個質(zhì)量變化速率峰。第1個質(zhì)量變化的速率峰出現(xiàn)在200 ℃附近,表征O2氛圍下SOF組分的熱解特性。該階段與N2氛圍相比,SOF組分的質(zhì)量變化速率明顯增大,表現(xiàn)為絕對質(zhì)量變化速率的峰值增大。這是因?yàn)镺2的作用,使得SOF在受熱揮發(fā)的同時伴隨著氧化反應(yīng),質(zhì)量變化速率增大。第2個質(zhì)量變化速率峰出現(xiàn)在600 ℃左右,表征soot組分的氧化質(zhì)量變化過程。試驗(yàn)數(shù)據(jù)表明,B100、BM5、BM10、BM15燃料的排氣顆粒中,soot組分分別占總質(zhì)量的70.3%、69.4%、66.0%、63.8%,絕對質(zhì)量變化的速率峰值分別為0.75、0.83、0.89、0.97 %/℃,峰值對應(yīng)溫度分別為611、604、597、590 ℃??梢?,隨甲醇的摻混含量增加,顆粒碳質(zhì)量減少,質(zhì)量變化速率增大,峰值對應(yīng)溫度前移。這主要是因?yàn)?,在生物柴油中摻混甲醇使得燃料的含氧量提高,燃燒后顆粒表面吸附更多含氧基團(tuán),因此SOF組分的氧化燃燒速率更為迅速;含氧量的提高使得油氣混合區(qū)域燃燒缺氧狀況得以改善,燃燒初期的OH自由基含量增加,PAHs及其前驅(qū)體受自由基的氧化作用而減少,碳煙粒子長大受到抑制,同時甲醇中不含C-C鍵,soot前驅(qū)體C2H2、C3H3的生成量進(jìn)一步減少,顆粒碳的含量減小,降低了顆粒碳的排放;摻混甲醇后,燃料含氧量增加,在顆粒碳中距離含氧基團(tuán)較遠(yuǎn)的C-H鍵率先斷裂而形成較多的有機(jī)碳,與元素碳相比,有機(jī)碳具有更好的氧化特性[21]。因此當(dāng)程序升高到一定溫度后,有機(jī)碳迅速燃燒,因此造成了soot質(zhì)量減小速率增大。
a. TG曲線
a. TG curves
3.3 特征溫度分析
特征溫度是表征顆粒揮發(fā)和燃燒特性的參數(shù),試驗(yàn)選取SOF析出溫度SOF1、起始燃燒溫度SOF2和soot組分的著火溫度soot、燃盡溫度end4個特征溫度對顆粒的揮發(fā)及燃燒特性進(jìn)行分析。
表3為得到的B100、BM5、BM10、BM15排氣顆粒的特征溫度參數(shù)。由表3可以看出,隨甲醇含量的增加,N2氛圍下,顆粒中SOF組分的析出溫度SOF1變化較小,由B100的172 ℃升高到BM15的178 ℃。O2氛圍下,與B100相比,摻混甲醇后的排氣顆粒中SOF組分起始燃燒溫度SOF2有所降低,但BM5、BM10、BM15燃燒顆粒的SOF2降低幅度較小;soot組分的起始燃燒溫度soot隨甲醇摻混比的增大而有所降低,由488 ℃降低到458 ℃,燃盡溫度end出現(xiàn)降低趨勢,變化范圍為603~632 ℃。這主要因?yàn)?,燃料中含氧量增加,燃燒后顆粒中吸附較多含氧有機(jī)物,當(dāng)升高到一定溫度后,顆粒表面可溶有機(jī)物組分迅速析出、氧化,導(dǎo)致SOF2有所降低;隨著甲醇摻混比的增大,混合燃料燃燒顆粒無序化及疏松程度增大,傳熱阻力有所降低[25-26]。因此熱解過程中顆粒在較低溫度起燃,表現(xiàn)為soot減小。
表3 燃燒顆粒的特征溫度
注:SOF1、SOF2分別為SOF的析出溫度和起始燃燒溫度;soot、end分別為soot組分的著火溫度和燃盡溫度。
Note:SOF1andSOF2are the precipitation temperature and the initial combustion temperature of SOF, respectively;sootandendare the ignition temperature and the burnout temperature of the soot component.
3.4 熱解動力學(xué)參數(shù)分析
采用Flynn-Wall-Ozawa(FWO)法[27-28]對顆粒樣品在O2氛圍下的熱解過程進(jìn)行了動力學(xué)分析,獲得顆粒的反應(yīng)活化能參數(shù),判斷摻混甲醇后燃料的排氣顆粒熱解難易程度。根據(jù)TG/DTG曲線應(yīng)用積分法求得顆粒物的熱解反應(yīng)參數(shù)(活化能),活化能表示勢壘(能壘)的高度,活化能越大,顆粒熱解所需的能量越多。FWO法計算柴油機(jī)顆粒物熱解反應(yīng)活化能過程如下:
整理方程(1)得
式(2)中后兩項(xiàng)視為常數(shù),即式(2)可看做斜率為?1.051 5/,自變量1/,因變量為ln的一元一次方程。表4列出了B100、BM5、BM10、BM15燃料的排氣顆粒熱解動力學(xué)擬合方程及參數(shù)。由表4計算結(jié)果可知,擬合線性系數(shù)均在0.98以上,說明擬合準(zhǔn)確度較高,顆粒反應(yīng)活化能隨甲醇摻混比的增大而降低,由140.3降低至117.3 kJ/mol。這是因?yàn)?,甲醇摻混比的增大,燃料的含氧量提高,在含氧基團(tuán)影響下,顆粒碳中有機(jī)碳含量增多;此外,燃燒產(chǎn)生的顆粒碳的無序化程度增強(qiáng),顆粒碳的石墨化程度降低,使得顆粒更易被氧化。因此,隨甲醇摻混比的增大,熱解過程中,顆粒反應(yīng)活化能降低,顆粒發(fā)生熱解所需能量減少。
表4 顆粒熱解的動力學(xué)參數(shù)
通過采集柴油機(jī)燃燒不同摻混比的甲醇/生物柴油混合燃料的尾氣顆粒,進(jìn)行顆粒的熱重試驗(yàn),得到以下的結(jié)論:
1)在生物柴油中摻混甲醇,隨著甲醇摻混比的增大,燃燒顆粒中的水分含量小幅增加,可溶有機(jī)物SOF含量增加,質(zhì)量變化速率增大,對應(yīng)溫度升高;與N2氛圍下相比,O2氛圍下,SOF質(zhì)量變化速率增大;soot含量小幅降低,質(zhì)量變化速率增大,對應(yīng)溫度無明顯變化,顆粒更容易被氧化。
2)顆粒中SOF組分的析出溫度隨著甲醇摻混比的增大略有提高,起始燃燒溫度有所降低,soot組分的起始燃燒溫度降低,燃盡溫度出現(xiàn)降低趨勢。這說明甲醇含量的增加,使得燃燒顆粒的熱解總反應(yīng)時間縮短。
3)顆粒熱解反應(yīng)活化能隨甲醇摻混比的增大而有所降低,顆粒發(fā)生熱解反應(yīng)所需能量減少,具有較強(qiáng)的熱解性能,顆粒的熱化學(xué)反應(yīng)更易進(jìn)行。
[1] Anand K, Sharma P P, Mehta P S. Experimental in vestigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine[J]. Biomass and Bioenergy, 2011, 35(1): 533-541.
[2] 李小昱,韓鶴友,王為,等. 柴油機(jī)應(yīng)用不同配比生物柴油的經(jīng)濟(jì)性和排放特性[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(5):177-182.
Li Xiaoyu, Han Heyou, Wang Wei, et al. Economy and emission characteristic of different proportions of biodiesel from diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 177-182. (in Chinese with English abstract)
[3] Canakci M, Sayin C, Ozsezen A N, et al. Effect of injection pressure on the combustion, performance, and emission characteristics of a diesel engine fueled with methanol-blended diesel fuel[J]. Energy & Fuels, 2009, 23(6): 14493-14498.
[4] 譚丕強(qiáng),胡志遠(yuǎn),樓狄明. 車用發(fā)動機(jī)燃用生物柴油的顆粒數(shù)量排放[J]. 汽車安全與節(jié)能學(xué)報,2010,1(1):83-88.
Tan Piqiang, Hu Zhiyuan, Lou Diming. Particle number emission from a vehicle diesel engine with biodiesel fuel[J]. Automotive Safety and Energy, 2010, 1(1): 83-88. (in Chinese with English abstract)
[5] Kittelson D, Arnold M, Watts W, et al. Review of diesel particulate matter sampling methods[R]. Minnesota: University of Minnesota, 1999.
[6] Magne L, Pasquiers S. LIF spectroscopy applied to the study of non-thermal plasmas for stmospheric pollutant abatement[J]. Comptes Rendus Physique, 2005, 8(6): 908-917.
[7] 王丹. 柴油機(jī)微粒捕集器及其再生技術(shù)研究[D]. 長春:吉林大學(xué),2013.
Wang Dan. Study on Diesel Particulate Filter and Its Regeneration Technique[D]. Changchun: Jilin University, 2013. (in Chinese with English abstract)
[8] Adlerd J. Ceramic diesel particulate filters[J]. International Journal of Applied Ceramic Technology, 2005, 6(2): 429-439.
[9] 樓狄明,趙泳生,譚丕強(qiáng),等.基于GT-Power柴油機(jī)顆粒捕集器捕集性能的仿真研究[J]. 環(huán)境工程學(xué)報,2010,4(1):173-177.
Lou Diming, Zhao Yongsheng, Tan Piqiang, et al. Simulative study on trapping performance of DPF based on GT-Power[J]. Chinese Journal of Environmental Engineering, 2016, 4(1): 173-177. (in Chinese with Englishabstract)
[10] Subrahmanyam C, Renken A, Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs[J]. Chemical Engineering Journal, 2007, 134(1/2/3): 78-83.
[11] 梅德清,王忠,袁銀南,等. 生物柴油發(fā)動機(jī)尾氣中的顆粒物特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(12):113-116. Mei Deqing, Wang Zhong, Yuan Yinnan, et al. Analysis of the features of the particulate matters generated from diesel engine fueled with biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 113-116. (in Chinese with English abstract)
[12] Yezerets A, Currier N W, Eadler H A. Investigation of the oxidation behavior of diesel particulate matter[J]. Catalysis Today, 2003, 88(1): 17-25.
[13] Su D S, Jentoft R E, Mülleret J O, et al. Microstructure and oxidation behavior of Euro Ⅳ diesel engine soot: A comparative study with synthetic model soot substances[J]. Catalysis Today, 2004, 90(1/2): 127-132.
[14] MülleretJ O, Su D S, Jentoft R E, etal. Morphology controlled reactivity of carbonaceous materials towards oxidation[J]. CatalysisToday, 2005, 102/103: 259-265.
[15] 馬志豪,張小玉,王鑫,等. 基于熱重分析法的生物柴油-柴油發(fā)動機(jī)顆粒排放研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2011,42(9):26-29.
Ma Zhihao, Zhang Xiaoyu, Wang Yin, et al. Particulate emissions of engine fuelled with biodiesel-diesel blends using thermogravimetric analysis[J]. Transactions of theChinese Society for Agricultural Machinery, 2011, 42(9): 26-29. (in Chinese with English abstract)
[16] 譚建偉,葛蘊(yùn)珊,何超,等. 基于尺寸分別的生物柴油排氣微粒組分研究[J]. 內(nèi)燃機(jī)工程,2010,31(1):17-20,26.
Tan Jianwei, Ge Yunshan, He Chao, et al. Research on PM component of diesel engine fueled with biodiesel based on PM size distribution[J]. Chenese Inernal Combustion Engine Engineering, 2010, 31(1): 17-20, 26. (in Chinese with English abstract)
[17] 李瑞娜,王忠,侯令川,等. 小型農(nóng)用柴油機(jī)甲醇/生物柴油燃燒與排放模擬[J]. 江蘇大學(xué)學(xué)報:自然科學(xué)版,2015,36(2):136-141.
Li Ruina, Wang Zhong, Hou Lingchuan, et al. Simulation on combustion and emissions of agricultural diesel engine fuelled with methanol/biodiesel[J]. Journal of Jiangsu University: Natural Science Edition, 2015, 36(2): 136-141. (in Chinese withEnglish abstract)
[18] Anand K, Sharma R P, Mehta P S. Experimental investigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine[J]. Biomass & Bioenergy, 2011, 35(1): 533-541.
[19] 張學(xué)敏,李芳,葛蘊(yùn)珊,等. 甲醇柴油與生物柴油醛酮類排放物的研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(8):247-251.
Zhang Xuemin, Li Fang, Ge Yunshan, et al. Research on carbonyl compound emission of methanol-diesel fuel and bio-diesel fuel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 247-251. (in Chinese with English abstract)
[20] Yasin M H M, Yusaf T, Mamat R, et al. Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend[J]. Applied Energy, 2014, 114(2): 865-873.
[21] 李銘迪. 含氧燃料顆粒狀態(tài)特征及前驅(qū)體形成機(jī)理研究[D]. 鎮(zhèn)江:江蘇大學(xué),2014.
Li Mingdi. Researchonthe State Characteristics of Particles And FormationMechanismofPrecursorsFormed by OxygenatedFuels[D]. Zhenjiang: JiangsuUniversity, 2014. (in Chinese withEnglishabstract)
[22] 汪家全,孫平,梅德清,等. 乙醇柴油發(fā)動機(jī)的顆粒排放及其熱解動力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(2):111-113.
Wang Jiaquan, Sun Ping, Mei Deqing, et al. Particulate matter emission and its pyrolysis kinetic analysis of ethanol-diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 111-113. (in Chinese withEnglishabstract)
[23] Zhu L, Cheung C S, Zhang W G, et al. Influence of methnol-biodiesel blends on the particulate emissions of a direct injection diesel engine[J]. Aerosol Science and Technology, 2010, 44: 362-369.
[24] Bresenham D, Reisel J, Neusen K. Spindt air-fuel ration method generalization for oxygenated fuels[C]//SAE Paper,
982054; 1998: 113-132.
[25] 趙洋,王忠,李銘迪,等. 柴油/甲醇燃燒微粒熱解化學(xué)反應(yīng)參數(shù)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(2):11-15.
Zhao Yang, Wang Zhong, Li Mingdi, et al. Pyrolysis process of diesel/methanol combustion particulates[J]. Transactions of theChinese Society for Agricultural Machinery, 2014, 45(2): 11-15. (in Chinese with English abstract)
[26] 梅德清,趙翔,王書龍,等. 柴油機(jī)排放顆粒物的熱重特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(16):50-56.
Mei Deqing, Zhao Xiang, Wang Shulong, et al. Thermogravimetric characteristics analysis of particulate matter of emission of divided diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 50-56. (inChinese with English abstract)
[27] 胡榮祖,高勝利,趙鳳起,等. 熱分析動力學(xué)[M]. 北京:科學(xué)出版社,2008.
[28] 曹青,鮑衛(wèi)仁,呂永康,等. 玉米芯熱解及過程分析[J].燃料化學(xué)學(xué)報,2004,33(5):557-562.
Cao Qing, Bao Weiren, Lü Yongkang, et al. Pyrolysis and reaction mechanism analysis of corncob[J]. Journal of Fuel Chemistry and Technology, 2004, 33(5): 557-562. (inChinese with English abstract)
Pyrolysis characteristics of particulate matter from diesel engine fueled with methanol/bio-diesel
Wang Zhong1, Zhao Huaibei1, Qu Lei1, Zhang Dengpan1, Feng Yuan2
(1.,,212013,; 2.,214121,)
Diesel exhaust particle matter is the main source of air pollutants PM2.5. It is limited not only on the quality but also on the number. Therefore, the widespread use of clean alternative fuel in diesel engine is one of the effective ways to reduce particulate emission. Previous study reported the effects of methanol/biodiesel blending fuel on the volatilization, oxidation process parameters and kinetic parameters of particle matter emitted from diesel engine. The volatilization, oxidation process parameters of particle matter varied with the methanol/biodiesel blending ratio (100%, 5%, 10%, 15%) were measured by the TGA/DSCI thermal analyzer, manufactured by Mettler, Switzrland. The mass change curves of the particles in the surroundings of N2and O2were obtained by thermo-gravimetric analyzer. Further, the volatilization and oxidation features of the particles were studied according to the pyrolysis curves (TG/DTG), the characteristic temperature and activation energy of pyrolysis of particles were calculated by tangent method and Flynn-Wall-Ozawa (FWO) pyrolysis kinetics. The results showed that when the content of H2O in particle matter was increased from 2.6% to 3.5%, the quality of soluble organic fraction (SOF) in particle matter could be increased from 26.1% to 32.5%, the peak of mass change rate and the temperature of the peak of SOF would be increased with the increasing of the methanol ratio. In O2surroundings, the derivative thermal gravimetry curves of particle matter under 4 kind of blending fuels showed that the change way of SOF was consistent with that in N2surroundings, but the peak value in O2atmosphere was obviously greater. The soot mass showed a decreasing trend with the increase of ratio of methanol, which was decreased from 70.3% to 63.8%. In addition, the peak of mass change rate of soot was increased and the temperature of the peak was decreased, which indicated that the particles were more easily oxidized. The initial combustion temperature of soot was decreased from 488 ℃ to 458 ℃. Meanwhile, the SOF initial combustion temperature and the burnout temperature were slightly lower, and the total time of pyrolysis reaction of particles was shortened. The activation energy of particle matter was reduced from 140.3 to 117.3 kJ/mol. In summary, the pyrolysis properties of the particles were enhanced and the thermo chemical reaction of particles was easily carried out. These results could provide a theoretical basis for the treatment of methanol/biodiesel combustion particulates, and it is helpful to the design and application of diesel particulate filter (DPF).
particulates; kinetics; fuels; biodiesel; methanol; thermo-gravimetric analysis
10.11975/j.issn.1002-6819.2017.04.014
TK421+5
A
1002-6819(2017)-04-0096-06
2016-05-16
2017-01-19
國家自然科學(xué)基金項(xiàng)目(51376083);江蘇省普通高校自然科學(xué)基金重點(diǎn)項(xiàng)目(13KJA470001)。
王 忠,男(漢),鎮(zhèn)江,教授,博士,主要從事內(nèi)燃機(jī)燃燒過程及排放控制研究工作。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013。 Email:wangzhong@ujs.edu.cn
王 忠,趙懷北,瞿 磊,張登攀,馮 淵. 柴油機(jī)燃燒甲醇/生物柴油尾氣顆粒物熱解特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):96-101. doi:10.11975/j.issn.1002-6819.2017.04.014 http://www.tcsae.org
Wang Zhong, Zhao Huaibei, Qu Lei, Zhang Dengpan, Feng Yuan. Pyrolysis characteristics of particulate matter from diesel engine fueled with methanol/bio-diesel [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 96-101. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.014 http://www.tcsae.org