亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        區(qū)域逼近與動(dòng)態(tài)圖形法求解大行程液壓支撐機(jī)構(gòu)參數(shù)及優(yōu)化

        2017-03-27 00:58:26劉宏新李彥龍改廣偉
        關(guān)鍵詞:缸體單側(cè)液壓缸

        劉宏新,賈 儒,李彥龍,改廣偉

        ?

        區(qū)域逼近與動(dòng)態(tài)圖形法求解大行程液壓支撐機(jī)構(gòu)參數(shù)及優(yōu)化

        劉宏新,賈 儒,李彥龍,改廣偉

        (東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱150030)

        為實(shí)現(xiàn)一種作業(yè)與運(yùn)輸兼用型地輪機(jī)構(gòu)的狀態(tài)轉(zhuǎn)換,針對(duì)其結(jié)構(gòu)特點(diǎn)研究一種非端部支撐的新型液壓支撐方案,以滿足在有限的安裝空間內(nèi)實(shí)現(xiàn)大工作行程的要求。在建立該機(jī)構(gòu)力學(xué)及運(yùn)動(dòng)學(xué)模型的基礎(chǔ)上,通過(guò)幾何關(guān)系及動(dòng)力約束條件進(jìn)行參數(shù)的區(qū)域逼近;確定液壓缸安裝位置和參數(shù)的可行域后,運(yùn)用動(dòng)態(tài)圖形模擬擺梁步進(jìn)旋轉(zhuǎn)時(shí)機(jī)構(gòu)的運(yùn)動(dòng)情況,觀測(cè)參數(shù)取值域曲線的運(yùn)動(dòng)狀態(tài),得出與可行邊界線的交點(diǎn),從而確定在液壓系統(tǒng)壓力16 MPa條件下,安裝臂長(zhǎng)度175 mm,安裝臂距旋轉(zhuǎn)點(diǎn)357 mm,液壓缸缸體長(zhǎng)度為916 mm,缸體內(nèi)徑為71 mm。研究及樣機(jī)試用表明,非端部支撐對(duì)置雙缸體液壓支撐機(jī)構(gòu)能夠滿足地輪狀態(tài)轉(zhuǎn)換的需要,且具有結(jié)構(gòu)緊湊、工作行程大的特點(diǎn)。同時(shí),該研究探索并證實(shí)了區(qū)域逼近與動(dòng)態(tài)圖形求解法在解決此類(lèi)機(jī)構(gòu)的優(yōu)化與參數(shù)求解方面的可行性與有效性。

        農(nóng)業(yè)機(jī)械;機(jī)動(dòng)性;逼近理論;狀態(tài)轉(zhuǎn)換;大行程;區(qū)域逼近;動(dòng)態(tài)圖形

        0 引 言

        大馬力、高速度、大幅寬是現(xiàn)代機(jī)械化作業(yè)的重要特征。隨著中國(guó)科技水平和農(nóng)業(yè)機(jī)械化水平的不斷提高,大型寬幅作業(yè)的農(nóng)機(jī)具在中國(guó)得到了廣泛的應(yīng)用[1-3]。寬幅農(nóng)機(jī)具可以提高單次通過(guò)面積,減少進(jìn)地次數(shù),節(jié)省時(shí)間,有利于進(jìn)行復(fù)合作業(yè)和聯(lián)合作業(yè),提高作業(yè)質(zhì)量,增加經(jīng)濟(jì)效益[4-5]。但如何保證大型寬幅農(nóng)機(jī)具道路運(yùn)輸及作業(yè)區(qū)域間轉(zhuǎn)移的安全性、通過(guò)性和方便性成為必須解決的問(wèn)題[6-7]。目前,國(guó)內(nèi)外主要有3大類(lèi)解決方式:一是折疊,又細(xì)分為上下折疊、水平折疊和舉升折疊3種;二是為大幅寬農(nóng)具配套一專(zhuān)用于運(yùn)輸?shù)臓恳_(tái)車(chē);三是雙架組合式,由行走的基架與作業(yè)的托架組合成,托架可在基架上升降并能90°轉(zhuǎn)向,從而實(shí)現(xiàn)作業(yè)與運(yùn)輸2種幅寬的轉(zhuǎn)變[8-10]。顯然:折疊機(jī)具的結(jié)構(gòu)復(fù)雜,制造成本高;專(zhuān)用運(yùn)輸臺(tái)車(chē)配套成本高,現(xiàn)場(chǎng)操作不便;雙架組合式則結(jié)構(gòu)更為復(fù)雜且成本高。

        針對(duì)上述問(wèn)題,東北農(nóng)業(yè)大學(xué)設(shè)計(jì)了一種高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)[11]。其地輪機(jī)構(gòu)突破傳統(tǒng)意義上的農(nóng)機(jī)具機(jī)架地輪僅具限深及傳動(dòng)的功能,既可保證耕作深度調(diào)整方便,仿形性好,產(chǎn)生較大傳動(dòng)力,又能夠方便快捷地轉(zhuǎn)換狀態(tài),滿足運(yùn)輸需要。地輪機(jī)構(gòu)的變形需液壓缸的驅(qū)動(dòng),為滿足其小安裝空間大工作行程的特點(diǎn),在使用傳統(tǒng)結(jié)構(gòu)的液壓缸時(shí),一般只能采用多級(jí)液壓缸或通過(guò)復(fù)雜的桿件系統(tǒng)轉(zhuǎn)換提高液壓缸的有效行程[12-16]。顯然,多級(jí)液壓缸價(jià)格昂貴,且缸體直徑大,不宜安裝;而用于傳力或放大行程的桿件系統(tǒng)結(jié)構(gòu)復(fù)雜,故障率高,誤差大[17-18]。

        因此,研究一種滿足使用要求的單級(jí)液壓支撐機(jī)構(gòu)具有實(shí)際意義與理論價(jià)值,是該創(chuàng)新地輪機(jī)構(gòu)從學(xué)術(shù)成果向應(yīng)用技術(shù)轉(zhuǎn)化的關(guān)鍵。本文擬在創(chuàng)新一種液壓支撐方案的基礎(chǔ)上,嘗試?yán)脜^(qū)域逼近與動(dòng)態(tài)圖形法求解該機(jī)構(gòu)的參數(shù)并優(yōu)化,結(jié)合數(shù)字樣機(jī)分析及樣機(jī)測(cè)試,求證方案的可行性與研究方法的科學(xué)性。

        1 高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)

        高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)結(jié)構(gòu)如圖1所示。運(yùn)輸與作業(yè)兼用型地輪機(jī)構(gòu)如圖2所示,該機(jī)構(gòu)可使聯(lián)接在其主支座1上的機(jī)架帶動(dòng)作業(yè)部件實(shí)現(xiàn)在運(yùn)輸狀態(tài)時(shí)的提升(如圖2a所示),在作業(yè)狀態(tài)時(shí)的下降(如圖2b所示)。

        機(jī)具的升降依靠雙平行四桿結(jié)構(gòu)的變形實(shí)現(xiàn),共邊桿3約束兩立柱平行。綜合考慮不同作物的耕深、機(jī)構(gòu)的緊湊性和運(yùn)輸?shù)姆€(wěn)定性,同時(shí)保證地輪機(jī)構(gòu)作業(yè)狀態(tài)仿形功能和運(yùn)輸狀態(tài)安全性的條件下,確定上擺梁長(zhǎng)度為750 mm,上擺梁旋轉(zhuǎn)變換角度=[0°,53°]。高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)擬應(yīng)用于24行大豆密植平播機(jī),根據(jù)機(jī)架與工作部件的尺寸計(jì)算質(zhì)量,并考慮實(shí)際工作過(guò)程中的沖擊載荷,確定單個(gè)地輪支持力1=1.47×104N。

        a. 運(yùn)輸狀態(tài)a. Transport modeb. 作業(yè)狀態(tài)b. Working mode

        1.地輪機(jī)構(gòu) 2.機(jī)架

        1.Land wheel mechanism 2.Frame

        注:表示運(yùn)動(dòng)方向。

        Note:representing transport direction.

        圖1 高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)

        Fig.1 High-mobility universal frame platform for wide-breadth farm implements

        在上擺梁上設(shè)計(jì)安裝臂和液壓缸,以驅(qū)動(dòng)地輪機(jī)構(gòu)的平行四桿結(jié)構(gòu)變形,并在保證行程條件下,確定安裝臂和液壓缸的最優(yōu)形式、位置及尺寸。

        2 支撐方案

        常規(guī)液壓支撐方案多采用如圖3a,3b所示的方式[19-23]。這2種支撐方案若使用單級(jí)液壓缸,在有限的安裝空間內(nèi),不能滿足所需的工作行程。若要滿足缸體長(zhǎng)度與工作行程相匹配,則需增大安裝距離或采用多級(jí)液壓液壓缸,從而導(dǎo)致整體機(jī)構(gòu)過(guò)于龐大。因此,常規(guī)支撐方案不適用該型地輪機(jī)構(gòu)。

        考慮到上述常規(guī)支撐方案的局限性,提出一種非端部支撐雙缸對(duì)置液壓支撐機(jī)構(gòu)方案,如圖3c[24]。采用水平安裝非端部支撐雙缸體對(duì)置的方式,該支撐方案可實(shí)現(xiàn)驅(qū)動(dòng)地輪機(jī)構(gòu)的變形,節(jié)約空間占用,解決常規(guī)支撐方案的工作行程小,機(jī)構(gòu)龐大的問(wèn)題。由于液壓缸在驅(qū)動(dòng)機(jī)構(gòu)變形的過(guò)程中需繞過(guò)套銷(xiāo)4,并與上擺梁交叉,因此液壓缸驅(qū)動(dòng)力、缸徑、缸體長(zhǎng)度、安裝臂位置及長(zhǎng)度具有復(fù)雜的相互約束關(guān)系,有待優(yōu)化示解。

        a. 常規(guī)支撐方案1

        a. Conventional support scheme 1

        b. 常規(guī)支撐方案2

        b. Conventional support scheme 2

        c. 非端部支撐雙缸對(duì)置液壓支撐方案

        c. Non-end support scheme with two opposed cylinders

        1.主支座 2.上擺梁 3.安裝臂(桿) 4.套銷(xiāo) 5.液壓缸

        1.Main support 2.Upper swing arm 3.Mounting arm(bar) 4.Dowel pin 5.Hydraulic cylinder

        圖3 支撐方案

        Fig.3 Support schemes

        3 非端部支撐雙缸對(duì)置液壓支撐結(jié)構(gòu)的力學(xué)分析

        非端部支撐雙缸對(duì)置液壓支撐結(jié)構(gòu)的桿件受力如圖4所示。當(dāng)上擺梁平置時(shí),地輪處于運(yùn)輸狀態(tài),在液壓缸的驅(qū)動(dòng)下繞點(diǎn)逆時(shí)針旋轉(zhuǎn)53°,地輪轉(zhuǎn)換為作業(yè)狀態(tài)。

        機(jī)構(gòu)力矩平衡方程為

        ∑A()=0

        l'?1·l'=0 (1)

        其中

        l'=l·cos(2)

        式中A為力矩,N·m;為機(jī)構(gòu)受力,N;1為地面給予單個(gè)地輪的支持力,N;2為液壓缸的推力,N;l'為點(diǎn)到上擺梁的距離,mm;l′為點(diǎn)與點(diǎn)距離,mm;l為上擺梁的長(zhǎng)度,mm;為擺梁的運(yùn)動(dòng)范圍角,(°)。

        由式(2)可知,當(dāng)=0°,即上擺梁平置時(shí)(如圖4中實(shí)線所示狀態(tài)),l′取到最大值,即l=l;l'取到最小值,即l=l當(dāng)=0°時(shí),將式(2)代入式(1)中,得到液壓缸推力最大值2max為

        式中l為安裝臂的長(zhǎng)度,mm。

        雙缸對(duì)置液壓缸為單作用、無(wú)背壓的液壓缸,其活塞桿直徑不受限制,液壓缸內(nèi)徑0的計(jì)算式為[25]

        式中1為液壓缸工作腔壓力,MPa。

        將式(3)代入式(4)得到液壓缸最大推力值時(shí),缸體內(nèi)徑0的計(jì)算式為

        地輪機(jī)構(gòu)中l1、1均已知,下文均以液壓缸最大推力值計(jì)算內(nèi)徑0,以確保缸體的可用性,故缸體內(nèi)徑0只與安裝臂l的長(zhǎng)度有關(guān),且兩者成反比例關(guān)系。利用上述力學(xué)分析,結(jié)合機(jī)構(gòu)的各尺寸之間的約束條件及設(shè)計(jì)目標(biāo)的限制,求解參數(shù)的最優(yōu)解。

        4 參數(shù)求解與優(yōu)化

        該支撐方案需滿足2個(gè)設(shè)計(jì)目標(biāo):首先為保證能夠使用單級(jí)缸體,期望工作行程與安裝距離之比小,即/值??;其次為保證擺梁運(yùn)動(dòng)過(guò)程中缸體端部不與套銷(xiāo)發(fā)生碰撞,缸體長(zhǎng)度及其安裝位置受限制。

        已知條件和約束:l=750 mm;=[0°,53°],1=1.47×104N;根據(jù)地輪機(jī)構(gòu)的結(jié)構(gòu)限制,可確定機(jī)構(gòu)允許液壓缸最大使用外徑1max=100 mm;根據(jù)液壓缸缸體材料確定缸體材料的需用應(yīng)力[]=100 MPa[25];根據(jù)壓力來(lái)源確定1=16 MPa;為保證缸體安裝合理應(yīng)滿足安裝距離≥150 mm,即單側(cè)安裝距離l≥75 mm。

        以這2個(gè)設(shè)計(jì)目標(biāo)和地輪機(jī)構(gòu)的尺寸約束為限制條件,確定液壓缸的最優(yōu)安裝位置及尺寸。如圖5所示為條件約束關(guān)系及參數(shù)求解流程。

        4.1 液壓缸尺寸及安裝位置的可行域確定

        4.1.1 工作行程與安裝距離比值的影響因素

        當(dāng)機(jī)構(gòu)在=53°位置時(shí),l′=ll=l,l=l,l=l·tan37°,l=l/cos37°。得到幾何關(guān)系表達(dá)式

        l=(l+l)·sin37° (6)

        l=l?l(7)

        l=l?l(8)

        式中l為′點(diǎn)到′點(diǎn)的距離,mm;l為點(diǎn)到點(diǎn)的距離,mm;l為點(diǎn)到點(diǎn)的距離,mm;l為點(diǎn)到′點(diǎn)的距離,mm;l為'點(diǎn)到點(diǎn)的距離,mm;l為液壓缸的單側(cè)安裝距離,mm;l為′點(diǎn)到點(diǎn)的距離,mm;l為點(diǎn)到點(diǎn)的距離,mm;l為安裝臂到旋轉(zhuǎn)點(diǎn)的距離,mm;l為點(diǎn)到點(diǎn)的距離,mm。

        由式(6)和式(7)聯(lián)立可得出,液壓缸的單側(cè)安裝距離l

        l=l·sin37°?l(1/cos37°?sin37°·tan37°) (9)

        由式(8)和式(9)聯(lián)立可得出,液壓缸的單側(cè)工作行程l

        l=l(1?sin37°)+l(1/cos37°?sin37°·tan37°) (10)

        得到液壓缸的安裝距離為

        =2l=2[l·sin37°?l(1/cos37°?sin37°·tan37°)](11)

        得到液壓缸的工作行程為

        2l=2[l(1?sin37°)+l(1/cos37°?sin37°·tan37°)](12)

        則工作行程與安裝距離之比為

        綜上分析計(jì)算,確定影響目標(biāo)函數(shù)/的因素為ll,且l與目標(biāo)函數(shù)成正比例關(guān)系,l與目標(biāo)函數(shù)成反比例關(guān)系。因此期望l取值小,l取值大。

        4.1.2 參數(shù)可行域的確定

        因該機(jī)構(gòu)呈對(duì)稱(chēng)布置,以右半側(cè)為基準(zhǔn)進(jìn)行分析,目標(biāo)優(yōu)化解析如圖6所示。

        液壓缸的壁厚為[25]

        式中0=1?2,1為缸體外徑,mm。

        當(dāng)機(jī)構(gòu)處于作業(yè)狀態(tài),即=53°時(shí),為實(shí)現(xiàn)缸體不與套銷(xiāo)發(fā)生碰撞的設(shè)計(jì)目標(biāo),安裝臂上的安裝點(diǎn)應(yīng)在銷(xiāo)軸中心點(diǎn)所在水平線以下,⊙的半徑為R=50mm,又因缸體占用一定空間,將缸體上邊緣的臨界位置確定為55,55為對(duì)應(yīng)的缸體中心線(如圖6所示)。點(diǎn)到缸體中心線的最小距離為

        式中為安全系數(shù),選取為1.66[25]。

        l=(l·sin37°?l?l·tan37°) cos37° (16)

        l=l?l·tan37°?l/cos37° (17)

        注:點(diǎn)為旋轉(zhuǎn)點(diǎn);點(diǎn)為液壓缸的安裝點(diǎn);⊙為銷(xiāo)軸安裝使用的可行范 圍區(qū);點(diǎn)為銷(xiāo)軸中心點(diǎn),即⊙的圓心;1為可行區(qū)的臨界點(diǎn);圓弧為點(diǎn)1運(yùn)動(dòng)軌跡;為上擺梁中心線;系列表示安裝臂中心線,安裝臂長(zhǎng)度l∈[,],mm;系列表示缸體中心線;系列表示缸體上邊緣,其長(zhǎng)度l為單側(cè)缸體長(zhǎng)度,l∈[,],mm;系列表示缸體半徑,mm,r∈[,];15為單側(cè)缸體長(zhǎng)度可能取值所在的 曲線;1155為單側(cè)缸體的可行安裝區(qū);1155表示隨著上擺梁的運(yùn)動(dòng),單側(cè)缸體長(zhǎng)度可能取值點(diǎn)的運(yùn)動(dòng)軌跡所圍成的區(qū)域,其中,4455為不可行區(qū)域,1122為可行區(qū)域,2244為不確定區(qū)域;3點(diǎn)為單側(cè)缸體最長(zhǎng)允許使用點(diǎn)。

        Note: Pointis the pivot point; pointis the mounting point of the hydraulic cylinder; the circleis the feasible region of the dowel pins for safe operation;pointis the central point of the dowel pins, and the center of the circle;1is a critical point of the feasible region; arcis the motion trajectory of point1;is the centerline of the upper swing arm, mm;is the centerlines of the mounting arm, the length of the mounting arml∈[,], mm;is the centerlines of the cylinder;is the upper rims of the cylinder, with its length being the length of the one-sided cylinder,l∈[,], mm;is the radius of the cylinder, mm,r∈[,];15is a curve of the possible length value of the one-sided cylinder;1155is the feasible mounting zone of the one-sided cylinder;1155denotes the region enclosed by the motion trajectory of probable values of the one-sided cylinder length as the swing armmoves, the4455region is an infeasible region, the1122region is a feasible region, and the region2244is an uncertain region; point3is the maximum allowable point of the one-sided cylinder.

        圖6 目標(biāo)優(yōu)化解析

        Fig.6 Objective optimization analysis

        可行域具體計(jì)算步驟如表1所示。

        將1 max=100 mm代入公式(14),得到液壓缸的壁厚≥7.5 mm,取整為=8 mm,因此缸體內(nèi)徑的最大值0 max=1 max?2=84 mm;

        將0≤84 mm代入式(5)中,得到l≥121 mm;

        點(diǎn)到5點(diǎn)距離=1max/2·+R=133 mm;

        l≥121 mm代入式(9),得到l≥285 mm;

        l≤221 mm代入式(5),得到缸體內(nèi)徑的最小值0 min=63 mm,因此確定缸體內(nèi)徑0的取值范圍為0∈[63,84];

        根據(jù)公式(16)和(17),并結(jié)合圖6中各參數(shù)的幾何關(guān)系,當(dāng)取最小值121 mm時(shí),取到最大值200 mm,取到最大值493 mm,因此確定l與的取值范圍分別為l∈[75, 200],l∈[285,493];

        將0 min=63 mm代入式(14),得到壁厚≥5.5 mm,取整為6 mm,則1 min=75 mm。得到缸體外徑1的取值范圍為1∈[75, 100]。

        表1 參數(shù)可行域計(jì)算步驟及結(jié)果

        注:1為缸體外徑,mm;1為液壓缸工作腔壓力,MPa;0為缸體內(nèi)徑,mm;[] 為缸體材料的許用應(yīng)力,MPa;為缸體厚度,mm;1為地面給予單個(gè)地輪的支持力,N;l為上擺梁長(zhǎng)度,mm;l為安裝臂的長(zhǎng)度,mm;為點(diǎn)到缸體中心線的最小距離,mm;為安全系數(shù);R為銷(xiāo)軸半徑,mm;l為液壓缸的單側(cè)安裝距離,mm;l為安裝臂到旋轉(zhuǎn)點(diǎn)的距離,mm;為5點(diǎn)到5點(diǎn)的距離,mm;l為點(diǎn)到系列點(diǎn)的距離,mm。

        Note:1is the outside diameter of the hydraulic cylinder, mm;1is the pressure of the hydraulic cylinder working chamber, MPa;0is the inside diameter of the cylinder, mm;[] is the allowable stress of the cylinder material, MPa;is the wall thickness of the hydraulic cylinder, mm;1is the ground supporting force of a single land wheel, N; lis the length of the upper swing arm, mm;lis the length of the mounting arm , mm;is the minimum distance between pointand the centerline of the hydraulic cylinder, mm;is safety factor; Ris radius of pin, mm; lis the one-sided mounting distance of the hydraulic cylinder, mm; lis the distance of the mounting arm and the turning point, mm;is the distance between point Band point D, mm; lis the distance between pointand point, mm.

        單側(cè)缸體的總長(zhǎng)0為[25]

        0=/2++++

        0=l·(1?sin37°)+l·(1/cos37°?sin37°·tan37°)+20+35(18)

        式中為活塞寬度,一般為(0.6~1)0,mm;為活塞桿導(dǎo)向長(zhǎng)度,一般為(0.6~1.5)0,mm;為活塞桿密封長(zhǎng)度,由密封方式確定,mm;為其他長(zhǎng)度,mm。其中,本文選取活塞寬度=0.80;由于雙缸對(duì)置液壓缸的行程較大,為減小撓度和保證穩(wěn)定性,選取活塞桿導(dǎo)向長(zhǎng)度=1.20;采用密封圈進(jìn)行密封,確定活塞桿密封長(zhǎng)度=10 mm;隔套和單側(cè)缸體前后缸蓋等其他長(zhǎng)度=25 mm。

        因考慮其經(jīng)濟(jì)性并減輕機(jī)構(gòu)質(zhì)量,首先期望缸體外徑1取可行域的最小值,且因l與1成反比例關(guān)系,希望l長(zhǎng)度取可行域內(nèi)的最大值。經(jīng)4.1.1節(jié)分析可知,希望l長(zhǎng)度取可行域內(nèi)的最小值。當(dāng)銷(xiāo)軸中心點(diǎn)到缸體上邊緣的距離l(為正整數(shù))值確定時(shí),系列的位置一定,此時(shí)系列取最小值,即l=75 mm時(shí),l取到最大值,l取到最小值。根據(jù)各尺寸的可行域,確定0∈[413, 498],即圖6中以點(diǎn)為原點(diǎn)的1和5的橫坐標(biāo)值=413 mm,=498 mm。

        l∈[121,221]范圍內(nèi)隨機(jī)取點(diǎn),計(jì)算出這些隨機(jī)點(diǎn)對(duì)應(yīng)的l和0值,代入式(18),描繪出單側(cè)缸體長(zhǎng)度可能取值所在的曲線15,則1155為單側(cè)缸體的可行安裝區(qū),如圖6所示。1155表示隨著上擺梁的運(yùn)動(dòng),單側(cè)缸體長(zhǎng)度可能取值點(diǎn)的運(yùn)動(dòng)軌跡所圍成的區(qū)域,例如11為缸體端點(diǎn)1隨擺梁運(yùn)動(dòng)所形成的運(yùn)動(dòng)軌跡。以圖6所示運(yùn)動(dòng)軌跡為分析依據(jù),完全位于圓弧安全區(qū)外側(cè)的4455區(qū)在運(yùn)動(dòng)中與⊙存在干涉,所以為不可行區(qū)域;完全位于圓弧安全區(qū)內(nèi)側(cè)的1122區(qū)在運(yùn)動(dòng)中與⊙完全不干涉,所以為可行區(qū)域;中間區(qū)域2244為不確定區(qū)域。為確定機(jī)構(gòu)尺寸的最優(yōu)解,需要確定不確定區(qū)域2244中的可行域。

        4.2 最優(yōu)參數(shù)確定

        4.2.1 支撐方案平面運(yùn)動(dòng)機(jī)構(gòu)建立

        利用計(jì)算機(jī)輔助三維交互應(yīng)用(computer aided three-dimensional interactive application,CATIA)草圖約束動(dòng)畫(huà)模擬如圖3c所示非端部支撐雙缸對(duì)置液壓支撐機(jī)構(gòu)方案的運(yùn)動(dòng)情況,機(jī)構(gòu)簡(jiǎn)圖運(yùn)動(dòng)模型及對(duì)應(yīng)的關(guān)鍵尺寸約束如圖7所示[26-27],尺寸單位為mm。運(yùn)動(dòng)機(jī)構(gòu)中固定件主支座、主運(yùn)動(dòng)件擺梁和安裝臂為全約束,包括尺寸約束和位置約束。液壓缸為運(yùn)動(dòng)件,固定約束兩側(cè)缸體和活塞的長(zhǎng)寬尺寸。運(yùn)動(dòng)過(guò)程中缸體的安裝位置固定不變,因此在草圖中約束安裝銷(xiāo)軸中心與單側(cè)缸體的端部距離l,如圖7中的尺寸值75 mm。安裝臂隨上擺梁在[0°,53°]范圍內(nèi)做往復(fù)擺動(dòng),液壓缸內(nèi)的活塞相對(duì)于液壓缸做伸縮運(yùn)動(dòng),活塞的伸縮運(yùn)動(dòng)驅(qū)動(dòng)擺梁的擺動(dòng),故擺梁運(yùn)動(dòng)的角度范圍的端點(diǎn)值為草圖約束動(dòng)畫(huà)的“參數(shù)”。利用上述的動(dòng)態(tài)圖形的方法對(duì)該機(jī)構(gòu)進(jìn)行虛擬仿真,觀察其運(yùn)動(dòng)狀態(tài)。該方法能夠更加直觀地反映機(jī)構(gòu)的運(yùn)動(dòng)狀態(tài)、方式,方便優(yōu)化及修改方案。

        4.2.2 最優(yōu)解獲取

        針對(duì)圖6所示的目標(biāo)優(yōu)化解析可采用上述動(dòng)態(tài)圖形的方法來(lái)尋找最優(yōu)目標(biāo),尺寸約束如圖8a所示,單位為mm?!雅c圓弧的切點(diǎn)1為可行區(qū)的臨界點(diǎn),擺梁運(yùn)動(dòng)時(shí)曲線15上有唯一的一點(diǎn)與點(diǎn)1相交,這一點(diǎn)即為單側(cè)缸體長(zhǎng)度最大允許使用點(diǎn),利用草圖約束動(dòng)畫(huà)功能模塊,模擬可行缸長(zhǎng)范圍內(nèi)液壓缸運(yùn)動(dòng)全過(guò)程,逐步逼近找到該點(diǎn)。針對(duì)非端部支撐雙缸對(duì)置液壓支撐機(jī)構(gòu)方案的草圖動(dòng)畫(huà)設(shè)置有如下要點(diǎn):

        4)可行區(qū)臨界點(diǎn)1為運(yùn)動(dòng)元素上的固定點(diǎn),約束為定值。

        a. 運(yùn)動(dòng)機(jī)構(gòu)簡(jiǎn)圖及尺寸約束

        a. Motion mechanism diagram and dimension constraints

        b. 臨界點(diǎn)與曲線相交結(jié)果

        b. Result of Critical point and curve intersection

        注:點(diǎn)為旋轉(zhuǎn)點(diǎn);點(diǎn)為液壓缸的安裝點(diǎn);⊙為銷(xiāo)軸安裝使用的可行范圍區(qū);1為可行區(qū)的臨界點(diǎn);為上擺梁;為安裝臂;表示缸體中心線;3表示缸體上邊緣,其長(zhǎng)度為單側(cè)缸體長(zhǎng)度,mm;3表示缸體半徑,mm;3點(diǎn)為上擺梁運(yùn)動(dòng)過(guò)程中,單側(cè)缸體長(zhǎng)度可能取值所在的曲線與臨界點(diǎn)1的相交點(diǎn)。

        Note: Pointis the pivot point; pointis the mounting point of the hydraulic cylinder; the circleis the feasible region of the dowel pins for safe operation;1is a critical point of the feasible region;is the upper swing arm;is the mounting arm;is the centerlines of the cylinder;3is the upper rims of the cylinder, with its length being the length of the one-sided cylinder, mm;3is the radius of the cylinder, mm; point3is the intersection point of the curve of the possible length value of the one-sided cylinder and critical point1during the swing armin motion.

        圖8 運(yùn)動(dòng)機(jī)構(gòu)簡(jiǎn)圖約束及其優(yōu)化結(jié)果

        Fig.8 Constraints and optimization result of motion mechanism diagram

        如圖8b所示,臨界點(diǎn)與曲線相交位置發(fā)生在擺梁運(yùn)動(dòng)到與水平位置呈33.3°時(shí)。則單側(cè)缸體長(zhǎng)度最大允許使用點(diǎn)為圖6中3點(diǎn),以點(diǎn)為原點(diǎn)的坐標(biāo)為3(458,432)。

        由此確定單側(cè)缸體長(zhǎng)度為0==458 mm,l= 357 mm,l=175 mm,缸體外徑1=85 mm,內(nèi)徑0= 71 mm。

        5 虛擬仿真與樣機(jī)測(cè)試

        5.1 虛擬樣機(jī)仿真分析

        根據(jù)優(yōu)化結(jié)果及液壓缸相關(guān)技術(shù)標(biāo)準(zhǔn)設(shè)計(jì)非端部支撐雙缸對(duì)置液壓支撐機(jī)構(gòu),各參數(shù)為:?jiǎn)蝹?cè)缸體長(zhǎng)度0=458 mm,單側(cè)工作行程l=282 mm,缸體外徑1=85 mm,缸體內(nèi)徑0=71 mm,缸體厚度=7 mm,缸體單側(cè)安裝距離l=75 mm,安裝臂長(zhǎng)度l=175 mm,安裝臂距旋轉(zhuǎn)點(diǎn)距離l=357 mm。

        利用優(yōu)化的機(jī)構(gòu)參數(shù),對(duì)液壓支撐機(jī)構(gòu)進(jìn)行結(jié)構(gòu)設(shè)計(jì),并完成三維虛擬裝配,進(jìn)行運(yùn)動(dòng)學(xué)仿真分析,以驗(yàn)證理論模型[28]。按照表2和圖9a創(chuàng)建運(yùn)動(dòng)副,定義主支座6為固定件,驅(qū)動(dòng)“旋轉(zhuǎn).4”的角度為命令,以角度范圍[0°,53°]建立運(yùn)動(dòng)模擬,完成運(yùn)動(dòng)仿真機(jī)構(gòu)。分別以圖9a中點(diǎn)1和點(diǎn)2作為“要繪制軌跡的要素”,以主支座6為“參考產(chǎn)品”,得到套銷(xiāo)上點(diǎn)1和缸體上邊緣端點(diǎn)相對(duì)于主支座的運(yùn)動(dòng)軌跡,如圖9所示。將圖9b中仿真軌跡與圖8b中理論分析獲得最優(yōu)軌跡結(jié)果(即為圖6中曲線33和圓弧)進(jìn)行對(duì)比,兩者軌跡基本重合,虛擬仿真與理論分析一致。同時(shí),通過(guò)觀察仿真運(yùn)動(dòng)過(guò)程可知,機(jī)構(gòu)的安裝位置和設(shè)計(jì)參數(shù)可滿足狀態(tài)轉(zhuǎn)換的技術(shù)要求。

        表2 支撐機(jī)構(gòu)運(yùn)動(dòng)仿真模型運(yùn)動(dòng)副及分析要素

        機(jī)構(gòu)在狀態(tài)轉(zhuǎn)換過(guò)程中部件之間無(wú)碰撞現(xiàn)象是設(shè)計(jì)的目標(biāo)之一,因此,對(duì)可能發(fā)生碰撞的關(guān)鍵部件,套銷(xiāo)和缸體進(jìn)行干涉仿真分析,利用“掃掠包絡(luò)體”描繪機(jī)構(gòu)運(yùn)動(dòng)部件幾何體在整個(gè)運(yùn)動(dòng)過(guò)程中所掃掠的空間范圍[29-31]。生成以固定件“主支座”為參考產(chǎn)品,分別以“左側(cè)液壓缸缸體”、“右側(cè)液壓缸缸體”、“左套銷(xiāo)”和“右套銷(xiāo)”為掃掠對(duì)象的掃掠包絡(luò)體,分析結(jié)果如圖10a所示;以右側(cè)為基準(zhǔn)進(jìn)行分析,生成以“右套銷(xiāo)”為參考產(chǎn)品,“右側(cè)液壓缸缸體”為掃掠對(duì)象的相對(duì)掃掠包絡(luò)體,分析結(jié)果如圖10b所示。

        a. 仿真模型

        a. Simulation model

        b. 仿真軌跡

        b. Simulation trajectory

        1.左缸體 2.活塞桿 3.右缸體 4.右套銷(xiāo) 5.右擺梁 6.主支座 7.中間套銷(xiāo) 8.左擺梁 9.左套銷(xiāo)

        1.Left hydraulic cylinder 2.Cylinder rod 3.Right hydraulic cylinder 4.Right dowel pin 5.Right swing arm 6.Main support 7.Middle dowel pin 8.Left swing arm 9.Left dowel pin

        注:點(diǎn)1為套銷(xiāo)上點(diǎn)1,點(diǎn)2為缸體上邊緣端點(diǎn),參考圖6。

        Note: Point 1 is point1on the dowel pin, point 2 is pointon the upper edge of the cylinder, and refer to Fig.6.

        圖9 液壓支撐機(jī)構(gòu)虛擬樣機(jī)仿真模型及軌跡

        Fig.9 Simulation model and trajectory of virtual prototype of the hydraulic support mechanism

        a. 掃掠包絡(luò)體1分析結(jié)果

        a. Analysis result of swept volume 1

        b. 掃掠包絡(luò)體2分析結(jié)果

        b. Analysis result of swept volume 2

        1.右側(cè)液壓缸缸體的掃略包絡(luò)體 2.右套銷(xiāo)

        1.Swept volume of the right cylinder 2.The right dowel pin

        注:包絡(luò)體1為“左側(cè)液壓缸缸體”、“右側(cè)液壓缸缸體”、“左套銷(xiāo)”和“右套銷(xiāo)”相對(duì)于“主支座”在整個(gè)運(yùn)動(dòng)過(guò)程中所掃掠的空間范圍;包絡(luò)體2為“右側(cè)液壓缸缸體”相對(duì)于“右套銷(xiāo)”在整個(gè)運(yùn)動(dòng)過(guò)程中所掃掠的空間范圍。

        Note: Swept volume 1 is sweeping spatial scales of the left cylinder, the left dowel pin, the right cylinder, and the right dowel pin relative to the main support in the process of the whole movement; Swept volume 2 is sweeping spatial scale of the right cylinder relative to the right dowel pin in the process of the whole movement.

        圖10 干涉仿真結(jié)果

        Fig.10 Interference simulation result

        根據(jù)掃掠結(jié)果可知,液壓缸缸體與套銷(xiāo)在運(yùn)動(dòng)過(guò)程中同時(shí)間點(diǎn)包絡(luò)體無(wú)相交,則部件間無(wú)碰撞,機(jī)構(gòu)設(shè)計(jì)及其參數(shù)符合要求。

        5.2 樣機(jī)試制及測(cè)試

        試制以非端部支撐雙缸體對(duì)置液壓驅(qū)動(dòng)機(jī)構(gòu)與運(yùn)輸與作業(yè)兼用型地輪為特征的高機(jī)動(dòng)性寬幅農(nóng)具通用機(jī)架平臺(tái)。通過(guò)機(jī)架主梁加載及液壓缸伸縮測(cè)試,液壓支撐機(jī)構(gòu)可按設(shè)計(jì)要求驅(qū)動(dòng)地輪機(jī)構(gòu)變形,無(wú)干涉與碰撞現(xiàn)象,升程及調(diào)整范圍滿足作業(yè)及運(yùn)輸2種狀態(tài)的技術(shù)要求,液壓缸運(yùn)行穩(wěn)定,如圖11a,11b所示;通用機(jī)架工程應(yīng)用于大型農(nóng)具24行大豆密植平播機(jī),實(shí)現(xiàn)在全載荷和動(dòng)載荷條件下正常運(yùn)輸和作業(yè),未見(jiàn)機(jī)構(gòu)部件斷裂、變形,如圖11c所示。田間作業(yè)及道路運(yùn)輸各狀態(tài)均實(shí)現(xiàn)了研究的目標(biāo),非端部支撐雙缸體對(duì)置液壓驅(qū)動(dòng)機(jī)構(gòu)表現(xiàn)良好,可靠。

        a. 運(yùn)輸狀態(tài)a. Transport modeb. 作業(yè)狀態(tài)b. Working mode

        c. 應(yīng)用于24行大豆密植平播機(jī)

        c. Application of 24 rows soybean precision parallel planter

        圖11 樣機(jī)測(cè)試及工程應(yīng)用

        Fig.11 Prototype test and engineering application

        6 結(jié) 論

        1)非端部支撐雙缸體對(duì)置液壓支撐機(jī)構(gòu),與常規(guī)液壓缸支撐方案相比,有更大的行程比,結(jié)構(gòu)緊湊,能夠適應(yīng)運(yùn)輸與作業(yè)兼用型地輪機(jī)構(gòu)上狹小的初始安裝空間及有限的運(yùn)動(dòng)空間。

        2)針對(duì)本文地輪機(jī)構(gòu)的結(jié)構(gòu)及相關(guān)數(shù)據(jù),液壓支撐機(jī)構(gòu)優(yōu)化參數(shù)為:安裝臂的長(zhǎng)度為175 mm,安裝臂距旋轉(zhuǎn)點(diǎn)357 mm,液壓缸缸體長(zhǎng)度為916 mm,缸體內(nèi)徑為71 mm。

        3)區(qū)域逼近與動(dòng)態(tài)圖形組合求解法在解決此類(lèi)問(wèn)題上具有明顯的優(yōu)越性與便捷性。區(qū)域逼近法用于確定參數(shù)可行域,動(dòng)態(tài)圖形求解最優(yōu)參數(shù)。區(qū)域逼近的效率及有效性取決于約束條件的全面體現(xiàn)以及相互關(guān)系的清晰表達(dá),是動(dòng)態(tài)圖形求解與參數(shù)優(yōu)化的基礎(chǔ)。

        [1] 盧秉福,韓衛(wèi)平,朱明. 農(nóng)業(yè)機(jī)械化發(fā)展水平評(píng)價(jià)方法比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):46-49. Lu Bingfu, Han Weiping, Zhu Ming. Comparision of evaluation method for agricultural mechanization development level[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 46-49. (in Chinese with English abstract)

        [2] 羅錫文. 對(duì)加速我國(guó)農(nóng)業(yè)機(jī)械化發(fā)展的思考[J]. 農(nóng)業(yè)工程,2011,1(4):1-8. Luo Xiwen. Thoughts on accelerating the development of agricultural mechanization in China[J]. Agricultural Engineering, 2011, 1(4): 1-8. (in Chinese with English abstract)

        [3] 甘露,潘亞?wèn)|,孫士明. 我國(guó)農(nóng)業(yè)機(jī)械化發(fā)展態(tài)勢(shì)分析[J]. 農(nóng)機(jī)化研究,2011(2):203-208. Gan Lu, Pan Yadong, Sun Shiming. Analysis of the development trend of agricultural mechanization in China[J]. Journal of Agricultural Mechanization Research, 2011(2): 203-208. (in Chinese with English abstract)

        [4] 陸會(huì)茹,秦海生. 推進(jìn)農(nóng)業(yè)生產(chǎn)全程機(jī)械化的形勢(shì)與對(duì)策分析[J]. 現(xiàn)代農(nóng)機(jī),2015(6):33-35.

        [5] 張華光. 2015年,農(nóng)機(jī)市場(chǎng)十大關(guān)鍵詞[J]. 農(nóng)機(jī)市場(chǎng),2016(1):26-28.

        [6] Davis W M. Folding Mechanisms Overview[R]. SAE Technical Paper, 1985.

        [7] Bryson J R., Clark J, Vanchan V. Handbook of Manufacturing Industries in the World Economy[M]. Cheltenham: Books, 2015: 229-244.

        [8] Pratt R L. Agricultural implement frame having a transport configuration and a working configuration: Patent 6, 321, 852[P]. 2001-11-27.

        [9] Kinzenbaw J E, Barry A F, Deckler H C. Agricultural implement with common mechanism for raising/lowering and rotating a lift frame about a vertical axis: Patent 5, 346, 019[P].1994-09-13.

        [10] Kinzenbaw J E. Agricultural implement with raisable lift frame rotatable about vertical axis: Patent 4, 721, 168[P]. 1988-01-26.

        [11] 劉宏新,宋微微,周向榮. 大型農(nóng)機(jī)具地輪作業(yè)狀態(tài)與運(yùn)輸狀態(tài)轉(zhuǎn)換結(jié)構(gòu):201110462375.6 [P]. 2012-07-18.

        [12] Wangikar S, Patil A, Patil S. Design and buckling analysis of multistage hydraulic lifter[J]. Design and buckling analysis of multistage hydraulic lifter, 2015, 2(8): 1953-1957.

        [13] 黎立萍,柳雪春. 避免多級(jí)液壓缸運(yùn)行階躍的液壓裝置的設(shè)計(jì)[J]. 起重運(yùn)輸機(jī)械,2013(9):28-30.

        [14] Lindahl G M, Nelson E H, Mellor M L R. Hydraulic strut assembly for semi-levered landing gear: Patent Application 13/474,332[P]. 2012-05-17.

        [15] Guido H. Multiple-stage hydraulic cylinder: Patent 5,613,418[P]. 1997-03-25.

        [16] Tian Hongyu, Zhang Ziyi. Design and simulation based on pro/e for a hydraulic lift platform in scissors type[J]. Procedia Engineering, 2011, 16: 772-781.

        [17] 趙靜一,陳鵬飛,郭銳. 自行式液壓貨車(chē)非對(duì)稱(chēng)轉(zhuǎn)向系統(tǒng)設(shè)計(jì)[J]. 機(jī)械工程學(xué)報(bào),2012,48(10):160-166. Zhao Jingyi, Chen Pengfei, Guo Rui. Design of asymmetry steering system for self-propelled hydraulic transporter[J]. Journal of Mechanical Engineering, 2012, 48(10): 160-166. (in Chinese with English abstract)

        [18] 鄭恩來(lái),張航,朱躍,等. 含間隙超精密壓力機(jī)柔性多連桿機(jī)構(gòu)動(dòng)力學(xué)建模與仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):375-385. Zheng Enlai, Zhang Hang, Zhu Yue, et al. Dynamic modeling and simulation of flexible multi-link mechanism including joints with clearance for ultra-precision press[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 375-385. (in Chinese with English abstract)

        [19] 曹芳芳,范元?jiǎng)? 關(guān)于連桿組合式舉升機(jī)構(gòu)優(yōu)化設(shè)計(jì)數(shù)學(xué)模型的探討[J]. 現(xiàn)代機(jī)械,2015(5):23-35.

        [20] 李政,李尚平,周建陽(yáng),等. 小型甘蔗收獲機(jī)集蔗機(jī)構(gòu)的設(shè)計(jì)與仿真[J]. 農(nóng)機(jī)化研究,2014(12):87-91. Li Zheng, Li Shangping, Zhou Jianyang, et al. Design and simulation on sugarcane collection organization of small-scale sugarcane harvester[J]. Journal of Agricultural Mechanization Research, 2014(12): 87-91. (in Chinese with English abstract)

        [21] 許平勇,曹鵬舉. 平行桿翻轉(zhuǎn)舉升機(jī)構(gòu)及液壓缸鉸支點(diǎn)設(shè)計(jì)[J]. 起重運(yùn)輸機(jī)械,2008(5):23-26.

        [22] 苑風(fēng)霞,司志遠(yuǎn). 自卸汽車(chē)舉升機(jī)構(gòu)設(shè)計(jì)[J]. 赤峰學(xué)院學(xué)報(bào):自然科學(xué)版,2014,30(5):89-91.

        [23] 陳志偉,金波,朱世強(qiáng),等. 液壓驅(qū)動(dòng)仿生多足機(jī)器人單腿設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):36-42. Chen Zhiwei, Jin Bo, Zhu Shiqiang, et al. Design and experiment of single leg of hydraulically actuated bionic multi-legged robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 36-42. (in Chinese with English abstract)

        [24] 劉宏新,宋微微,周向榮. 雙缸體對(duì)置式非端部鉸接支承液壓油缸:201110462374.1[P]. 2012-07-04.

        [25] 閻邦椿.機(jī)械設(shè)計(jì)手冊(cè)[M],5版. 北京:機(jī)械工業(yè)出版社,2010:65-66,249-250.

        [26] 劉宏新,徐高偉,孟永超. CATIA三維設(shè)計(jì)基礎(chǔ)與應(yīng)用[M]. 北京:機(jī)械工業(yè)出版社,2014:82-88.

        [27] Richard Cozzens. CATIA V5 Workbook Release 19[M]. Mission: SDC Publications, 2009: 3.35-3.36.

        [28] 劉宏新,宋微微. CATIA數(shù)字樣機(jī)運(yùn)動(dòng)仿真詳解[M]. 北京:機(jī)械工業(yè)出版社,2013:190-196.

        [29] Abdel-Malek K, Yang J, Blackmore D, et al. Swept volumes: fundation, perspectives, and applications[J]. International Journal of Shape Modeling, 2006, 12(1): 87-127.

        [30] Rossignac J, Kim J J, Song S C, et al. Boundary of the volume swept by a free-form solid in screw motion[J]. Computer-Aided Design, 2007, 39(9): 745-755.

        [31] 江笑龍,王廣官,單巖,等. 凸包STL 模型的運(yùn)動(dòng)包絡(luò)體計(jì)算及其應(yīng)用[J]. 機(jī)械設(shè)計(jì)與研究,2014,30(3):5-7. Jiang Xiaolong, Wang Guangguan, Shan Yan, Song Xiaowen. An algorithm for generating enveloping solid of the convex STL model and its application[J]. Machine Design and Research, 2014, 30(3): 5-7. (in Chinese with English abstract)

        Parameters solving and optimization of long working stroke hydraulic support mechanism using regional approximation and dynamic graphical solution

        Liu Hongxin, Jia Ru, Li Yanlong, Gai Guangwei

        (Engineering College, Northeast Agricultural University, Harbin 150030, China)

        As a result of substantial improvements in agricultural mechanization in China, large farm implements have been widely utilized. However, a problem has arisen concerning how to guarantee safety, effectiveness and convenience when such wide-breadth farm implements switch between road transport and operational modes. At present, there are 3 methods of resolution: Folded frames, which can be subdivided into supero-inferior fold, horizontal fold and lifting fold; a trailer for longitudinal traction along the girder of a wide-breadth farm implement; and combined double-frame agricultural implement with common mechanism for raising/lowering and rotating a lift frame about a vertical axis. Nevertheless, folded frames have complex structures and are expensive to manufacture; a dedicated shoring trailer has to be furnished, and field operation is very inconvenient; and the complex structure of combined double frames are more expensive. To address these technical problems, a high-mobility universal frame platform for wide-breadth farm implements, which can benefit operation and transport, was designed at Northeast Agricultural University. Its land wheel mechanism outperforms conventional land wheels on the frames of farm implements that only have depth-limiting and transmission functionality. The land wheel mechanism ensures easy tilling depth adjustment, good conformality, the ability to produce a large driving force, and convenient and quick switch modes. To realize the mode switching of land wheel mechanism for operation and transport purposes, a novel hydraulic support scheme was selected based on a part of trunnion mounted cylinder on a common rod. It adapted to the structural characteristics of the land wheel actuation device that required a long working stroke within a limited mounting space. Toward mechanics and kinematic models for this mechanism, support structure parameters were regionally approximated according to a spatial geometric relationship and subject to dynamic constraints. After the feasible region of the mounting position and dimensions of the hydraulic cylinder were determined, a dynamic graphical solution was used to simulate the motion situation of mechanism. As the swing arms rotated stepwise, the curve describing the cylinder length on one side was observed to find its point of intersection with a feasible boundary. The optimal solutions for the mounting position and cylinder dimensions could be determined using this information. When the hydraulic system pressure was 16 MPa, the length of the mounting arm was found to be 175 mm, the mounting arm was 357 mm away from the pivot point, the length of the hydraulic cylinder was 916 mm, and the inside diameter of the cylinder was 71 mm. The study and prototype trial indicate that the non-end supported opposed twin-cylinder hydraulic support mechanism enables the land-wheel mode to switch and is characterized by a compact structure and a long working stroke. The study also demonstrates that regional approximation and dynamic graphical solutions can be effectively used in the optimization and parameter solving for such mechanisms.

        agricultural machinery; maneuverability; approximation theory; mode transition; long stroke; regional approximation; dynamic graphical solution

        10.11975/j.issn.1002-6819.2017.04.001

        S220.2; S220.34

        A

        1002-6819(2017)-04-0001-09

        2016-02-14

        2017-01-03

        黑龍江省博士后科研啟動(dòng)基金(LBH-Q14024);公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303011)

        劉宏新,男,教授,博士生導(dǎo)師,研究方向?yàn)楝F(xiàn)代農(nóng)業(yè)裝備、數(shù)字化設(shè)計(jì)、CAD&CAE。哈爾濱 東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:Lcc98@neau.edu.cn

        劉宏新,賈儒,李彥龍,改廣偉. 區(qū)域逼近與動(dòng)態(tài)圖形法求解大行程液壓支撐機(jī)構(gòu)參數(shù)及優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):1-9. doi:10.11975/j.issn.1002-6819.2017.04.001 http://www.tcsae.org

        Liu Hongxin, Jia Ru, Li Yanlong, Gai Guangwei. Parameters solving and optimization of long working stroke hydraulic support mechanism using regional approximation and dynamic graphical solution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 1-9. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.001 http://www.tcsae.org

        猜你喜歡
        缸體單側(cè)液壓缸
        冷軋雙切剪液壓缸螺栓斷裂分析
        如何消除灰鑄鐵缸體麻點(diǎn)缺陷
        缸體頂面輪廓度加工能力提升分析
        鑄鐵缸體新型電機(jī)孔粗鏜刀具的應(yīng)用
        關(guān)于單側(cè)布頂內(nèi)側(cè)安裝減速頂?shù)娜粘pB(yǎng)護(hù)及維修工作的思考
        一種基于液壓缸負(fù)負(fù)載回油腔的調(diào)速控制系統(tǒng)
        缸體鑄件清理打磨自動(dòng)化輸送線設(shè)計(jì)
        中間入路與外側(cè)入路行單側(cè)甲狀腺葉全切除術(shù)的對(duì)比
        同期雙髖,單側(cè)全髖關(guān)節(jié)置換治療嚴(yán)重髖部疾病的臨床比較
        液壓缸維修技術(shù)
        经典亚洲一区二区三区| 中文字幕亚洲乱码熟女在线萌芽| 久久噜噜噜| 国产三级三级三级看三级日本| 成人免费av色资源日日| 天堂中文官网在线| 欧美老妇人与禽交| 一区二区无码精油按摩| 久久亚洲春色中文字幕久久| 五月天中文字幕mv在线| 天天影视色香欲综合久久 | 国产激情一区二区三区在线蜜臀| 日本加勒比精品一区二区视频| 五月丁香六月综合缴清无码| 亚洲中文有码字幕青青| 在线偷窥制服另类| 少妇下面好紧好多水真爽| 色综合av综合无码综合网站| 四虎影视在线观看2413| 人妻少妇精品一区二区三区| 久久av不卡人妻出轨一区二区| 亚洲av永久无码精品三区在线| 久久久男人天堂| 国产精品av免费网站| 我和隔壁的少妇人妻hd| 精品人妻人人做人人爽| 亚洲 暴爽 AV人人爽日日碰 | 精品日产卡一卡二卡国色天香 | 熟妇人妻无乱码中文字幕真矢织江| 国产成a人亚洲精v品无码性色| 丰满熟妇人妻av无码区| 国产在线精品成人一区二区三区| 熟女少妇精品一区二区| 久久AⅤ无码精品为人妻系列| 国产精品亚洲一区二区三区正片| 国产精品一区二区三区在线免费 | 亚洲不卡高清av网站| 伊人久久大香线蕉综合网站| 久久这里只精品国产2| 日本国产一区二区在线| 日韩精品久久无码中文字幕|