孫揚(yáng) 牛曉輝
. 綜述 Review .
脛骨近端腫瘤型假體置換術(shù)中伸膝裝置重建的研究進(jìn)展
孫揚(yáng) 牛曉輝
脛骨;骨腫瘤;關(guān)節(jié)成形術(shù),置換,膝;骨重建
脛骨近端是骨原發(fā)惡性腫瘤最常見(jiàn)的發(fā)病部位之一,脛骨近端瘤段截除腫瘤型假體置換最棘手的問(wèn)題就在于術(shù)中伸膝裝置的重建?,F(xiàn)對(duì)脛骨近端腫瘤型假體置換術(shù)中伸膝裝置的重建方式進(jìn)行文獻(xiàn)復(fù)習(xí)與探討。
隨著影像診斷、輔助治療及手術(shù)技術(shù)的發(fā)展,保肢手術(shù)已成為肢體惡性骨腫瘤手術(shù)的第一選擇[1-4]。脛骨近端是骨惡性腫瘤第二常見(jiàn)的發(fā)病部位[5-7],僅次于股骨遠(yuǎn)端,相比肢體其它部位,脛骨近端惡性腫瘤保肢術(shù)后功能偏差,且并發(fā)癥發(fā)生率偏高[8-11],這與脛骨近端鄰近血管、神經(jīng),缺乏軟組織覆蓋以及術(shù)中損失髕韌帶附麗有關(guān)[2,4,7,12],其中對(duì)術(shù)后功能影響最大也是最棘手的問(wèn)題在于伸膝裝置止點(diǎn)-髕韌帶附麗的重建[13-14]。異體骨或異體骨-人工假體復(fù)合物雖可為髕韌帶提供生物學(xué)附麗,但由于其較高的并發(fā)癥發(fā)生率:感染、異體骨骨折、不愈合、關(guān)節(jié)面塌陷等[7,9,12,15-20],應(yīng)用范圍遠(yuǎn)不如人工假體廣泛,人工假體的優(yōu)勢(shì)在于術(shù)后的早期負(fù)重和活動(dòng),但假體本身無(wú)法提供生物學(xué)附麗點(diǎn)。
目前文獻(xiàn)報(bào)道脛骨近端腫瘤型假體置換術(shù)中伸膝裝置的重建方式很多,并無(wú)公認(rèn)的最佳選擇。
伸膝裝置重建成功與否取決于殘存髕腱與假體之間是否能實(shí)現(xiàn)有效的固定,而有效的固定是由穩(wěn)定牢固的接觸界面決定的[6,12-15],根據(jù)接觸界面的數(shù)量和類(lèi)型,可以將重建方式分為以下幾類(lèi):?jiǎn)我唤缑妫后x腱-假體;雙重界面:根據(jù)界面類(lèi)型分型:髕腱-人工材料-假體;髕腱-自體松質(zhì)骨-假體;髕腱-腓骨-殘存脛骨。通過(guò)主被動(dòng)伸膝度差,MSTS 評(píng)分和髕腱撕脫的發(fā)生率,對(duì)重建方式的效果進(jìn)行評(píng)價(jià)。
根據(jù)固定方式又可分為縫線(xiàn)縫合、Dacron 帶固定和鉚釘固定。Mavrogenis 等[4]報(bào)道了 225 例,其中 185 例患者的髕腱以不可吸收線(xiàn)與假體預(yù)制孔直接連接,術(shù)后支具固定 1 個(gè)月,部分負(fù)重,4 個(gè)月起完全負(fù)重,平均隨訪(fǎng)86 個(gè)月,平均主被動(dòng)伸膝度差 10° ( 0°~60° ),MSTS 評(píng)分72% ( 27%~100% ),6 例出現(xiàn)髕腱撕脫。
Abboud 等[21]報(bào)道了 22 例,髕韌帶以 2~0 不可吸收線(xiàn)與假體預(yù)制孔隙直接縫合固定,術(shù)后伸膝位支具固定6 周。最終 11 例獲隨訪(fǎng),平均隨訪(fǎng) 38.6 個(gè)月,平均主被動(dòng)伸膝度差 7.5° ( 5°~30° ),其中 1 例>20°,MSTS 評(píng)分92% ( 85%~99% ),2 例 ( 10.5% ) 出現(xiàn)髕腱撕脫,分別出現(xiàn)在術(shù)后 1 年和 3 年,均發(fā)生在髕腱-假體界面,予縫線(xiàn)重新縫合后支具固定 10 周,至報(bào)道時(shí)未見(jiàn)再次撕脫。
Malawer 等[1-2]報(bào)道了 13 例,髕韌帶以 Dacron 帶與假體預(yù)制環(huán)直接固定,術(shù)后長(zhǎng)腿石膏固定 3 周,平均隨訪(fǎng) 42 個(gè)月,主被動(dòng)伸膝度差 ( 0°~30° ),平均 MSTS 評(píng)分70%,最終有 2 例因機(jī)械失敗接受了再次手術(shù),但未說(shuō)明是否為髕腱撕脫。
Jeon 等[22]報(bào)道了 40 例,髕韌帶以鉚釘直接固定在脛骨假體前方的多孔鈦襯墊上,最終 25 例獲隨訪(fǎng),平均隨訪(fǎng) 78 個(gè)月,主被動(dòng)伸膝度差 0°~20° 者 14 例,>20° 者11 例,MSTS 評(píng)分 76%,4 例出現(xiàn)髕腱撕脫,2 例行手術(shù)修復(fù)。Mavrogenis 等[4]報(bào)道的 225 例中,14 例采取鉚釘直接固定,平均隨訪(fǎng) 120 個(gè)月,主被動(dòng)伸膝度差平均 16° ( 0°~60° ),MSTS 評(píng)分 71% ( 33%~90% )。
Jeon 等[22]指出髕腱與金屬的直接固定無(wú)法實(shí)現(xiàn)最終的愈合,髕腱-假體界面間持續(xù)強(qiáng)大的張力導(dǎo)致髕腱撕脫的風(fēng)險(xiǎn)較大。Mavrogenis 等[4]也認(rèn)為,髕腱與假體的直接固定可為伸膝裝置提供初期的穩(wěn)定,因此術(shù)后初期的伸膝功能較理想,但長(zhǎng)期隨訪(fǎng)主被動(dòng)伸膝度差會(huì)逐漸增加,髕腱撕脫的發(fā)生率較高,他還指出,盡管隨訪(fǎng)中有些患者的主被動(dòng)伸膝度差逐年增加,但 MSTS 評(píng)分卻隨時(shí)間而逐漸改善,因此作者在文中特別強(qiáng)調(diào)了不扶拐行走、完全負(fù)重和穩(wěn)定關(guān)節(jié)對(duì)功能的重要性。Rempel 等[23]通過(guò)實(shí)驗(yàn)證明鉚釘固定因壓迫減少了髕腱的血運(yùn)及供氧,不適用于固定髕腱。Abboud 等[21]則特別強(qiáng)調(diào)伸膝位支具固定在伸膝裝置重建中的作用,認(rèn)為此舉有利于髕腱的瘢痕愈合,文獻(xiàn)報(bào)道中一般固定 4~8 周不等。
Bickels 等[24]報(bào)道了 55 例,髕腱以 Dacron 帶與假體預(yù)制環(huán)固定,在髕腱與假體間植入自體松質(zhì)骨以加強(qiáng)界面強(qiáng)度,術(shù)后伸直位制動(dòng) 6 周,術(shù)后 1 周允許部分負(fù)重,所有患者至少隨訪(fǎng) 2 年,中位 75.5 個(gè)月,主被動(dòng)伸膝度差( 0°~20° ) 者 44 例,( 20°~30° ) 者 10 例,僅 1 例>40°,MSTS 評(píng)分>70% 者 48 例,50%~59% 者 6 例,<50% 者1 例,所有主被動(dòng)伸膝度差<20° 者 MSTS 評(píng)分均>70%,8 例出現(xiàn)髕腱撕脫。
Bickels 等[24]認(rèn)為髕腱與自體松質(zhì)骨之間早期可通過(guò)Dacron 帶直接固定獲得即刻的穩(wěn)定,后期可通過(guò)瘢痕長(zhǎng)入形成生物愈合;而自體松質(zhì)骨與多孔金屬界面的愈合尚存爭(zhēng)議,現(xiàn)有文獻(xiàn)支持均限于假體的非水泥型髓內(nèi)固定,二者區(qū)別在于:界面間非壓力作用而是牽張力,髓外環(huán)境較髓內(nèi)環(huán)境血運(yùn)有限,界面接觸面積有限,為解決這些問(wèn)題,Bickels 等[24]同時(shí)加用腓腸肌內(nèi)側(cè)頭覆蓋以增加局部血運(yùn)并加強(qiáng)髕腱,但仍有部分患者出現(xiàn)了髕腱撕脫。Urban 等[25]通過(guò)實(shí)驗(yàn)指出松質(zhì)骨與多孔金屬的愈合的實(shí)質(zhì)是纖維長(zhǎng)入而非骨長(zhǎng)入,強(qiáng)度有限。因此自體松質(zhì)骨與假體金屬之間仍存在一定的撕脫風(fēng)險(xiǎn)。
髕腱-人工材料界面主要通過(guò)直接縫合固定,根據(jù)人工材料-假體界面的固定方式,又可分為:
1. 人工材料與假體上預(yù)制孔 / 環(huán)固定:Shimose 等[26]采用 Leeds-Keio 人工韌帶將髕腱固定于假體預(yù)制孔上,術(shù)后支具固定 3 周,8 周起部分負(fù)重,共 7 例,平均隨訪(fǎng)32 個(gè)月,超過(guò) 1 年者 5 例,主被動(dòng)伸膝度差 25° ( 0°~60° ),其中 2 例>20°。作者同時(shí)測(cè)量了髕骨的 Insall-Salvati 值,術(shù)前平均為 1.08,術(shù)后平均為 0.72,但術(shù)后18 個(gè)月又恢復(fù)至術(shù)前水平,證明盡管術(shù)中將髕腱與假體緊密連接,但術(shù)后髕骨仍會(huì)逐漸出現(xiàn)上移,這提示在恢復(fù)膝關(guān)節(jié)主動(dòng)活動(dòng)后,髕腱及人工韌帶持續(xù)受牽拉而出現(xiàn)有效長(zhǎng)度變化[27-29],這一變化會(huì)進(jìn)一步影響伸膝力量和主動(dòng)伸膝角度。
Dominkus 等[30]報(bào)道了 11 例,采用 LARS 韌帶將髕腱固定于假體的脛骨結(jié)節(jié)水平,術(shù)后部分負(fù)重、限制膝關(guān)節(jié)活動(dòng) 6 周,平均隨訪(fǎng) 44 個(gè)月,主被動(dòng)伸膝度差<5° 5 例,( 5°~20° ) 2 例,( 20°~40° ) 2 例,>40° 2 例,MSTS 評(píng)分平均 81% ( 69%~92% ),3 例出現(xiàn)髕腱撕脫。
Dominkus 等[30]通過(guò)組織學(xué)證明 LARS 韌帶具有較強(qiáng)的誘導(dǎo)結(jié)締組織長(zhǎng)入及瘢痕形成的潛能,髕腱-人工韌帶界面可通過(guò)瘢痕形成提供可靠的應(yīng)力支持。人工韌帶-假體界面模仿了髕韌帶的生物學(xué)附麗位置,但應(yīng)力集中在人工韌帶與假體預(yù)制孔之間的接觸點(diǎn)上,隨訪(fǎng)中撕脫病例并不少見(jiàn)。人工韌帶具有一定的延展性,長(zhǎng)期反復(fù)牽拉后其有效長(zhǎng)度可能出現(xiàn)改變,影響伸膝力量及主動(dòng)伸膝角度,長(zhǎng)期隨訪(fǎng)主被動(dòng)伸膝度差可能會(huì)變大。
2. 人工材料包繞假體固定:Ozaki 等[31]報(bào)道了 3 例,采用雙層 Marlex 補(bǔ)片包繞脛骨假體,髕腱與包繞假體的補(bǔ)片縫合固定,術(shù)后石膏固定 3 周,6 周開(kāi)始部分負(fù)重,平均隨訪(fǎng) 25 個(gè)月,主被動(dòng)伸膝度差 0° 2 例,5° 1 例,平均MSTS 評(píng)分 77% ( 73%~80% ),3 例均未出現(xiàn)髕腱撕脫。
Gosheger 等[32]報(bào)道了 7 例,采用 Trevira 管包繞脛骨假體,髕腱與包繞假體的 Trevira 管縫合固定,平均隨訪(fǎng) 31.6 個(gè)月,平均主被動(dòng)伸膝度差 7.5° ( 0°~30° ),平均MSTS 評(píng)分 78.2%,7 例均未出現(xiàn)髕腱撕脫。在后續(xù)的報(bào)道中,Gosheger 等[33]將病例數(shù)擴(kuò)大到 42 例,重建方法不變,術(shù)后支具制動(dòng) 4 周,平均隨訪(fǎng) 45 個(gè)月,平均主被動(dòng)伸膝度差 5° ( 0°~20° ),平均 MSTS 評(píng)分 83%,僅 1 例術(shù)后制動(dòng)不足 4 周的患者出現(xiàn)髕腱撕脫,該方法重建伸膝裝置整體功能較滿(mǎn)意,同時(shí)也強(qiáng)調(diào)了術(shù)后制動(dòng)的重要性。
徐海榮等[34]分析因復(fù)發(fā)而截肢的組織標(biāo)本,組織病理學(xué)證實(shí)結(jié)締組織和膠原纖維可向人工補(bǔ)片纖維內(nèi)長(zhǎng)入,實(shí)現(xiàn)瘢痕愈合,未見(jiàn)大量炎細(xì)胞浸潤(rùn),說(shuō)明補(bǔ)片的組織相容性良好,生物力學(xué)實(shí)驗(yàn)證實(shí)髕腱-補(bǔ)片界面的最大抗拉載負(fù)荷能夠滿(mǎn)足伸膝功能[15,35]。Gosheger 等[32-33]通過(guò)組織切片證實(shí)髕腱-Trevira 管也能形成類(lèi)似的牢固界面。人工材料-假體界面通過(guò)雙層包繞縫合固定,將人工材料與假體金屬之間的應(yīng)力轉(zhuǎn)化為二者之間的摩擦力,避免了應(yīng)力集中造成的局部磨損,且隨瘢痕組織形成摩擦力逐漸增大,實(shí)現(xiàn)該界面的長(zhǎng)期堅(jiān)強(qiáng)固定。由于在兩個(gè)界面間均實(shí)現(xiàn)了較為堅(jiān)強(qiáng)穩(wěn)固的固定,長(zhǎng)期隨訪(fǎng)中主被動(dòng)伸膝度差較理想,髕腱撕脫報(bào)道罕見(jiàn)。
Coombs 等[36]報(bào)道 1 例,游離帶血管蒂的腓骨近端,與殘存脛骨固定,殘存髕腱與腓骨近端的殘存二頭肌腱縫合固定,術(shù)后支具固定,免負(fù)重 6 周,隨訪(fǎng) 12 個(gè)月,患者主被動(dòng)伸膝度差 0°,未見(jiàn)髕腱撕脫。
Petschnig 等[37]報(bào)道 12 例,采取類(lèi)似 Coombs 的重建方式,支具固定 6 周,后部分負(fù)重,術(shù)后 3 個(gè)月完全負(fù)重,平均隨訪(fǎng) 60 個(gè)月,平均主被動(dòng)伸膝度差 7.5° ( 0°~15° ),MSTS 評(píng)分優(yōu):7 例,良:5 例,未見(jiàn)髕腱撕脫。Ogihara 等[38]指出該重建方式僅限于化療效果好,有條件保留腓骨近端的患者。
該重建方法兩個(gè)界面均為生物學(xué)重建,固定可靠,遠(yuǎn)期功能好,并發(fā)癥少,未見(jiàn)髕腱撕脫報(bào)道。但手術(shù)操作復(fù)雜,受腫瘤切除范圍制約,應(yīng)用范圍有限,在惡性腫瘤中的應(yīng)用尚存爭(zhēng)議。
除重建界面外,伸膝裝置重建還存在不同的髕腱加強(qiáng)方式,加強(qiáng)的目的在于增加界面的接觸面積和髕腱的度。根據(jù)加強(qiáng)方式可分為:生物學(xué)加強(qiáng)、生物學(xué)+人工材料加強(qiáng) ( 表1 )。
表1 已發(fā)表文章的脛骨近端假體伸膝裝置重建方式Tab.1 Reconstruction of extensor apparatus in proximal tibial prosthetic replacement from published articles
Yoshida 等[39]報(bào)道 3 例,采取四頭肌腱+髂脛束聯(lián)合加強(qiáng)髕腱后直接固定于假體預(yù)制環(huán),術(shù)后支具固定 3~4 周,5 周起開(kāi)始負(fù)重,平均隨訪(fǎng) 40 個(gè)月,主被動(dòng)伸膝度差 0° 2 例,5° 1 例,平均 MSTS 評(píng)分 93% ( 90%~95% ),未出現(xiàn)髕腱撕脫。
Bickels 采取髕腱-自體松質(zhì)骨-假體重建的 55 例中有 8 例出現(xiàn)髕腱撕脫,Kollender 等[40]采取部分四頭肌腱翻轉(zhuǎn)加 Gore-Tex 帶對(duì)其中的 7 例進(jìn)行髕腱加強(qiáng),術(shù)后支具固定 6 周,術(shù)后 1 周部分負(fù)重,平均隨訪(fǎng) 58 ( 29~83 ) 個(gè)月,主被動(dòng)伸膝度差 ( 0°~10° ) 者 3 例,( 10°~20° ) 者 4 例,MSTS 評(píng)分 87%~100%,未出現(xiàn)髕腱撕脫。
單純的髕腱加強(qiáng)并未改變髕腱與假體之間界面的性質(zhì),理論上可與其它重建方式聯(lián)合應(yīng)用,但多涉及生物學(xué)加強(qiáng),重建材料的選擇受腫瘤切除范圍限制,操作較復(fù)雜,在惡性腫瘤中的應(yīng)用尚存爭(zhēng)議,因此報(bào)道例數(shù)較少。
伸膝裝置重建成功與否取決于殘存髕腱與假體之間是否能實(shí)現(xiàn)有效的固定,有效的固定是由穩(wěn)定牢固的接觸界面決定的,單一界面 ( 髕腱-假體 ) 無(wú)法實(shí)現(xiàn)最終的愈合;雙重界面重建中,髕腱與自體骨、人工材料界面均可實(shí)現(xiàn)有效的固定,自體骨、人工材料再通過(guò)瘢痕形成與假體界面固定;生物學(xué)重建和加強(qiáng)方法,固定可靠,遠(yuǎn)期功能好,并發(fā)癥少,未見(jiàn)髕腱撕脫,但受腫瘤切除范圍制約,操作較復(fù)雜,難以標(biāo)準(zhǔn)化,應(yīng)用范圍有限。總結(jié)上述重建方式可以看出,目前伸膝裝置重建尚無(wú)理想的解決方案,雙重界面重建方式理論上可能在兩個(gè)界面間均實(shí)現(xiàn)較為堅(jiān)強(qiáng)的固定,可以作為伸膝裝置重建的一種選擇。
[1] Malawer MM, McHale KA. Limb-sparing surgery for high-grade malignant tumors of the proximal tibia. Surgical technique and a method of extensor mechanism reconstruction[J]. Clin Orthop Relat Res, 1989, 239(239): 231-248.
[2] Malawer MM, Chou LB. Prosthetic survival and clinical results with use of large-segment replacements in the treatment of high-grade bone sarcomas[J]. J Bone Joint Surg Am, 1995, 77(8):1154-1165.
[3] Grimer RJ, Carter SR, Tillman RM, et al. Endoprosthetic replacement of the proximal tibia[J]. J Bone Joint Surg Br, 1999, 81(3):488-494.
[4] Mavrogenis AF, Pala E, Angelini A, et al. Proximal tibial resections and reconstructions: clinical outcome of 225 patients[J]. J Surg Oncol, 2013, 107(4):335-342.
[5] Krishnamoorthy VP, Inja DB, Roy AC. Knee extensor loss and proximal tibial soft tissue defect managed successfully with simultaneous medial gastrocnemius flap, saphenous fasciocutaneous flap and medial hemisoleus flap: a case report[J]. J Med Case Rep, 2013, 7(1):76.
[6] Ek EW, Rozen WM, Ek ET, et al. Surgical options for reconstruction of the extensor mechanism of the knee after limb-sparing sarcoma surgery: an evidence-based review[J]. Arch Orthop Trauma Surg, 2011, 131(4):487-495.
[7] Capanna R, Scoccianti G, Campanacci DA, et al. Surgical technique: extraarticular knee resection with prosthesisproximal tibia-extensor apparatus allograft for tumors invading the knee[J]. Clin Orthop Relat Res, 2011, 469(10):2905-2914.
[8] Wittig JC, Villalobos CE, Hayden BL, et al. Osteosarcoma of the proximal tibia: limb-sparing resection and reconstruction with a modular segmental proximal tibia tumor prosthesis[J]. Ann Surg Oncol, 2010, 17(11):3021.
[9] Zhang Y, Yang Z, Li X, et al. Custom prosthetic reconstruction for proximal tibial osteosarcoma with proximal tibiofibular joint involved[J]. Surg Oncol, 2008, 17(2):87-95.
[10] Myers GJ, Abudu AT, Carter SR, et al. The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours[J]. J Bone Joint Surg Br, 2007, 89(12):1632-1637.
[11] Oddy MJ, Pendegrass CJ, Goodship AE, et al. Extensor mechanism reconstruction after proximal tibial replacement[J]. J Bone Joint Surg Br, 2005, 87(6):873-878.
[12] Mavrogenis AF, Angelini A, Pala E, et al. Reconstruction of the extensor mechanism after major knee resection[J]. Orthopedics, 2012, 35(5):e672-680.
[13] Sundar S, Pendegrass CJ, Oddy MJ, et al. Tendon reattachment to metal prostheses in an in vivo animal model using demineralised bone matrix[J]. J Bone Joint Surg Br, 2009, 91(9):1257-1262.
[14] Pendegrass CJ, Sundar S, Oddy MJ, et al. A comparison of augmentation techniques for reconstruction of the extensor mechanism following proximal tibial replacement in an experimental animal model[J]. J Bone Joint Surg Br, 2008, 90(4):535-541.
[15] Browne JA, Hanssen AD. Reconstruction of patellar tendon disruption after total knee arthroplasty: results of a new technique utilizing synthetic mesh[J]. J Bone Joint Surg Am, 2011, 93(12):1137-1143.
[16] Muscolo DL, Ayerza MA, Farfalli G, et al. Proximal tibia osteoarticular allografts in tumor limb salvage surgery[J]. Clin Orthop Relat Res, 2010, 468(5):1396-1404.
[17] Gilbert NF, Yasko AW, Oates SD, et al. Allograft-prosthetic composite reconstruction of the proximal part of the tibia. An analysis of the early results[J]. J Bone Joint Surg Am, 2009, 91(7):1646-1656.
[18] Higuera CA, Inoue N, Lim JS, et al. Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model[J]. J Orthop Res, 2005, 23(5):1091-1099.
[19] Zeegen EN, Aponte-Tinao LA, Hornicek FJ, et al. Survivorship analysis of 141 modular metallic endoprostheses at early followup[J]. Clin Orthop Relat Res, 2004, 420(420):239-250.
[20] Wunder JS, Leitch K, Griffin AM, et al. Comparison of two methods of reconstruction for primary malignant tumors at the knee: a sequential cohort study[J]. J Surg Oncol, 2001, 77(2):89-99.
[21] Abboud JA, Patel RV, Donthineni-Rao R, et al. Proximal tibial segmental prosthetic replacement without the use of muscle f aps[J]. Clin Orthop Relat Res, 2003, 414(414):189-196.
[22] Jeon DG, Kawai A, Boland P, et al. Algorithm for the surgical treatment of malignant lesions of the proximal tibia[J]. Clin Orthop Relat Res, 1999, 358(358):15-26.
[23] Rempel D, Abrahamsson SO. The effects of reduced oxygen tension on cell proliferation and matrix synthesis in synovium and tendon explants from the rabbit carpal tunnel: an experimental study in vitro[J]. J Orthop Res, 2001, 19(1): 143-148.
[24] Bickels J, Wittig JC, Kollender Y, et al. Reconstruction of the extensor mechanism after proximal tibia endoprosthetic replacement[J]. J Arthroplasty, 2001, 16(7):856-862.
[25] Urban RM, Jacobs JJ, Sumner DR, et al. The bone-implant interface of femoral stems with non-circumferential porous coating[J]. J Bone Joint Surg Am, 1996, 78(7):1068-1081.
[26] Shimose S, Sugita T, Kubo T, et al. Reconstructed patellar tendon length after proximal tibia prosthetic replacement[J]. Clin Orthop Relat Res, 2005, 439(439):176-180.
[27] Osanai T, Tsuchiya T, Sugawara M. Histologic examination of Leeds-Keio artificial ligament implanted on the surface of a tumor endoprosthesis[J]. J Arthroplasty, 2009, 24(1):e5-7.
[28] Sherief TI, Naguib AM, Sefton GK. Use of Leeds-Keio connective tissue prosthesis (L-K CTP) for reconstruction of def cient extensor mechanism with total knee replacement[J]. Knee, 2005, 12(4):319-322.
[29] Fujikawa K, Ohtani T, Matsumoto H, et al. Reconstruction of the extensor apparatus of the knee with the Leeds-Keio ligament[J]. J Bone Joint Surg Br, 1994, 76(2):200-203.
[30] Dominkus M, Sabeti M, Toma C, et al. Reconstructing the extensor apparatus with a new polyester ligament[J]. Clin Orthop Relat Res, 2006, 453:328-334.
[31] Ozaki T, Kunisada T, Kawai A, et al. Insertion of the patella tendon after prosthetic replacement of the proximal tibia[J]. Acta Orthop Scand, 1999, 70(5):527-529.
[32] Gosheger G, Hillmann A, Lindner N, et al. Soft tissue reconstruction of megaprostheses using a trevira tube[J]. Clin Orthop Relat Res, 2001, 393(393):264-271.
[33] Gosheger G, Gebert C, Ahrens H, et al. Endoprosthetic reconstruction in 250 patients with sarcoma[J]. Clin Orthop Relat Res, 2006, 450(450):164-171.
[34] 徐海榮, 牛曉輝, 張清, 等. 人工補(bǔ)片用于脛骨假體近端重建髕韌帶附麗的生物力學(xué)特點(diǎn)和組織學(xué)表現(xiàn)[J]. 中國(guó)骨與關(guān)節(jié)雜志, 2012, 5(6):627-630.
[35] Pendegrass CJ, Oddy MJ, Sundar S, et al. The novel use of resorbable Vicryl mesh for in vivo tendon reconstruction to a metal prosthesis[J]. J Bone Joint Surg Br, 2006, 88(9): 1245-1251.
[36] Coombs CJ, O’Sullivan M, Theile R, et al. Method of quadriceps attachment following upper tibial resection[J]. Microsurgery, 2006, 26(2):106-110.
[37] Petschnig R, Baron R, Kotz R, et al. Muscle function after endoprosthetic replacement of the proximal tibia. Different techniques for extensor reconstruction in 17 tumor patients[J]. Acta Orthop Scand, 1995, 66(3):266-270.
[38] Ogihara Y, Sudo A, Fujinami S, et al. Limb salvage for bone sarcoma of the proximal tibia[J]. Int Orthop, 1991, 15(4): 377-379.
[39] Yoshida Y, Osaka S, Ryu J. Reconstruction of the knee extensor mechanism in patients with a malignant bone tumor of the proximal tibia[J]. Surg Today, 2010, 40(7):646-649.
[40] Kollender Y, Bender B, Weinbroum AA, et al. Secondary reconstruction of the extensor mechanism using part of the quadriceps tendon, patellar retinaculum, and Gore-Tex strips after proximal tibial resection[J]. J Arthroplasty, 2004, 19(3): 354-360.
( 本文編輯:裴艷宏 )
Research progress on reconstruction of extensor apparatus in proximal tibial prosthetic replacement
SUN Yang,NIU Xiao-hui. Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, 100035, China
NIU Xiao-hui, Email: niuxiaohui@263.net
ObjectiveTo explore the reconstruction of extensor apparatus in proximal tibial prosthetic replacement.MethodsAccording to the number and type of contact surfaces, the reconstruction methods are divided into the following categories: ( 1 ) Single interface: patellar tendon-prosthesis; ( 2 ) Dual interface: according to the type of interfaces: patellar tendon-artif cial material-prosthesis; patellar tendon-cancellous bone-prosthesis; patellar tendonf bula-residual tibia. The difference in degree of active and passive knee extension, Musculoskeletal Tumor Society ( MSTS ) score and incidence of patellar tendon avulsion are used to evaluate the effects of reconstruction.ResultsThe successful reconstruction of extensor apparatus depends on the effective f xation between the remaining patellar tendon and the prosthesis. The effective f xation is determined by the stable contact interface. The single interface ( patellar tendon-prosthesis ) can’t achieve the f nal healing. The interface between the patellar tendon and the autogenous bone or the artif cial material can achieve effective healing, and the autogenous bone or the artif cial material can be f xed with the prosthesis through the scar formation. The biological reconstruction and strengthening method are reliable, and the patellar tendon avulsion rarely occurs. However, the operation is complicated and diff cult to be standardized, so the scope of application is limited.ConclusionsThere is no ideal solution for the reconstruction of extensor apparatus. Dual interface reconstruction may theoretically achieve effective healing between the 2 interfaces, and it can be used as an alternative for extensor apparatus reconstruction.
Tibia; Bone neoplasms; Arthroplasty, replacement, knee; Bone reconstruction
10.3969/j.issn.2095-252X.2017.02.014
R738.1, R687.3
100035 北京積水潭醫(yī)院骨腫瘤科
牛曉輝,Email: niuxiaohui@263.net
2016-04-30 )