亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        WNT/β-catenin信號(hào)通路與miRNA在原發(fā)性肺癌中的研究進(jìn)展

        2017-01-15 23:52:38陸周一陳曉峰
        中國癌癥雜志 2017年2期
        關(guān)鍵詞:甲基化調(diào)控肺癌

        陸周一,陳曉峰

        1.同濟(jì)大學(xué)附屬上海市肺科醫(yī)院胸外科,上海 200092;2.復(fù)旦大學(xué)附屬華山醫(yī)院胸心外科,上海 200040

        WNT/β-catenin信號(hào)通路與miRNA在原發(fā)性肺癌中的研究進(jìn)展

        陸周一1,陳曉峰2

        1.同濟(jì)大學(xué)附屬上海市肺科醫(yī)院胸外科,上海 200092;2.復(fù)旦大學(xué)附屬華山醫(yī)院胸心外科,上海 200040

        WNT/β-catenin信號(hào)通路在細(xì)胞增殖、分化和器官發(fā)育中起著重要作用。WNT/β-catenin信號(hào)通路的異常活化及與該信號(hào)通路相關(guān)的miRNA異常調(diào)節(jié)與原發(fā)性肺癌的發(fā)生、發(fā)展有著密切聯(lián)系。因此深入研究肺癌中WNT/β-catenin信號(hào)通路的調(diào)控機(jī)制,闡明miRNA與該通路成分間的相互作用可能為發(fā)現(xiàn)新的肺癌藥物治療靶點(diǎn)提供思路。本文就原發(fā)性肺癌中的WNT/β-catenin信號(hào)通路和miRNA及以兩者為靶點(diǎn)的肺癌治療研究進(jìn)行綜述。

        肺癌;WNT/β-catenin信號(hào)通路;miRNA

        癌癥是目前危害人類健康的主要問題之一,而肺癌就是其中最具威脅性的一類。雖然對(duì)肺癌的診療方法在不斷發(fā)展,但肺癌患者的生存狀況并未得到顯著的改善。已有研究發(fā)現(xiàn),WNT信號(hào)通路在原發(fā)性肺癌的增殖、分化、轉(zhuǎn)移及腫瘤干細(xì)胞自我更新等方面起著重要的調(diào)控作用[1-2]。當(dāng)WNT信號(hào)通路功能異常,失去對(duì)腫瘤抑制基因的正常調(diào)控是多種腫瘤的始發(fā)因素之一[1]。

        miRNA是生物體內(nèi)廣泛存在并行使調(diào)控功能的一類非編碼RNA,它的異常表達(dá)被認(rèn)為與腫瘤的發(fā)生、發(fā)展有著密切的聯(lián)系。在肺癌中也發(fā)現(xiàn)miRNA的表達(dá)異常與腫瘤的轉(zhuǎn)移、耐藥性產(chǎn)生及臨床預(yù)后相關(guān)[3]。在目前的研究中,對(duì)于miRNA和WNT/β-catenin信號(hào)通路在肺癌中調(diào)控機(jī)制均有所涉獵,但關(guān)于miRNA調(diào)控WNT/β-catenin通路的機(jī)制研究還較少。因此,進(jìn)一步深入闡明兩者間的調(diào)控關(guān)系和機(jī)制可能為肺癌的臨床治療提供新思路。

        1 WNT/β-catenin信號(hào)通路與肺癌

        在人體內(nèi),WNT信號(hào)通路與細(xì)胞分化、器官發(fā)育及腫瘤發(fā)生有著密切聯(lián)系。作為WNT通路的起始部分,WNT信號(hào)蛋白通過與靶細(xì)胞膜上的卷曲受體(frizzled,F(xiàn)zd)結(jié)合,并在低密度脂蛋白受體相關(guān)蛋白(low density lipoprotein receptor-related protein,LRP)5/6的輔助下完成對(duì)WNT信號(hào)通路的啟動(dòng)。WNT信號(hào)在細(xì)胞質(zhì)中的傳遞涉及兩類二級(jí)途徑:① 被稱為經(jīng)典WNT通路的WNT/β-catenin通路;② 被稱為非經(jīng)典WNT通路的WNT/Ca2+通路、蛋白激酶A通路等[4]。

        目前已被研究較多的WNT/β-catenin通路可以由WNT1、WNT2和WNT3等配體激活。當(dāng)缺乏WNT信號(hào)時(shí),該通路中的β-catenin與糖原合成酶3β(glycogen synthase kinase 3β,GSK3β)、軸抑制蛋白(axis inhibitor,AXIN)和腺瘤性結(jié)腸息肉易感基因蛋白形成降解復(fù)合物并發(fā)生磷酸化。之后該復(fù)合物在β-轉(zhuǎn)導(dǎo)重復(fù)相容蛋白作用下促使β-catenin在蛋白酶體中降解[5]。當(dāng)WNT信號(hào)存在時(shí),WNT與Fzd結(jié)合激活蓬亂蛋白(dishevelled,Dvl),進(jìn)而促使GSK3β磷酸化并抑制其功能。這將進(jìn)一步導(dǎo)致β-catenin降解復(fù)合物的解體及β-catenin泛素化降解的減少,因而細(xì)胞質(zhì)中游離的非磷酸化β-catenin將增多。這些游離的β-catenin隨后進(jìn)入細(xì)胞核中與T細(xì)胞因子(T cell factor,TCF)/淋巴樣增強(qiáng)因子(lymphoid enhancer factor,LEF)復(fù)合物相結(jié)合,對(duì)靶基因發(fā)揮轉(zhuǎn)錄激活作用[2,4]。

        在肺癌的發(fā)生中,WNT/β-catenin信號(hào)通路也起著重要的作用。有動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn),WNT信號(hào)通路的異常活化能導(dǎo)致實(shí)驗(yàn)動(dòng)物原發(fā)性肺癌發(fā)病率的上升[6]。肺癌中WNT/β-catenin信號(hào)通路的異常表現(xiàn)可能與其中多個(gè)組分的表達(dá)量或功能異常有關(guān)。有研究發(fā)現(xiàn),手術(shù)切除的肺癌組織中WNT1的表達(dá)量要明顯高于癌旁組織[7],而且在非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)的細(xì)胞系中也觀察到WNT1表達(dá)量的上調(diào)[8]。此外,WNT1的高表達(dá)與異常的β-catenin表達(dá)及c-Myc、p53等癌基因表達(dá)量的升高有關(guān)[7]。在功能上,高表達(dá)WNT1的肺癌細(xì)胞表現(xiàn)出更強(qiáng)的增殖、遷移和侵襲能力,并能更好地抵抗細(xì)胞凋亡[8]。在肺癌中同樣也存在過表達(dá)的WNT2[9]和WNT3[10]。在肺癌細(xì)胞中,WNT2、WNT3與c-Myc和存活素的表達(dá)量改變相關(guān)[10-11]。下調(diào)肺癌細(xì)胞中的WNT2表達(dá)量后,細(xì)胞的生長與增殖能力[12]、轉(zhuǎn)移能力[13]均會(huì)受到抑制,凋亡細(xì)胞數(shù)量增加[11]。此外,在臨床上也觀察到低表達(dá)WNT1、WNT2、WNT3和β-catenin的肺癌患者的臨床預(yù)后要優(yōu)于高表達(dá)組[7,10,12]。此外還發(fā)現(xiàn),F(xiàn)zd-8和Fzd-9等WNT受體及LRP6在部分肺癌細(xì)胞系和肺癌組織中呈表達(dá)[13-14]。

        作為鏈接上游WNT信號(hào)與下游β-catenin的關(guān)鍵環(huán)節(jié),腫瘤中過表達(dá)的Dvl能夠異常活化WNT/β-catenin信號(hào)通路。有研究發(fā)現(xiàn),Dvl在肺癌組織中的表達(dá)量要顯著高于癌旁組織[15]。高表達(dá)Dvl-1和Dvl-3的肺癌患者的預(yù)后也相對(duì)較差[16]。Dvl在肺癌中的表達(dá)還呈現(xiàn)出病理分型的特異性,腺癌中3類Dvl的表達(dá)量均要高于肺鱗癌[16]。

        β-catenin是WNT/β-catenin信號(hào)通路調(diào)控的核心之一,它的表達(dá)量或活性的改變將直接影響WNT/β-catenin信號(hào)通路的功能[4]。有研究發(fā)現(xiàn),與多種腫瘤轉(zhuǎn)移相關(guān)的細(xì)胞外基質(zhì)金屬蛋白酶誘導(dǎo)因子(extracellular matrix metalloproteinase inducer,EMMPRIN)能夠?qū)NT/β-catenin信號(hào)通路活性進(jìn)行調(diào)控,上調(diào)EMMPRIN的表達(dá)量能夠增加肺癌細(xì)胞核中行使功能的β-catenin的含量,并能使細(xì)胞呈現(xiàn)更強(qiáng)的生長、侵襲和轉(zhuǎn)移能力[17]。此外舒林酸被發(fā)現(xiàn)能夠通過抑制肺癌細(xì)胞中β-catenin的轉(zhuǎn)錄活性來阻遏WNT/ β-catenin通路的功能,并抑制c-Myc、cyclin D1的表達(dá)及腫瘤細(xì)胞的增殖能力[18]。

        各類WNT/β-catenin信號(hào)通路抑制因子的表達(dá)異常在肺癌中也有重要意義。如以WNT抑制因子-1(WNT inhibitory factor-1,WIF-1)和Cerberus等為代表的分泌型WNT通路抑制因子能夠通過與WNT結(jié)合來抑制WNT的正常功能。分泌型卷曲蛋白相關(guān)蛋白(secreted frizzled-related proteins,sFRP)通過與WNT蛋白競爭Fzd來阻遏WNT與受體的結(jié)合。Dickkopf(Dkk)家族通過與LRP5/LRP6結(jié)合抑制通路信號(hào)的下傳。在NSCLC標(biāo)本中,WNT/β-catenin信號(hào)通路負(fù)調(diào)控因子AXIN的表達(dá)量與TCF-4的表達(dá)呈負(fù)相關(guān)[19]。有研究發(fā)現(xiàn),通過端錨聚合酶抑制因子上調(diào)肺癌細(xì)胞中的AXIN表達(dá)量能夠有效抑制腫瘤細(xì)胞的生長和增殖能力,并能增強(qiáng)表皮生長因子受體(epidermal growth factor receptor,EGFR)抑制劑對(duì)腫瘤的治療作用[20-21]。GSK3β是經(jīng)典WNT通路的組成成分之一,去磷酸化的GSK3β起著促進(jìn)β-catenin降解及抑制WNT/ β-catenin通路活性的作用,活化的EGFR通路能夠磷酸化GSK3β為失活的p-GSK3β-ser9,在NSCLC組織中EGFR的表達(dá)量與腫瘤淋巴或脈管浸潤程度及p-GSK3β-ser9的量呈現(xiàn)正相關(guān),高表達(dá)p-GSK3β-ser9的肺癌患者總生存期也要低于低表達(dá)組[22]。肺癌對(duì)化療藥物耐藥也可能與GSK3β有關(guān)。在鉑類藥物耐藥的A549/DDP細(xì)胞中觀察到顯著升高的p-GSK3β-ser9,而下調(diào)肺癌細(xì)胞中的GSK3β表達(dá)量或增加其磷酸化程度能夠有效增加腫瘤細(xì)胞對(duì)鉑類化療藥的敏感性[23]。

        肺癌中多種WNT信號(hào)通路抑制因子表達(dá)量發(fā)生改變的具體機(jī)制目前尚未完全明確。WNT信號(hào)通路抑制因子基因啟動(dòng)子區(qū)DNA的甲基化程度異常改變是目前已發(fā)現(xiàn)的機(jī)制之一。在NSCLC細(xì)胞系中曾觀察到由啟動(dòng)子區(qū)DNA高甲基化導(dǎo)致的WNT抑制因子的低表達(dá)能夠活化WNT/β-catenin信號(hào)通路,而且這種DNA甲基化程度與肺癌分期呈現(xiàn)正相關(guān),提示W(wǎng)NT抑制因子表達(dá)量下調(diào)是腫瘤惡變程度增高的內(nèi)因之一[24]。與癌旁組織相比,在肺癌組織中sFRP-1、sFRP-2、sFRP-5、WIF-1和Dkk-3基因的啟動(dòng)子區(qū)DNA甲基化程度要明顯高于癌旁組織。肺腺癌組織中的Dkk-3的DNA甲基化程度還與肺腺癌患者的臨床預(yù)后呈現(xiàn)明顯的負(fù)相關(guān)[25]。

        在肺癌中,WNT/β-catenin信號(hào)通路在WNT配體、Fzd受體、TCF/LEF依賴的轉(zhuǎn)錄及WNT抑制因子沉默等多個(gè)方面發(fā)生改變,并對(duì)肺癌的發(fā)生和演進(jìn)產(chǎn)生著影響。提示該通路可能存在多種可用于肺癌治療的靶點(diǎn)。有研究發(fā)現(xiàn),重組WIF-1能抑制肺癌的生長和骨肉瘤肺轉(zhuǎn)移的發(fā)生[26]。此外,在肺癌中,高甲基化的sFRP-1、sFRP-1、sFRP-2和sFRP-5的基因啟動(dòng)子區(qū)DNA的去甲基化治療也有望成為肺癌治療的新方式。而通過特異性抗體或RNA干擾的方法下調(diào)WNT蛋白的表達(dá)也是恢復(fù)肺癌中WNT/β-catenin信號(hào)通路功能的另一種方式。通過單克隆抗體或小干擾RNA下調(diào)WNT2的表達(dá)后,肺癌細(xì)胞的生長、轉(zhuǎn)移能力受到抑制,細(xì)胞凋亡增加[12]。外源性小分子WNT/β-catenin信號(hào)通路抑制物是另一種治療思路。在A549細(xì)胞中曾觀察到姜黃素能通過去甲基化作用恢復(fù)WIF-1的正常表達(dá)來抑制β-catenin/TCF依賴的轉(zhuǎn)錄過程[27]。

        2 肺癌中miRNA對(duì)WNT信號(hào)通路的調(diào)控

        miRNA是一類具有調(diào)控功能的內(nèi)源性非編碼RNA。成熟的miRNA能與Argonaute蛋白結(jié)合,組成RNA誘導(dǎo)沉默復(fù)合物中的核心部分,它能通過堿基互補(bǔ)配對(duì)方式識(shí)別靶mRNA,在轉(zhuǎn)錄后階段抑制靶基因的表達(dá)。

        在對(duì)人類腫瘤的研究中觀察到多種miRNA可以對(duì)WNT/β-catenin信號(hào)通路的功能進(jìn)行調(diào)控。Mongroo等[28]研究發(fā)現(xiàn),miR-200家族能夠通過結(jié)合并抑制β-catenin mRNA的翻譯過程來下調(diào)WNT/β-catenin信號(hào)通路活性從而阻遏腫瘤細(xì)胞上皮-間質(zhì)轉(zhuǎn)化的進(jìn)程及抑制腫瘤細(xì)胞的運(yùn)動(dòng)能力。miR-577能夠通過下調(diào)LRP6和β-catenin的表達(dá)量來抑制WNT/β-catenin信號(hào)通路以達(dá)到負(fù)調(diào)控腫瘤的生長的目的[29]。miR-1207對(duì)sFPR1和AXIN2的表達(dá)抑制[30]和miR-942對(duì)sFRP-4、GSK3β的表達(dá)抑制可以激活WNT/β-catenin信號(hào)通路,促進(jìn)腫瘤的生長和演進(jìn)[31]。

        在原發(fā)性肺癌中miRNA對(duì)WNT/β-catenin信號(hào)通路的調(diào)控是通過調(diào)節(jié)該通路中各個(gè)成分的表達(dá)來實(shí)現(xiàn)的。Tan等[32]研究發(fā)現(xiàn),miR-29家族能夠負(fù)性調(diào)節(jié)DNA甲基轉(zhuǎn)移酶3A和3B表達(dá),進(jìn)而抑制WIF-1基因的甲基化,促進(jìn)WIF-1的表達(dá)。此外,miR-29的過表達(dá)還能下調(diào)β-catenin的表達(dá)量[32]。Navarro等[33]研究發(fā)現(xiàn),miR-203能通過抑制WNT信號(hào)通路受體Fzd-2的表達(dá)來抑制WNT信號(hào)通路的功能。經(jīng)miR-203 mimic轉(zhuǎn)染的高表達(dá)miR-203的肺癌細(xì)胞較對(duì)照組呈現(xiàn)出較低的Fzd-2表達(dá)量及較弱的轉(zhuǎn)移、侵襲能力。Wu等[34]對(duì)肺癌細(xì)胞系A(chǔ)549轉(zhuǎn)染miR-21 mimic后發(fā)現(xiàn),細(xì)胞中miR-21的過表達(dá)引起β-catenin表達(dá)量的提升,提示miR-21能夠通過作用于WNT/β-catenin信號(hào)通路來增強(qiáng)A549細(xì)胞的增殖和侵襲能力。Qi等[35]研究發(fā)現(xiàn),表達(dá)β-catenin互作蛋白1的基因β-catenin互作蛋白1基因(catenin beta interacting protein 1,CTNNBIP1)是miR-214的靶基因之一,miR-214能通過抑制CTNNBIP1的翻譯來促進(jìn)β-catenin的表達(dá),上調(diào)WNT/β-catenin信號(hào)通路活性,誘導(dǎo)肺癌細(xì)胞腫瘤干細(xì)胞樣特性的產(chǎn)生,miR-214-CTNNBIP1的相互作用在調(diào)節(jié)腫瘤干細(xì)胞自我更新方面可能有重要意義。Mo等[36]研究發(fā)現(xiàn),miR-544a能夠抑制GSK3β的表達(dá)來活化WNT/β-catenin信號(hào)通路,在過表達(dá)miR-544a的肺癌細(xì)胞中曾發(fā)現(xiàn)存在GSK3β的表達(dá)量下調(diào)和較高的β-catenin的表達(dá)量。這一調(diào)控效果被認(rèn)為用于維持肺癌腫瘤干細(xì)胞的自我更新。此外,如miR-487b下調(diào)Dkk1、sFRP1、sFRP4和WIF-1的表達(dá)量[37],miR-31下調(diào)Dkk1和sFRP1[38]對(duì)WNT/β-catenin信號(hào)通路功能的調(diào)控在多種肺癌細(xì)胞中可被觀察到。

        3 總結(jié)與展望

        WNT/β-catenin通路功能異常在多種人類腫瘤中有顯著的表現(xiàn)。目前的研究對(duì)于WNT信號(hào)通路在原發(fā)性肺癌發(fā)生、發(fā)展中的調(diào)控機(jī)制尚未徹底闡明,尤其是對(duì)非經(jīng)典WNT信號(hào)通路在肺癌中的調(diào)控機(jī)理及WNT通路與其他細(xì)胞信號(hào)通路間的交互作用并不十分明確。但也正是由于WNT/β-catenin信號(hào)通路在肺癌中調(diào)控機(jī)制的復(fù)雜性使其為肺癌的治療提供許多潛在的靶點(diǎn)。雖然針對(duì)肺癌WNT/β-catenin信號(hào)通路的治療剛剛開始發(fā)展,但目前已有的小分子WNT通路抑制劑和WNT單克隆抗體已展現(xiàn)出了巨大的潛力。隨著近年來對(duì)WNT/β-catenin信號(hào)通路在肺癌中的作用及該通路所受的轉(zhuǎn)錄后調(diào)控的認(rèn)識(shí)逐漸加深,使部分miRNA對(duì)WNT/β-catenin信號(hào)通路的調(diào)控方式及其中具體的調(diào)控機(jī)制和生物學(xué)意義得到進(jìn)一步的了解??紤]到原發(fā)性肺癌中WNT/β-catenin信號(hào)通路與miRNA間復(fù)雜的相互作用可能為肺癌的靶向治療提供新的思路,進(jìn)一步深入研究兩者的生物學(xué)功能及調(diào)控機(jī)制對(duì)未來肺癌的臨床治療有重要意義。

        [1] ANASTAS J N, MOON R T. Wnt signalling pathways as therapeutic targets in cancer [J]. Nat Rev Cancer, 2013, 13(1): 11-26.

        [2] STEWART D J. Wnt signaling pathway in non-small cell lung cancer [J]. J Natl Cancer Inst, 2014, 106(1): 356.

        [3] MACDONAGH L, GRAY S G, FINN S P, et al. The emerging role of micrornas in resistance to lung cancer treatments [J]. Cancer Treat Rev, 2015, 41(2): 160-169.

        [4] TAKAHASHI-YANAGA F, KAHN M. Targeting wnt signaling: Can we safely eradicate cancer stem cells?[J]. Clin Cancer Res, 2010, 16(12): 3153-3162.

        [5] ANGERS S, MOON R T. Proximal events in wnt signal transduction [J]. Nat Rev Mol Cell Biol, 2009, 10(7): 468-477.

        [6] PACHECO-PINEDO E C, DURHAM A C, STEWART K M, et al. Wnt/beta-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium [J]. J Clin Invest, 2011, 121(5): 1935-1945.

        [7] XU X, SUN P L, LI J Z, et al. Aberrant wnt1/beta-catenin expression is an independent poor prognostic marker of nonsmall cell lung cancer after surgery [J]. J Thorac Oncol, 2011, 6(4): 716-724.

        [8] AKIRI G, CHERIAN M M, VIJAYAKUMAR S, et al. Wnt pathway aberrations including autocrine wnt activation occur at high frequency in human non-small-cell lung carcinoma[J]. Oncogene, 2009, 28(21): 2163-2172.

        [9] YOU L, HE B, XU Z, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells [J]. Oncogene, 2004, 23(36): 6170-6174.

        [10] NAKASHIMA N, LIU D, HUANG CL, et al. Wnt3 gene expression promotes tumor progression in non-small cell lung cancer [J]. Lung Cancer, 2012, 76(2): 228-234.

        [11] LIU D, KADOTA K, UENO M, et al. Adenoviral vector expressing short hairpin RNA targeting Wnt2B has an effective antitumour activity against Wnt2B2-overexpressing tumours[J]. Eur J Cancer, 2012, 48(8): 1208-1218.

        [12] HUANG C, MA R, XU Y, et al. Wnt2 promotes non-small cell lung cancer progression by activating Wnt/β-catenin pathway[J]. Am J Cancer Res, 2015, 5(3): 1032-1046.

        [13] BRAVO D T, YANG Y L, KUCHENBECKER K, et al. Frizzled-8 receptor is activated by the Wnt-2 ligand in nonsmall cell lung cancer [J]. BMC Cancer, 2013, 13: 316.

        [14] LI Y, LU W, HE X, et al. LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering beta-catenin subcellular distribution [J]. Oncogene, 2004, 23(56): 9129-9135.

        [15] UEMATSU K, HE B, YOU L, et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression [J]. Oncogene, 2003, 22(46): 7218-7221.

        [16] WEI Q, ZHAO Y, YANG ZQ, et al. Dishevelled family proteins are expressed in non-small cell lung cancer and function differentially on tumor progression [J]. Lung Cancer, 2008, 62(2): 181-192.

        [17] SIDHU S S, NAWROTH R, RETZ M, et al. EMMPRIN regulates the canonical Wnt/beta-catenin signaling pathway, a potential role in accelerating lung tumorigenesis [J]. Oncogene, 2010, 29(29): 4145-4156.

        [18] HAN A, SONG Z, TONG C, et al. Sulindac suppresses betacatenin expression in human cancer cells [J]. Eur J Pharmacol, 2008, 583(1): 26-31.

        [19] YANG L H, XU H T, HAN Y, et al. Axin downregulates TCF-4 transcription via beta-catenin, but not p53, and inhibits the proliferation and invasion of lung cancer cells [J]. Mol Cancer, 2010, 9: 25.

        [20] BUSCH A M, JOHNSON K C, STAN R V, et al. Evidence for tankyrases as antineoplastic targets in lung cancer [J]. BMC Cancer, 2013, 13: 211.

        [21] CASAS-SELVES M, KIM J, ZHANG Z, et al. Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition [J]. Cancer Res, 2012, 72(16): 4154-4164.

        [22] ZHENG H, SAITO H, MASUDA S, et al. Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas [J]. Anticancer Res, 2007, 27(5B): 3561-3569.

        [23]GAO Y, LIU Z, ZHANG X, et al. Inhibition of cytoplasmic GSK-3β increases cisplatin resistance through activation of Wnt/β-catenin signaling in A549/DDP cells [J]. Cancer Lett, 2013, 336(1): 231-239.

        [24] LICCHESI J D, WESTRA W H, HOOKER C M, et al. Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung [J]. Carcinogenesis, 2008, 29(5): 895-904.

        [25] SUZUKI M, SHIGEMATSU H, NAKAJIMA T, et al. Synchronous alterations of Wnt and epidermal growth factor receptor signaling pathways through aberrant methylation and mutation in non small cell lung cancer [J]. Clin Cancer Res, 2007, 13(20): 6087-6092.

        [26] RUBIN E M, GUO Y, TU K, et al. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma [J]. Mol Cancer Ther, 2010, 9(3): 731-741.

        [27] LIU Y L, YANG H P, GONG L, et al. Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines[J]. Mol Med Rep, 2011, 4(4): 675-679.

        [28] MONGROO P S, RUSTGI A K. The role of the miR-200 family in epithelial-mesenchymal transition [J]. Cancer Biol Ther, 2010, 10(3): 219-222.

        [29] ZHANG W, SHEN C, LI C, et al. miR-577 inhibits glioblastoma tumor growth via the Wnt signaling pathway[J]. Mol Carcinog, 2016, 55(5): 575-585.

        [30] WU G, LIU A, ZHU J, et al. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway [J]. Oncotarget, 2015, 6(30): 28882-28894.

        [31] GE C, WU S, WANG W, et al. miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway [J]. Oncotarget, 2015, 6(13): 10964-10977.

        [32] TAN M, WU J, CAI Y. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer [J]. Biochem Biophys Res Commun, 2013, 438(4): 673-679.

        [33] NAVARRO A, MINE M, YAMAGUCHI K, et al. miR-203 inhibits frizzled-2 expression via CD82/KAI1 expression in human lung carcinoma cells [J]. Plos One, 2015,10(7):e0131350.

        [34] WU D, SHI M, FAN X D. Mechanism of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice [J]. Asian Pac J Trop Med, 2015, 8(6): 479-484.

        [35] QI W, CHEN J, CHENG X, et al. Targeting the Wntregulatory protein CTNNBIP1 by microRNA-214 enhances the stemness and self-renewal of cancer stem-like cells in lung adenocarcinomas [J]. Stem Cells, 2015, 33(12): 3423-3436.

        [36] MO X M, LI H H, LIU M, et al. Downregulation of GSK3β by miR-544a to maintain self-renewal ability of lung caner stem cells [J]. Oncol Lett, 2014, 8(4): 1731-1734.

        [37] XI S, XU H, SHAN J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis [J]. J Clin Invest, 2013, 123(3): 1241-1261.

        [38] XI S, YANG M, TAO Y, et al. Cigarette smoke induces C/ EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells [J]. PLoS One, 2010, 5(10): e13764.

        Research progress on WNT/β-catenin signaling pathway and miRNA in primary lung cancer


        LU

        Zhouyi1, CHEN Xiaofeng2(1. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China; 2. Department of Cardio-thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China)

        The WNT/β-catenin signaling pathway plays a critical role in cellular proliferation, di ff erentiation and organogenesis. Aberration activation of WNT/β-catenin pathway and dysregulation of miRNA related with this pathway are involved in oncogenesis and tumor progression in primary lung cancer. Understanding the mechanism of the WNT/β-catenin signaling pathway and illuminating the interaction between miRNA and the members of this pathway may improve the perspectives of using these molecules as potential therapeutic targets for primary lung cancer. This review focused on the participation of the WNT/β-catenin signaling pathway and miRNA in lung cancer and discussion of potential targets for this malignancy therapy in the future.

        Lung cancer; WNT/β-catenin signaling pathway; miRNA

        CHEN Xiaofeng E-mail: cxf3166@126.com

        10.19401/j.cnki.1007-3639.2017.02.012

        R734.2

        A

        1007-3639(2017)02-0151-05

        2016-03-10

        2016-06-18)

        陳曉峰 E-mail: cxf3166@126.com

        猜你喜歡
        甲基化調(diào)控肺癌
        中醫(yī)防治肺癌術(shù)后并發(fā)癥
        對(duì)比增強(qiáng)磁敏感加權(quán)成像對(duì)肺癌腦轉(zhuǎn)移瘤檢出的研究
        如何調(diào)控困意
        經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
        中國外匯(2019年15期)2019-10-14 01:00:34
        順勢而導(dǎo) 靈活調(diào)控
        SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
        microRNA-205在人非小細(xì)胞肺癌中的表達(dá)及臨床意義
        基于肺癌CT的決策樹模型在肺癌診斷中的應(yīng)用
        鼻咽癌組織中SYK基因啟動(dòng)子區(qū)的甲基化分析
        胃癌DNA甲基化研究進(jìn)展
        性做久久久久久久| 日韩精品一区二区av在线| 白白在线免费观看视频| 蜜臀一区二区三区精品| 国产人妻精品无码av在线| 亚洲熟女少妇一区二区| 国产一区二区三区免费精品| 亚洲综合视频一区二区| 久久亚洲欧美国产精品| 色老汉免费网站免费视频| 日本一道dvd在线中文字幕| 久久婷婷综合色一区二区| 亚洲av无码专区在线| 韩国精品一区二区三区无码视频| 亚洲乱码少妇中文字幕| 色婷婷一区二区三区久久亚洲| 欧美做受又硬又粗又大视频| 久久人人爽人人爽人人片av麻烦| 久久精品国产精品亚洲婷婷| 亚洲第一大av在线综合| 亚洲色图片区| 亚洲日韩∨a无码中文字幕| 无码视频一区=区| 水蜜桃在线精品视频网| 韩日午夜在线资源一区二区| 91精品国产丝袜在线拍| 亚洲免费av第一区第二区| 揄拍成人国产精品视频| 国产成人精品日本亚洲| 国产精品久久这里只有精品| av免费网站免费久久网| 亚洲av无码一区二区三区天堂古代 | 大陆老熟女自拍自偷露脸| 国产丝袜在线精品丝袜| 精品熟女少妇免费久久| 一区二区三区中文字幕在线观看| 少妇性俱乐部纵欲狂欢电影| 亚洲白白色无码在线观看| 色青青女同性恋视频日本熟女| 日韩av在线播放人妻| 亚洲aⅴ在线无码播放毛片一线天|