關(guān)晶欣,尹建華
(海南大學(xué) 信息科學(xué)技術(shù)學(xué)院,海南 ???570228)
具有A-連通實現(xiàn)二部可圖對的一個注記
關(guān)晶欣,尹建華
(海南大學(xué) 信息科學(xué)技術(shù)學(xué)院,海南 ???570228)
設(shè)S=(a1,…,am;b1,…,bn),其中a1,…,am和b1,…,bn是2個非增的非負(fù)整數(shù)序列.如果存在一個簡單二部圖G=(X∪Y,E),使得a1,…,am和b1,…,bn分別是X和Y中頂點的度,則稱S=(a1,…,am;b1,…,bn)為一個二部可圖對.設(shè)A是一個阿貝爾群(以“0”為單位元的加法群),定義σ(A,m,n)是最小的正整數(shù)k使得每一個二部可圖對S=(a1,…,am;b1,…,bn)滿足am,bn≥2且σ(S)=a1+…+am≥k時都有一個A-連通實現(xiàn),確定了當(dāng)|A|=4且m≥n≥3時,σ(A,m,n)的下界和當(dāng)|A|=6且m≥n≥2時,σ(A,m,n)的下界.
二部可圖對; A-連通實現(xiàn); 群連通
猜想1[2]每個5-邊連通圖都是Z3-連通的.
猜想2[2]每個3-邊連通圖都是Z5-連通的.
定理2若|A|=4且m≥n≥3,則σ(A,m,n)≥2m+n-1.
為了證明定理2和定理3,需要以下引理.
引理1 設(shè)A是一個阿貝爾群.則
2)[7]如果|A|=4,則當(dāng)s≥t≥3時,Ks,t是A-連通的且當(dāng)s≥2時,Ks,2不是A-連通的.
3)[2]一個連通圖是A-連通的當(dāng)且僅當(dāng)它的每一個塊是A-連通的.
我是一個狂熱的雪茄愛好者,所以古巴必然是我最喜歡的地方之一。我去過古巴14次,在哈瓦那的感覺像回家了一樣。我總是帶著高希霸雪茄,和我遇到的人一起分享。有時我一天能抽5根雪茄,不過還是不及丘吉爾抽得多。
定理2證畢.
定理3證畢.
[1] Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:American Elsevier, 1976.
[2] Jaeger F, Linial N, Payan C, et al. Group connectivity of graphs-A nonhomogeneous analogue of nowhere zero flow properties[J]. J. Combin. Theory Ser. B, 1992, 56(2): 165-182.
[3] Gale D. A theorem on flows in networks[J]. Pac.J.Math, 1957,7(2): 1 073-1 082.
[4] Ryser H J. Combinatorial properties of matrices of zeros and ones[J]. Canad. J. Math, 1957,9: 371-377.
[5] Yin J H.An extremal problem on bigraphic pairs with an A-connected realization[J]. DiscreteMathematics,2016,339(8):2 018-2 026.
[6] Chen J J,Eschen E,Lai H J. Group connectivity of certain graphs[J]. Ars Combin, 2008, 89(2): 141-158.
[7] Lai H J. Group connectivity of 3-edge-connected chordal graphs[J]. Graphs Combin, 2000,16(2): 165-176.
[8] Luo R, Xu R,Yu G X. An extremal problem on group connectivity of graphs[J]. European J.Combin,2012,33(6):1 078-1 085.
A Note on Bigraphic Pairs with A-connected Realization
Guan Jingxin, Yin Jianhua
(College of Information Science and Technology, Hainan University, Haikou 570228, China)
In the report, let S=(a1,…,am;b1,……,bn),in which a1,…,bnand b1,…,bnare two nonincreasing sequences of nonnegative integers.If there is a simple bipartite graph G=(X∪Y,E), a1,…,amand b1,…,bnand are the degrees of the vertices in X and Y ,respectively, the pair S=(a1,…,am;b1,…,bn) is a bigraphic pair. Let A be an (additive) Abelian group, σ(A,m,n) was defined to be the minimum integer k , and every bigraphic pair S=(a1,…,am;b1,…,bn) with am,bn≥2 and σ(S)=a1+…,+am≥k has an A-connected realization.When |A|=4 and m≥n≥3 and |A|=6 and m≥n≥2 , the lower bounds of σ(A,m,n) were determined.
bigraphic pairs; A-connected realization; group connectivity
2016-06-17
國家自然科學(xué)基金(11561017);海南省自然科學(xué)基金(2016CXTD004)
關(guān)晶欣(1993-),女,黑龍江哈爾濱人,海南大學(xué)2015級碩士研究生,研究方向:圖論及其應(yīng)用,E-mail:15799032340@163.com
尹建華(1970-),男,湖南祁陽人,教授,研究方向:圖論及其應(yīng)用,E-mail:yinjh@hainu.edu.cn
1004-1729(2016)04-0303-04
O 157.5
A DOl:10.15886/j.cnki.hdxbzkb.2016.0045