摘要:以湖北省兩種典型水稻土壤[咸寧水旱輪作土壤(簡稱XR)與潛江冬泡土壤(簡稱QF)]為研究對(duì)象,室內(nèi)培養(yǎng)模擬水稻秸稈還田對(duì)土壤N2O排放的影響。設(shè)置了淹水(土水比為1∶1)和土壤充水孔隙度為80%(簡稱80% WFPS)2種水分條件以及添加1%水稻秸稈(簡稱S)、1%水稻秸稈+50 mg(N)/kg尿素(簡稱S+U)和空白對(duì)照(CK)3種處理,25 ℃恒溫培養(yǎng)60 d。結(jié)果表明,XR土樣中,淹水條件下CK、S以及S+U處理后N2O累積排放通量分別為1.80、0.15和0.42 mg(N)/kg,而80%WFPS條件下相同處理后的N2O累積排放通量分別為0.065、0.040和0.160 mg(N)/kg;QF土樣中,淹水條件下CK、S以及S+U處理后N2O累積排放通量分別為3.42、0.09和0.22 mg(N)/kg,而80%WFPS條件下相同處理的N2O累積排放通量分別為4.58、1.55和5.28 mg(N)/kg。土壤輪作模式、水分和秸稈添加方式均導(dǎo)致了不同土壤間N2O排放的差異,但主要受土壤氧化還原電位(Eh)的影響,其排放通量與Eh呈顯著負(fù)相關(guān)。這表明土壤Eh可能是調(diào)節(jié)土壤N循環(huán)過程的關(guān)鍵因子。
關(guān)鍵詞:水稻秸稈還田;稻田土壤;N2O排放通量;氧化還原電位
中圖分類號(hào):X511 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2016)10-2539-05
DOI:10.14088/j.cnki.issn0439-8114.2016.10.022
Abstract:To investigate the relationship between rice straw application and N2O emission in Hubei province,a laboratory experiment was carried out to monitor N2O fluxes under different water regimes with rice straw incorporation over 60 days incubation in Xianning rice soil(XR) and Qianjiang rice soil(QF). Two water regimes including flooding and 80% water-filled pore space(80% WPFS) and three treatments including control(CK), addition of 1% rice straw(S), and 1% rice straw + 50 mg(N)/kg Urea(S+U) were arranged. As for XR soil, under flooding conditions, cumulative N2O emissions fluxen of CK, S and S+U treatments were 1.80, 0.15 and 0.42 mg(N)/kg, respectively, and cumulative N2O emissions were 0.065, 0.040 and 0.160 mg(N)/kg. As for QF soil, under flooding conditions, cumulative N2O emissions fluxen of CK, S and S+U treatments were 3.42, 0.09 and 0.22 mg(N)/kg, respectively, and under non-flooding conditions, cumulative N2O emissions fluxen were 4.58,1.55 and 5.22 mg(N)/kg. In addition, the soil Eh correlated negatively with N2O fluxes during the incubation period (P<0.05). The results suggest that soil Eh plays a key role in mediating the N cycle of rice soils.
Key words: rice straw returning;paddy field soil;N2O emission fluxen;redox potential
中國是水稻(Oryza sativa L.)種植大國,近10年來中國的水稻產(chǎn)量雖然在逐年提高,但同時(shí)面臨土壤有機(jī)質(zhì)逐年降低的嚴(yán)峻形勢[1]。提高土壤的肥力是維持糧食豐產(chǎn)的必要前提,水稻秸稈還田被認(rèn)為是提高土壤有機(jī)質(zhì)、提升土壤地力的有效手段之一[2,3]。然而,在水稻秸稈還田對(duì)作物增產(chǎn)和土壤固碳的同時(shí),引起的溫室氣體排放也值得人們關(guān)注。國內(nèi)外學(xué)者對(duì)水稻秸稈還田后引起的溫室效應(yīng)已有了較多的報(bào)道[4-7],多數(shù)認(rèn)為稻田在淹水期間N2O排放相對(duì)較少,對(duì)此條件下的N2O關(guān)注并不多。以往的研究表明,農(nóng)田N2O排放與施肥、水分管理和氣候等因素有關(guān)[8-11]。一般認(rèn)為水稻土中添加水稻秸稈后會(huì)促進(jìn)N2O的排放[12],但也有研究表明水稻秸稈還田配施氮肥可減緩N2O的釋放[13]。中國的水稻土母質(zhì)來源復(fù)雜,土地利用方式多樣,不同土壤間N2O的排放通量差異顯著,水稻土壤的N2O排放還受土壤充水孔隙度(Water-filled pore space,WFPS)和氧化還原電位(Eh)等因素的影響[14]。然而,不同的稻田土壤N2O排放的關(guān)鍵調(diào)控因子是否一致,目前還不清楚。本研究在室內(nèi)條件下控制一定的因素,探討不同稻田土壤N2O的排放特征,揭示關(guān)鍵驅(qū)動(dòng)因子,為指導(dǎo)農(nóng)田溫室氣體減排措施提供參考。
1 材料與方法
1.1 采樣點(diǎn)概況
供試土壤取自湖北省咸寧市賀勝橋鎮(zhèn)附近(東經(jīng)114°21′51″,北緯30°01′16.4″)和湖北省潛江市后湖農(nóng)場附近(東經(jīng)112°50′81.7″,北緯30°25′17.6″)。咸寧市的土壤質(zhì)地為粉質(zhì)黏壤土,母質(zhì)為第四紀(jì)紅壤,土地利用方式為中稻-油菜輪作(簡稱XR);潛江市的土壤質(zhì)地為沙壤土,母質(zhì)為鈣質(zhì)潮土,土地利用方式為中稻-冬閑/泡水(簡稱QF)。兩個(gè)采樣點(diǎn)均屬于亞熱帶大陸性季風(fēng)氣候,降雨量集中在4~9月,約為全年的70%左右。經(jīng)“S”形布點(diǎn)采樣,取0~20 cm耕作表土混合裝袋,環(huán)刀法測定土壤容重,土樣運(yùn)回實(shí)驗(yàn)室后自然風(fēng)干,過1 mm篩備用。供試水稻秸稈采集于華中農(nóng)業(yè)大學(xué)試驗(yàn)農(nóng)場,樣品為成熟秸稈的地上部分,風(fēng)干粉碎后添加到培養(yǎng)土壤中。經(jīng)測定,水稻秸稈的木質(zhì)素含量為16.20%,總碳含量為30.60%,總氮含量為1.07%,總碳與總氮之比(C/N)為28.6。采樣點(diǎn)土樣基本理化指標(biāo)見表1。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)置了添加水稻秸稈(S)、水稻秸稈加尿素(S+U)和空白對(duì)照(CK)3種處理與淹水(土水比為1∶1)和土壤充水孔隙度(WFPS)為80%的2種水分條件。水稻秸稈添加量為1.0%,尿素添加量為50 mg(N)/kg。培養(yǎng)時(shí)1 L玻璃瓶裝200 g風(fēng)干土,每個(gè)處理設(shè)置3個(gè)重復(fù)。正式試驗(yàn)前,土水比控制為1∶0.15,(25±1)℃預(yù)培養(yǎng)7 d。預(yù)培養(yǎng)結(jié)束后加入秸稈和尿素,(25±1) ℃培養(yǎng)60 d。培養(yǎng)瓶用薄膜覆蓋,頂部留有孔隙通氣,每3 d補(bǔ)水1次。
1.3 氣體采集及其他指標(biāo)分析
培養(yǎng)瓶密閉培養(yǎng)2 h后測定N2O排放通量及累計(jì)通量。N2O測定方法參考文獻(xiàn)[15],ECD檢測溫度設(shè)為300 ℃,柱箱溫度為55 ℃,保留時(shí)間為3.5 min,載氣N2流速設(shè)置為25 mL/min。
N2O排放通量計(jì)算公式[16]:
F=ρ×(V/W)×(ΔC/Δt)×T×α
式中,F(xiàn)為N2O排放通量;ρ為標(biāo)準(zhǔn)狀況下N2O的密度;V是培養(yǎng)瓶體積;W為風(fēng)干土的質(zhì)量;ΔC/Δt表示單位時(shí)間內(nèi)溫室氣體濃度的變化率;T為培養(yǎng)的熱力學(xué)溫度;α是N2O換算成N的轉(zhuǎn)換因子(α=28/44)。
土壤硝態(tài)氮、銨態(tài)氮采用流動(dòng)注射分析儀測定;pH采用酸度計(jì)分析;土壤氧化還原電位(Eh)采用氧化還原電位儀測定。
1.4 數(shù)據(jù)分析
所有結(jié)果為3個(gè)重復(fù)的均值,經(jīng)SPSS16軟件進(jìn)行方差分析和相關(guān)性分析,origin 8.0軟件繪圖。
2 結(jié)果與分析
2.1 淹水條件下的N2O排放通量
淹水條件下,不同水稻秸稈添加方式影響了土壤的N2O排放。XR的CK處理中N2O的排放通量在整個(gè)培養(yǎng)期間變化較為明顯:培養(yǎng)初期排放通量逐漸上升,培養(yǎng)35 d時(shí)達(dá)到排放峰值4.76 μg(N)/(kg·h)(圖1a)。但XR經(jīng)S和S+U處理后,前40 d內(nèi)N2O排放通量變化并不明顯,甚至表現(xiàn)為負(fù)排放,僅S+U處理后45 d出現(xiàn)了排放峰值,為1.78 μg(N)/(kg·h)。淹水條件下,CK、S以及S+U處理在培養(yǎng)期間N2O的累積排放通量分別為1.80、0.15和0.42 mg(N)/kg。
同樣水分條件下,QF不同處理下N2O排放通量變化趨勢與XR相似。CK處理中,培養(yǎng)16 d時(shí)N2O的排放通量達(dá)到了峰值,為28.65 μg(N)/(kg· h) (圖1b)。同樣,S和S+U處理后,N2O排放通量增加也不明顯,培養(yǎng)期間最大排放通量僅為0.23和0.41 μg(N)/(kg·h)。QF土樣中的CK、S和S+U處理在淹水期間N2O的累積排放通量分別為3.42、0.09和0.22 mg(N)/kg。
2.2 非淹水條件下的N2O排放通量
非淹水條件下(80%WFPS),XR土樣僅S+U處理下N2O排放通量略有增加,所有處理的排放通量在整個(gè)培養(yǎng)期間變化均不大(圖1c)。培養(yǎng)期間,CK、S和S+U處理N2O的累積排放通量分別為0.065、0.040和0.160 mg(N)/kg。
相同的水分條件下,QF土樣的N2O排放主要集中在培養(yǎng)前期(圖1d)。CK處理的N2O在4 d時(shí)達(dá)到了排放峰值,為36.40 μg(N)/(kg·h);S和S+U處理分別在培養(yǎng)3 d和4 d時(shí)出現(xiàn)了N2O排放峰值,分別為26.41和55.50 μg (N)/(kg·h)。培養(yǎng)期間,QF土樣的CK、S和S+U處理的N2O的累積排放通量分別為4.58、1.55和5.28 mg(N)/kg。
2.3 不同處理下土壤的Eh
不同處理影響了土壤Eh,尤其在淹水條件下。淹水條件下,XR和QF土樣經(jīng)S和S+U處理后,Eh發(fā)生了極顯著變化(P<0.01),XR和QF分別在培養(yǎng)3 d和2 d時(shí) Eh降低到-150 mV以下,此后保持相對(duì)穩(wěn)定直至培養(yǎng)結(jié)束(圖2a、圖2b)。而整個(gè)培養(yǎng)期間,XR和QF的CK處理的Eh均值分別為153 mV和 70 mV。
非淹水條件下(80%WFPS),不同處理下的XR和QF土樣Eh在培養(yǎng)前期緩慢上升,此后一直保持相對(duì)穩(wěn)定,40 d后緩慢下降直至培養(yǎng)結(jié)束(圖2c、圖2d)。在XR土樣中,CK處理在此期間Eh均值為392 mV,而S和S+U處理下Eh波動(dòng)范圍分別為 (352±34) mV和 (337±52) mV,統(tǒng)計(jì)分析表明,與CK相比,S和S+U處理顯著降低了土壤Eh(P<0.05)。非淹水條件下,QF土樣在CK、S和S+U處理下的Eh分別為(233±30) mV、(213±44) mV和 (229±27) mV,各處理間無顯著差異。
Eh和N2O排放通量的相關(guān)性分析結(jié)果(表2)表明,XR土樣的N2O排放受土壤Eh的影響,二者之間呈極顯著負(fù)相關(guān)。從數(shù)據(jù)上看,QF土樣的3種處理中,其N2O排放通量與土壤Eh變化的相關(guān)性并不顯著,但不同處理間結(jié)果表明,非淹水條件下QF土樣的CK處理下N2O排放與Eh呈顯著負(fù)相關(guān)(r=-0.499,P=0.035,n=18),且S處理下N2O排放與Eh呈極顯著負(fù)相關(guān)(r=-0.693,P=0.001,n=18)。
2.4 不同處理下土壤的礦質(zhì)氮含量
由圖3和圖4可知,淹水條件下2種土壤的礦質(zhì)氮主要以銨態(tài)氮為主,S處理降低了土壤NH4+-N的含量,而在S+U處理中,NH4+-N的含量與CK相比差異不顯著;在80% WFPS條件下,土壤的礦質(zhì)氮以NO3--N為主,與CK相比,S和S+U處理均顯著降低了土壤中的礦質(zhì)氮含量(P<0.05)。表明水稻秸稈降解過程中,微生物代謝過程可能消耗了部分土壤礦質(zhì)氮。
3 討論
土壤氮素是維持作物豐產(chǎn)和土壤地力的重要保障。Cucu等[17]認(rèn)為,淹水條件下添加水稻秸稈可降低土壤礦質(zhì)氮的濃度,而廖育林等[3]的野外定位觀測試驗(yàn)表明,長期化肥與水稻秸稈混合施用能保育土壤肥力。實(shí)際上,在水稻秸稈還田過程中添加氮肥還可有效緩解作物對(duì)氮肥的利用不足[18]。本試驗(yàn)在淹水條件下,XR和QF土樣中S和S+U的N2O累計(jì)排放通量均低于其對(duì)應(yīng)的CK處理,而非淹水條件下S處理對(duì)應(yīng)的N2O累計(jì)排放通量也低于其對(duì)應(yīng)的CK處理。從土壤礦質(zhì)氮的含量上看,淹水條件下土壤以反硝化為主,而非淹水條件下以硝化為主。其結(jié)果暗示了向土壤中輸入基質(zhì)后,微生物的代謝過程受土壤Eh影響,極可能調(diào)節(jié)了土壤氮素的循環(huán)途徑。
從以往文獻(xiàn)報(bào)道的室內(nèi)培養(yǎng)[19]和室外觀測結(jié)果來看[20,21],淹水和80%WFPS條件下均涵蓋了N2O排放的“窗口期”,意味著本研究設(shè)置的兩種水分條件能較客觀地反映水稻土的N2O排放潛勢。特別是淹水條件下的CK處理和80%WFPS條件下的S+U處理的土壤N2O主要排放期間Eh變化范圍分別為117~225 mV以及181~248 mV,與Yu等[22]試驗(yàn)中N2O排放活躍期對(duì)應(yīng)的Eh范圍非常接近。再次詮釋了在淹水條件下兩種土樣中S和S+U處理N2O排放通量相對(duì)低的主要原因是土壤反硝化過程較為徹底,土壤中NO3--N極有可能被還原成了N2。而非淹水條件下,兩種土壤礦質(zhì)氮含量差異不太大的前提下,N2O排放差異的主要原因是因土壤Eh不同。
4 結(jié)論
以上結(jié)果暗示了土壤Eh是影響N2O排放的關(guān)鍵因子,在田間尺度上實(shí)施水稻秸稈還田時(shí),非淹水條件下秸稈還田可能適合于水旱輪作稻田,而淹水條件下秸稈還田可能更適合于長期泡水稻田,水稻秸稈配施適量的氮肥可避免水稻秸稈降解與作物爭肥。
參考文獻(xiàn):
[1] PAN G, LI L,WU L,et al. Storage and sequestration potential of topsoil organic carbon in China’s rice soils[J]. Global Change Biology,2004,10(1):79-92.
[2] 劉守龍,童成立,張文菊,等.湖南省稻田表層土壤固碳潛力模擬研究[J].自然資源學(xué)報(bào),2006,21(1):118-125.
[3] 廖育林,鄭圣先,聶 軍,等.長期施用化肥和稻草對(duì)紅壤水稻土肥力和生產(chǎn)力持續(xù)性的影響[J].中國農(nóng)業(yè)科學(xué),2009,42(10):3541-3550.
[4] MINAMIKAWA K,SAKAI N. Soil carbon budget in a single-cropping paddy field with rice straw application and water management based on soil redox potential[J]. Soil Science and Plant Nutrition,2007,53(5):657-667.
[5] NASER H M,NAGATA O,TAMURA S,et al. Methane emissions from five rice fields with different amounts of rice straw application in central Hokkaido,Japan[J]. Soil Science and Plant Nutrition,2007,53(1):95-101.
[6] ZHANG G B,JI Y,MA J, et al. Case study on effects of water management and rice straw incorporation in rice fields on production, oxidation,and emission of methane during fallow and following rice seasons[J].Soil Research,2011,49(3):238-246.
[7] JI X H,WU J M,PENG H,et al. The effect of rice straw incorporation into rice soil on carbon sequestration and emissions in the double cropping rice system[J]. Journal of the Science of Food and Agriculture,2012,92(5):1038-1045.
[8] MAGGIOTTO S, WEBB J,WAGNER-RIDDLE C, et al. Nitrous and nitrogen oxide emissions from turfgrass receiving different forms of nitrogen fertilizer[J].Journal of Environmental Quality,2000,29(2):621-630.
[9] ZHENG X H, WANG M X, WANG Y S, et al. Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in Southeast China[J]. Chemosphere-Global Change Science,2000,2(2):207-224.
[10] DIJKSTRA F A, PRIOR S A, RUNION G B, et al. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: Evidence from field experiments[J]. Frontiers in Ecology and the Environment,2012, 10(10):520-527.
[11] YU K W, PATRICK W H. Redox range with minimum nitrous oxide and methane production in a rice soil under different pH[J]. Soil Science Society of America Journal, 2003, 67(6):1952-1958.
[12] LOU Y S, REN L X, LI Z P, et al. Effect of rice residues on carbon dioxide and nitrous oxide emissions from a rice soil of subtropical China[J]. Water, Air, and Soil Pollution, 2007,178(1-4):157-168.
[13] WANG J Y, JIA J X, XIONG Z Q, et al. Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China[J].Agriculture,Ecosystems Environment,2011,141(3):437-446.
[14] YU K W. Redox potential control on cumulative global warming potentials from irrigated rice fields[A].GUO L,GUNASEKARA A,MCCONNELL L. Understanding Greenhouse Gas Emissions from Agricultural Management[C].F?觟rlag:OUP USA,2011.121-134.
[15] WANG Y H, WANG Y S, LING H. A new carrier gas type for accurate measurement of N2O by GC-ECD[J].Advances in Atmospheric Sciences,2010,27:1322-1330.
[16] HU R G,HATANO R,KUSA K,et al. Soil respiration and net ecosystem production in an onion field in central Hokkaido, Japan[J].Soil Science and Plant Nutrition,2004,50(1):27-33.
[17] CUCU M, DANNIEL S, VALTER M, et al. Influence of redox conditions and rice straw incorporation on nitrogen availability in fertilized rice soils[J].Biology and fertility of soils, 2014,50(5):755-764.
[18] SAID-PULLICINO D,SAID-PULLICINO M A,CUCU M,et al. Nitrogen immobilization in rice soils as affected by redox conditions and rice straw incorporation[J].Geoderma,2014, 228:44-53.
[19] SEY B K,MANCEUR A M,WHALEN J K,et al. Small-scale heterogeneity in carbon dioxide,nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil[J].Soil Biology Biochemistry,2008,40(9):2468-2473.
[20] SIMOJOKI A,JAAKKOLA A.Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay[J].European Journal of Soil Science,2000,51(3):413-424.
[21] 鄒建文,黃 耀,宗良綱,等.稻田灌溉和秸稈施用對(duì)后季麥田N2O排放的影響[J].中國農(nóng)業(yè)科學(xué),2003,36(4):409-414.
[22] YU K W, WANG Z P,VERMOESEN A,et al. Nitrous oxide and methane emissions from different soil suspensions:Effect of soil redox status[J]. Biology and Fertility of Soils,2001, 34(1):25-30.