亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于Landsat影像的博斯騰湖水質(zhì)參數(shù)反演模型研究

        2016-12-31 00:00:00周榮攀徐長春
        湖北農(nóng)業(yè)科學 2016年10期

        摘要:以內(nèi)陸博斯騰湖為研究區(qū),通過實測數(shù)據(jù)和遙感數(shù)據(jù),分析了單波段數(shù)據(jù)、歸一化數(shù)據(jù)、波段組合數(shù)據(jù)與溶解性總固體、礦化度之間的相關(guān)性,建立并篩選獲得了最優(yōu)模型,以期為博斯騰湖溶解性總固體和礦化度兩個指標的大面積遙感反演提供理論依據(jù)。結(jié)果表明,對溶解性總固體與礦化度濃度進行反演,單波段最優(yōu)分別為B3與B2,最佳模型皆為指數(shù)模型;歸一化處理后最優(yōu)波段為B3與B2,最佳模型分別為二次模型與指數(shù)模型;波段組合最優(yōu)為B2×B3與B2-B7,最佳模型為指數(shù)模型與指數(shù)、線性模型。通過模型的驗證與比較,研究發(fā)現(xiàn),歸一化法對于溶解性總固體濃度的反演能達到較好的效果,而波段組合法能較好的反演礦化度濃度。

        關(guān)鍵詞:博斯騰湖;溶解性總固體;礦化度;遙感反演

        中圖分類號:P903 文獻標識碼:A 文章編號:0439-8114(2016)10-2507-07

        DOI:10.14088/j.cnki.issn0439-8114.2016.10.016

        Abstract: Based on the measured data and the Landsat images, analyzed the correlations of the concentrations of the total dissolved solids(TDS) and the mineralization degree in the lake with the single band data, the normalized data and the band combination data, respectively. The paper aims at establishing and selecting the optimal mathematical models to provide theoretical basis for the large-area remote sensing inversion of TDS and mineralization degree. The results showed that: 1) B3 and B2 is the optimal single band model for the inversion of the TDS mineralization degree, respectively. The best model for both of them is the exponential model. 2) After normalization, B3 is the optimal band for the inversion of the TDS and B2 is that of the mineralization degree. The best model for them is the quadratic model and the exponential model, respectively. 3) B2×B3 and B2-B7 are the optimal band combinations for the inversion of the TDS and the mineralization degree, respectively. The best model for them is the index model and the index/linear model, respectively. Through the validation and comparison among the models, this study found that the normalization method is more suitable for the inversion of the TDS and the band combination method is more suitable for the inversion of the salinity concentration.

        Key words: Bosten lake; total dissolved solids; mineralization degree; remote sensing inversion

        隨著社會經(jīng)濟的高速發(fā)展和人口的不斷增長,世界范圍內(nèi)許多地區(qū)出現(xiàn)了水資源日趨緊張和水環(huán)境惡化加速的窘態(tài)[1,2]。目前,中國許多內(nèi)陸湖泊正在萎縮、水環(huán)境污染也在不斷加劇[3-5],已經(jīng)嚴重影響到了區(qū)域的可持續(xù)發(fā)展和人民生活的穩(wěn)定,加大湖泊水環(huán)境的保護勢在必行。

        湖泊水環(huán)境監(jiān)測是水環(huán)境保護的重要基礎(chǔ)。傳統(tǒng)的水環(huán)境監(jiān)測主要是通過設置固定的監(jiān)測點、現(xiàn)場采集水樣和實驗室測定分析來獲得相關(guān)的水質(zhì)指標情況[6-8]。這種方法監(jiān)測點少,不能反映大面積的水環(huán)境狀況,水質(zhì)的時空變化也很難把握;若設置較多監(jiān)測點,則需消耗大量的人力、物力和財力。而且,受自然條件、時空等因素限制,傳統(tǒng)的水環(huán)境監(jiān)測對于出現(xiàn)的水污染緊急情況不能及時地進行指導和搶救,因此在實際應用中有很大的局限性[7,8]。而遙感技術(shù)能夠提供大范圍的和動態(tài)的信息,且效率高、適應性強[6-12],因此在水環(huán)境監(jiān)測中的應用越來越多[13-18],為水環(huán)境監(jiān)測與治理提供了技術(shù)支撐與科學依據(jù)。例如,Lathrop[19]利用Landsat 5衛(wèi)星的TM數(shù)據(jù)對格林灣、中央湖水質(zhì)進行了評價。龔珍等[20]用環(huán)境一號衛(wèi)星建立了武漢東湖水體葉綠素濃度的遙感模型。江輝[21]通過地物波普儀對鄱陽湖進行高光譜測量,并對同期水體進行采樣,建立了反射率和總懸浮物濃度之間的關(guān)系。徐良將等[22]根據(jù)高光譜遙感數(shù)據(jù),建立了反射率與總磷總氮之間的關(guān)系。

        通過對已有文獻的對比分析發(fā)現(xiàn),目前遙感反演的水質(zhì)參數(shù),主要以葉綠素a、懸浮物濃度、總磷總氮、高錳酸鉀指數(shù)等為主,反映水環(huán)境狀況的某個側(cè)面,對溶解性總固體濃度和礦化度濃度的研究較少[23-28]。溶解性總固體指水中各種離子、分子、化合物的總量,但不包括懸浮物和溶解氣體。對溶解性總固體的監(jiān)測,能從整體上反映水質(zhì)的污染狀況。礦化度指水中所含鹽類的數(shù)量,是水化學成分測定的重要指標,用于評價水中總含鹽量,是農(nóng)田灌溉用水實用性評價的主要指標之一,在西北干旱區(qū)尤為重要。

        博斯騰湖位于中國西北干旱區(qū),是一個典型的內(nèi)陸湖泊,也是一個吞吐湖,上接開都河,下接孔雀河,既負責上游水源的向下輸移,也負責下游百萬人民的生產(chǎn)生活用水以及周圍環(huán)境的生態(tài)用水,對當?shù)厣鐣?jīng)濟的可持續(xù)發(fā)展、人民生活的安定團結(jié)以及生態(tài)安全的維護具有舉足輕重的作用。近50年來,在水土資源開發(fā)等大強度人類活動干擾和影響下,博斯騰湖的水環(huán)境質(zhì)量已經(jīng)發(fā)生巨變,水量銳減、水質(zhì)惡化[29-31]。特別是近幾年,伴隨全球氣候變暖的影響,博斯騰湖水位急速下降,至2012年水位已降至最低臨界水位(1 045 m),水質(zhì)惡化加速,礦化度重新飆升至1.5 g/L,已向微咸水湖轉(zhuǎn)變,嚴重威脅到下游人民的生產(chǎn)、生活和生態(tài)。因此,對博斯騰湖的水質(zhì)進行實時動態(tài)監(jiān)測具有重要的現(xiàn)實意義。本研究基于實測水質(zhì)數(shù)據(jù)和TM遙感數(shù)據(jù),分析反演湖泊水體中溶解性總固體濃度和礦化度濃度的最優(yōu)波段,探討并建立最優(yōu)模型,以期為相應水質(zhì)參數(shù)的大面積遙感反演監(jiān)測提供理論依據(jù)。

        1 研究區(qū)概況

        博斯騰湖是中國最大的內(nèi)陸淡水湖,位于新疆巴音郭楞蒙古自治州天山南麓焉耆盆地東南,博湖縣城東14 km,地理坐標86°19′-87°28′E, 41°44′-42°14′N之間(圖1)。博斯騰湖分大小湖區(qū),大湖區(qū)水位1 047.5 m時,相應的水面面積為874.5 km2,容積75.9×108 m3,最大水深16.8 m,平均水深7.5 m;小湖區(qū)面積為363.94 km2[31]。博斯騰湖有10多條河溝入湖,主要以開都河、清水河和黃水溝為主,其中開都河是常年性河流,是惟一能常年補給博斯騰湖的河流,多年入湖水量平均為34.2×108 m3,占入湖水量的83.4%[32]。

        近30年來,開都河流域人口迅速增加,土地大量開墾,工業(yè)快速發(fā)展,大量的城鎮(zhèn)生活污水、農(nóng)田排水、工業(yè)廢水進入博斯騰湖,導致博斯騰湖生態(tài)環(huán)境日益惡化,湖水礦化度急劇變化(圖2)。

        2 數(shù)據(jù)與方法

        2.1 數(shù)據(jù)來源

        分析用數(shù)據(jù)主要包括實測數(shù)據(jù)和衛(wèi)星數(shù)據(jù)。其中,實測數(shù)據(jù)主要來自新疆巴音郭楞蒙古自治州環(huán)境監(jiān)測站,共14個采樣點(圖1)。衛(wèi)星數(shù)據(jù)來源于USGS網(wǎng)站,為Landsat衛(wèi)星的TM、ETM+影像數(shù)據(jù),采用與實際采樣時間接近的準同期數(shù)據(jù),并進行了預處理(包括大氣校正、輻射校正、幾何校正等)。

        2.2 研究方法

        通過實測和遙感數(shù)據(jù),分別分析了單波段數(shù)據(jù)、歸一化數(shù)據(jù)、波段組合數(shù)據(jù)與溶解性總固體濃度、礦化度濃度之間的相關(guān)性,并建立了數(shù)學模型。

        1)單波段數(shù)據(jù)模型的構(gòu)建。分析實測數(shù)據(jù)與各波段所對應監(jiān)測點的反射率數(shù)據(jù)的相關(guān)性,找出水質(zhì)參數(shù)的敏感波段,建立模型,并進行驗證,從而遴選出反演水質(zhì)參數(shù)的最佳波段與模型。

        2)歸一化數(shù)據(jù)模型的構(gòu)建。對多光譜遙感反射率數(shù)據(jù)進行歸一化處理后,有助于消除大氣、太陽高度角等因素的影響,提高反演精度[33]。因此,首先對遙感反射率數(shù)據(jù)進行歸一化處理,然后分析其與水質(zhì)參數(shù)之間的相關(guān)性,找出水質(zhì)參數(shù)的敏感波段,建立模型,進而尋找出水質(zhì)參數(shù)反演的更為敏感、精度更高的波段與模型。

        3)波段組合數(shù)據(jù)模型的構(gòu)建。由遙感影像各波段反射率情況(B2遙感反射率最高,B1與B3遙感反射率次之,B4、B5、B7遙感反射率最低)可知,用反射率最高波段與反射率低的波段進行組合計算,能夠增強遙感影像,消除大氣等因素的影響,從而較好地進行水質(zhì)參數(shù)反演。因此,本研究選用B2與B1、B3、B4、B5、B7分別進行加、減、乘、除法運算,分析不同組合與水質(zhì)參數(shù)的相關(guān)性,找出水質(zhì)參數(shù)的敏感波段組合,建立模型,進而遴選出誤差較小的波段組合及模型。

        3 結(jié)果與分析

        3.1 溶解性總固體濃度反演模型

        實測數(shù)據(jù)采樣時間分別為2005年4月21日,6月22日,8月31日和10月24日。所采用的TM遙感影像時間分別為2005年4月25日,6月12日,8月15日和11月3日。

        以2005年10月24日的實測采樣數(shù)據(jù)結(jié)合準同期2005年11月3日的遙感數(shù)據(jù)進行多光譜模型構(gòu)建。在14個采樣點的數(shù)據(jù)中除去兩個相對異常數(shù)據(jù),實際以12個采樣點進行了模型的構(gòu)建,進而利用未參與建模的4、6、8月的遙感數(shù)據(jù)與實測數(shù)據(jù)分別對所建模型進行驗證與精度評價。

        3.1.1 單波段數(shù)據(jù)模型 分析12個采樣點溶解性總固體濃度與TM影像6個波段(除去B6熱紅外波段)遙感反射率的相關(guān)性,尋找與溶解性總固體濃度反演的敏感波段,得出單波段遙感反射率與溶解性總固體濃度的相關(guān)性(圖3),由圖3可知,在前4個波段二者均有較高的負相關(guān)性,相關(guān)系數(shù)絕對值均大于0.85,尤其在第3波段,相關(guān)系數(shù)絕對值達到0.91,由此可見,利用單波段的遙感反射率可以構(gòu)建溶解性總固體濃度反演模型。基于上述分析,利用12個建模數(shù)據(jù)構(gòu)建了基于前4個波段遙感反射率的溶解性總固體濃度反演模型。

        其中,R2≥0.90的波段及模型如下:

        y=-111 968x2+4 641.5x+1 293.2 R2=0.95(x=R(B1))

        y=-70 507x2+4 834.2x+1 261.6 R2=0.95(x=R(B2))

        y=-127 918x2+2 384.9x+1 326.7 R2=0.95(x=R(B3))

        y=1 399.2e-5.283x R2=0.90(x=R(B3))

        y=-2E+0.6x2+33 259x+1 194.4 R2=0.95(x=R(B4))

        利用未參與建模的4、6、8月準同期單波段遙感反射率數(shù)據(jù)分別對上述5個模型進行驗證(圖4)。比較結(jié)果顯示,B3所建的指數(shù)模型反演精度較高(R2=0.90)。其三個驗證月的平均相對誤差分別為33.46%、18.37%和11.49%,均方根誤差分別為25.74、23.05和43.36 mg/L。采用B3單波段遙感反射率數(shù)據(jù)所建的指數(shù)模型能更好地達到反演效果。

        3.1.2 歸一化數(shù)據(jù)模型 對數(shù)據(jù)進行歸一化處理后做敏感性波段選擇,發(fā)現(xiàn)前4個波段的負相關(guān)性較高(圖略),與單波段敏感性波段的選擇相同(圖3)。根據(jù)選取的敏感波段,構(gòu)建基于歸一化遙感反射率的溶解性總固體濃度反演模型。

        其中R2≥0.90的波段及模型如下:

        y=-53.351x2+101.32x+1 293.2 R2=0.95(x=R(B1))

        y=-80.584x2+163.43x+1 261.6 R2=0.95(x=R(B1))

        y=-21.381x2+30.834x+1 326.7 R2=0.95(x=R(B3))

        y=1399.2e-0.068x R2=0.90(x=R(B3))

        y=-114.22x2+268.92x+1 194.4 R2=0.95(x=R(B4))

        對4、6、8月準同期單波段遙感反射率數(shù)據(jù)進行歸一化處理,并對上述5個模型進行驗證(圖5),比較結(jié)果顯示,B3所建的二次模型反演精度較高(R2=0.95)。其三個驗證月的平均相對誤差分別為4.83%、11.22%和11.43%,均方根誤差分別為0.78、3.65和20.92 mg/L。采用B3歸一化遙感反射率數(shù)據(jù)所建的二次模型能更好地達到反演效果。

        3.1.3 波段組合數(shù)據(jù)模型 通過波段之間加、減、乘、除運算后,利用12個建模數(shù)據(jù)構(gòu)建了基于波段組合數(shù)據(jù)的溶解性總固體濃度反演模型,R2≥0.90的波段組合有12個,分別為B2+B1、B2+B3、B2+B4、B2+B5、B2+B7、B2-B4、B2-B5、B2-B7、B2×B1、B2×B3、B2×B4、B2×B7。

        根據(jù)上述波段組合,建立了18個R2≥0.90的模型(模型略),然后對4、6、8月準同期遙感反射率數(shù)據(jù)相應波段分別進行加、減、乘、除法運算,并分別對各模型進行驗證和比較,發(fā)現(xiàn)B2×B1所構(gòu)建的指數(shù)、一次模型與B2×B3和B2×B4分別所構(gòu)建的指數(shù)模型精度較好(圖6)。其中,B2×B3所構(gòu)建的指數(shù)模型反演精度較高(R2=0.95)。其三個驗證月平均相對誤差分別為5.55%、16.31%和12.43%,均方根誤差分別為0.03、30.96和58.08 mg/L。采用B2×B3波段組合數(shù)據(jù)所建的指數(shù)模型能更好地達到反演效果。

        3.1.4 模型比較 綜合單波段數(shù)據(jù)模型、歸一化數(shù)據(jù)模型、波段組合數(shù)據(jù)模型的最佳波段或波段組合的溶解性總固體濃度反演驗證結(jié)果(圖7)可知,歸一化法模型比單波段法和波段組合法模型在3個驗證月中平均相對誤差和均方根誤差都小,其反演精度更高。因此,運用歸一化法所構(gòu)建的二次模型能更好地反演溶解性總固體濃度。

        3.2 礦化度濃度反演模型

        實測數(shù)據(jù)采樣時間為1998年9月24日和1999年9月19日。所采用準同期遙感影像為1998年9月13日的TM影像和1999年9月15日的ETM+影像。

        以1998年9月24日的實測采樣數(shù)據(jù)結(jié)合準同期1998年9月13日的遙感數(shù)據(jù)進行多光譜模型構(gòu)建。在14個采樣點的數(shù)據(jù)中去除兩個異常數(shù)據(jù),實際以12個采樣點數(shù)據(jù)進行模型構(gòu)建,并利用未參與建模的1999年9月15日的遙感數(shù)據(jù)與19日的實測數(shù)據(jù)分別對所建模型進行驗證與精度評價。圖1為14個采樣點遙感反射率。

        3.2.1 單波段數(shù)據(jù)模型 單波段遙感反射率與礦化度濃度在前4個波段均有較高的負相關(guān)性,尤其在第2波段,相關(guān)系數(shù)絕對值達到0.94(圖8)。因此利用12個建模數(shù)據(jù)構(gòu)建了基于前4個波段遙感反射率的礦化度濃度反演模型。其中,R2≥0.90的波段及模型如表1所示。

        用1999年9月15日準同期單波段遙感數(shù)據(jù)分別對各個模型進行驗證(表1),比較其結(jié)果可知,B2單波段數(shù)據(jù)所建指數(shù)模型反演精度較高(R2=0.91),平均相對誤差為16.02%,均方根誤差為23.20 mg/L。采用該模型能較好地進行水體礦化度濃度的反演。

        3.2.2 歸一化數(shù)據(jù)模型 歸一化之后的遙感反射率與礦化度濃度之間有很好的相關(guān)性,其敏感性波段與單波段相同(圖8)。根據(jù)選取的敏感波段,利用12個建模數(shù)據(jù)構(gòu)建基于歸一化遙感反射率數(shù)據(jù)的礦化度濃度反演模型。其中,R2≥0.90的波段及模型如表2所示。

        對1999年9月15日準同期單波段遙感反射率數(shù)據(jù)進行歸一化處理,再分別對各個模型進行驗證(表2),比較其結(jié)果可知,反演精度較高的模型為B2所建的指數(shù)模型(R2=0.91),平均相對誤差為6.88%,均方根誤差為40.89 mg/L。采用該指數(shù)模型能較好地進行水體礦化度濃度的反演。

        3.2.3 波段組合模型 對反射率最高的波段和較低的波段之間進行加、減、乘、除法運算,能更好地反演水質(zhì)參數(shù)。分析后發(fā)現(xiàn)R2≥0.90的波段組合有8個,分別為B2+B3、B2+B5、B2-B3、B2-B4、B2-B7、B2×B3、B2×B5、B2/B7。

        根據(jù)上述波段組合,建立了16個R2≥0.90的模型(模型略),然后對1999年9月15日準同期遙感反射率數(shù)據(jù)相應波段分別進行上述波段運算,并分別對各個模型進行驗證比較發(fā)現(xiàn),B2+B5所構(gòu)建的指數(shù)模型與B2-B7所構(gòu)建的指數(shù)、一次、二次模型相較于其他模型反演精度較高(表3)。其中,B2-B7波段組合數(shù)據(jù)所構(gòu)建的指數(shù)與線性模型精度較高。指數(shù)模型(R2=0.92)平均相對誤差為9.37%,均方根誤差為33.54 mg/L;線性模型(R2=0.90)平均相對誤差為9.20%,均方根誤差為32.64 mg/L,此兩個模型反演精度相當,皆可進行水體礦化度濃度反演。

        3.2.4 模型比較 單波段數(shù)據(jù)模型、歸一化數(shù)據(jù)模型、波段組合數(shù)據(jù)模型的最佳波段或波段組合的礦化度濃度反演驗證結(jié)果見表4。由表4可知,波段組合法所構(gòu)建的模型相對比單波段法和歸一化法所構(gòu)建的模型反演精度高。因此,采用波段組合所構(gòu)建的指數(shù)與線性模型能更好地反演礦化度濃度。

        4 小結(jié)與討論

        通過采用TM影像,結(jié)合實測水質(zhì)參數(shù),對干旱區(qū)內(nèi)陸湖泊博斯騰湖進行了溶解性總固體和礦化度濃度的遙感反演嘗試??傮w上效果比較理想,達到了預期結(jié)果,這為今后利用遙感數(shù)據(jù)在博斯騰湖進行溶解性總固體和礦化度濃度大面積遙感反演提供了理論基礎(chǔ)。

        通過對博斯騰湖遙感影像分析可知,其溶解性總固體和礦化度特征明顯。這主要表現(xiàn)在前四個波段有較高的反射率,B5、B7反射率較低。根據(jù)這一特點,能夠快速鎖定所需要的建模波段數(shù)據(jù)。

        通過試驗分析得出了反演水質(zhì)參數(shù)的最佳波段和最佳模型。對溶解性總固體濃度的反演,單波段與歸一化處理后最優(yōu)波段皆為B3,最佳模型分別為其所建的指數(shù)模型和二次模型;波段組合運算后的最優(yōu)組合為B2×B3,最佳模型為其所建的指數(shù)模型。對礦化度濃度的反演,單波段與歸一化處理后最優(yōu)波段皆為B2,最佳模型皆為其所建的指數(shù)模型;波段組合運算的最優(yōu)波段組合為B2-B7,最佳模型為其所建的指數(shù)與線性模型。

        通過研究發(fā)現(xiàn),運用歸一化法和波段組合法能更好地反演溶解性總固體和礦化度濃度。本研究分別采用單波段法、歸一化法、波段組合法對博斯騰湖溶解性總固體和礦化度濃度進行反演。通過建立反演建模,并進行驗證,比較其精度,發(fā)現(xiàn)對于溶解性總固體的反演,歸一化法反演精度高于單波段法和波段組合法,對于礦化度的反演,波段組合法反演精度高于單波段法和歸一化法。

        試驗數(shù)據(jù)有待增加,試驗結(jié)果有待改進。本試驗采樣點相對較少,實測數(shù)據(jù)與遙感數(shù)據(jù)非同期數(shù)據(jù),對試驗結(jié)果不免產(chǎn)生影響,同時試驗只對溶解性總固體和礦化度濃度進行了反演,不能全面構(gòu)建水質(zhì)參數(shù)反演模型。因此,為了實現(xiàn)對博斯騰湖水質(zhì)進行全方位、準確的遙感監(jiān)測,未來應增加采樣點數(shù)量和范圍,采用與實測數(shù)據(jù)同期的遙感數(shù)據(jù),同時,也應對懸浮物、葉綠素、總磷總氮等水質(zhì)參數(shù)進行建模與反演。

        參考文獻:

        [1] LINS H F,SLACK J R.Streamflow trends in the United States [J].Geophysical Research Letters,1999,26(2):227-230.

        [2] CLUIS D,LABERGE C. Climate change and trend detection in selected rivers within the Asia-Pacific region[J].Water International,2001,26(3):411-424.

        [3] 胡安焱.流域氣候變化和人類活動對內(nèi)陸湖泊影響的分析[J].干旱區(qū)資源與環(huán)境,2007,21(5):1-5.

        [4] 李亞威,韓天成.內(nèi)蒙古湖泊水資源及主要環(huán)境問題[J].內(nèi)蒙古環(huán)境保護,2000,12(2):17-21.

        [5] 楊桂山,馬榮華,張 路,等.中國湖泊現(xiàn)狀及面臨的重大問題與保護策略[J].湖泊科學,2010,22(6):799-810.

        [6] 徐金鴻,鄧明鏡,劉國棟.遙感技術(shù)在水污染監(jiān)測方面的應用[J].水土保持研究,2007,14(5):324-326,330.

        [7] 王 煒.環(huán)境監(jiān)測中遙感技術(shù)的應用[J].現(xiàn)代農(nóng)業(yè)科技,2011(22):283-284.

        [8] 蔡麗娜,劉平波,智長貴.水質(zhì)遙感監(jiān)測方法的探討[J].測繪與空間地理信息,2008,31(4):68-73.

        [9] 康志文,劉二東,賈 飚.遙感技術(shù)在水環(huán)境監(jiān)測中的應用[J].內(nèi)蒙古環(huán)境科學,2009,21(6):177-180.

        [10] 吳忠勇,程承旗.3S技術(shù)在環(huán)境監(jiān)測信息管理系統(tǒng)建設中的應用初探[J].中國環(huán)境監(jiān)測,1997,13(1):2-6.

        [11] 江 麗.遙感技術(shù)在資源調(diào)查及環(huán)境監(jiān)測中的應用[J].海洋測繪,2003,23(2):53-54.

        [12] 于德浩,王艷紅,鄧正棟,等.內(nèi)陸水體水質(zhì)遙感監(jiān)測技術(shù)研究進展[J].中國給水排水,2008,24(22):12-16.

        [13] 曹志勇,郝海森,張麗軍,等.平原水庫微污染水溶解氧含量模型反演與驗證[J].安徽農(nóng)業(yè)科學,2011,39(10):6023-6024.

        [14] 郝海森,平原水庫總氮質(zhì)量濃度的定量遙感研究[J].安徽農(nóng)業(yè)科學,2011,39(11):6857-6858.

        [15] EKSTRAND S. LANDSAT TM based quantification of chlorophyll-a during algae blooms in coastal waters[J].International Journal of Remote Sensing,2007,13(10):1913-1926.

        [16] KALLIO K,KUTSER T,HANNONEN T,et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons[J]. Science of the Total Environment,2001,268(1-3):59-77.

        [17] KOPONEN S,PULLIAINEN J,SERVOMAA H, et al. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring in Finnish lakes[J]. Science of the Total Environment,2001,268(1-3):95-106.

        [18] WILLIAMSON A N,GRABAU W E. Sediment concentration mapping in tidal estuaries[J]. Nasa Special Publication,1974, 351:1347-1386.

        [19] LATHROP J. Use of Thematic mapper data to assess water quality in green bay and central lake michigan[J].Photogrammetric Engineering Remote Sensing,1986,52(5):10-15.

        [20] 龔 珍,卜曉波,李 曄,等.東湖水體葉綠素濃度的遙感反演研究[J].安徽農(nóng)業(yè)科學,2013,41(11):5138-5139,5170.

        [21] 江 輝.基于遙感的鄱陽湖水體總懸浮物對水文特征的響應分析[J].安徽農(nóng)業(yè)科學,2012,40(12):7339-7341.

        [22] 徐良將,黃昌春,李云梅,等.基于高光譜遙感反射率的總氮總磷的反演[J].遙感技術(shù)與應用,2013,28(4):681-687.

        [23] 韓立妹,肖捷穎,王宇游,等.北方典型水庫型水源地水體葉綠素a含量遙感監(jiān)測研究[J].中國生態(tài)農(nóng)業(yè)學報,2012,20(9):1243-1247.

        [24] 李露鋒.珠海口海域浮游植物葉綠素a濃度遙感反演模型研究[D].北京:中國地質(zhì)大學,2012.

        [25] 劉 瑤,江 輝.鄱陽湖表層水體總磷含量遙感反演及其時空特征分析[J].自然資源學報,2013,28(12):2169-2177.

        [26] 煙貫發(fā),齊少群,張思沖,等.松花江哈爾濱江段高錳酸鹽指數(shù)的遙感反演[J].環(huán)境化學,2013,32(9):1798-1804.

        [27] 張曉斌.基于高光譜遙感的巢湖水體葉綠素-a濃度反演模型研究[D].合肥:安徽建筑工業(yè)學院,2012.

        [28] 潘邦龍,易維寧,王先華,等.湖泊水體高光譜遙感反演總磷的地統(tǒng)計算法設計[J].紅外與激光工程,2012,41(5):1255-1260.

        [29] 徐海量,郭永平,李衛(wèi)紅.新疆博斯騰湖水污染特點分析[J].干旱區(qū)研究,2003,20(3):192-196.

        [30] 劉 江,賈爾恒·阿哈提,程 艷,等.博斯騰湖污染物總量控制定額確定方法[J].水資源與水工程學報,2013,24(5):206-210.

        [31] 袁 峽,楊佃華.新疆博斯騰湖水環(huán)境問題研究[J].干旱區(qū)研究,2008,25(5):735-740.

        [32] 萬洪秀,孫占東,王 潤.博斯騰湖水位變動對濕地生態(tài)環(huán)境的影響[J].自然資源學報,2006,21(2):260-266.

        [33] 劉忠華.基于高分數(shù)據(jù)的太湖重點污染入湖河流葉綠素a濃度遙感反演[D].南京:南京師范大學,2012.

        中文字幕不卡高清免费| 欧美人伦禁忌dvd放荡欲情 | 亚洲综合中文字幕乱码在线| 国产精品女同久久久久久| 在线视频观看一区二区| 草草地址线路①屁屁影院成人| 免费人成视频x8x8| 欧美日韩一区二区三区视频在线观看| 人妻被公上司喝醉在线中文字幕| 亚洲欧美日韩综合一区二区| 国产99久久精品一区二区| 欧美老妇人与禽交| av无码特黄一级| 日本免费一区二区在线看片| 色先锋av影音先锋在线| 亚洲爆乳无码专区| av熟女一区二区久久| 漂亮人妻被强了中文字幕| 午夜福利av无码一区二区| 欧美一区波多野结衣第一页| 日本大胆人体亚裔一区二区 | 亚洲熟女一区二区三区不卡 | 蜜桃视频在线观看免费亚洲| 欧洲熟妇色xxxxx欧美老妇伦| 国产小屁孩cao大人| 操国产丝袜露脸在线播放| 亚洲爆乳无码专区www| 中出人妻中文字幕无码| 96精品在线| 国产精品自拍视频免费看| 亚洲国产精品成人久久| 伊人色综合九久久天天蜜桃| 精品人妻免费看一区二区三区 | 免费乱理伦片在线观看| 欧美精品偷自拍另类在线观看| 亚洲国产高清在线视频| 在线观看国产成人av天堂野外| 香港日本三级亚洲三级| 91精品综合久久久久m3u8 | 欧美男生射精高潮视频网站| 国产女主播精品大秀系列|