黎涌明,陳小平,烏里·哈特曼
?
4 min跑步和自行車全力運(yùn)動(dòng)中運(yùn)動(dòng)方式對(duì)有氧供能比例的影響
黎涌明1,2,陳小平3,烏里·哈特曼4
擬探究4 min全力跑步和自行車運(yùn)動(dòng)中運(yùn)動(dòng)方式對(duì)有氧供能比例的影響。方法:招募了16名鐵人3項(xiàng)、自行車和長(zhǎng)跑業(yè)余愛好者(年齡33.5±10.6歲,身高180±9 cm,體重75.8±8.4 kg,訓(xùn)練年限14±10年),以4 min全力(室外田徑場(chǎng))跑步和功率自行車為例,比較了兩種運(yùn)動(dòng)方式的能量供應(yīng)和攝氧量動(dòng)力學(xué)特征。使用便攜式氣體代謝儀和血乳酸分析儀對(duì)運(yùn)動(dòng)過(guò)程中的能量代謝指標(biāo)進(jìn)行了測(cè)試和分析,運(yùn)用基于運(yùn)動(dòng)中累積攝氧量、累積血乳酸和運(yùn)動(dòng)后過(guò)量氧耗的快速部分的計(jì)算方法對(duì)能量供應(yīng)量進(jìn)行了計(jì)算。結(jié)果:4 min全力跑步和自行車的有氧供能比例沒有顯著差異(77.0±3.8% vs.75.9±2.6%,P>0.05),磷酸原供能比例沒有顯著區(qū)別(11.4±2.6% vs.10.0±2.0%,P>0.05),糖酵解供能比例存在顯著差異(11.6±3.4% vs.14.1±3.3%,P<0.05)。兩種運(yùn)動(dòng)方式的攝氧量動(dòng)力學(xué)快速部分相似(16.2±3.69 s vs.14.5±4.84 s,P>0.05),慢速部分幅度存在顯著差異(0.26±0.09 L/min vs.0.54±0.32 L/min,P<0.05)。結(jié)論:4 min全力跑步和自行車的研究結(jié)果似乎表明,運(yùn)動(dòng)方式并不影響全力運(yùn)動(dòng)中的有氧供能比例,此結(jié)論的得出還有待對(duì)其他運(yùn)動(dòng)方式和其他持續(xù)時(shí)間研究印證。
跑步;自行車;有氧供能比例;攝氧量動(dòng)力學(xué)
人體運(yùn)動(dòng)是一個(gè)將生物能轉(zhuǎn)換為機(jī)械能的過(guò)程,這一過(guò)程包括生理學(xué)方面產(chǎn)生能量和生物力學(xué)方面利用能量?jī)蓚€(gè)環(huán)節(jié)[2]。人體能量的產(chǎn)生包括磷酸原、糖酵解和有氧供能3個(gè)途徑,其中有氧供能量占所有供能量的比例被稱為有氧供能比例[18]。有氧供能比例是人體全力運(yùn)動(dòng)的一個(gè)重要生物學(xué)特征,對(duì)其的描述最早可追溯到Astrand等人1970年的著作(Textbook of work physiology)[5],該書第一次給出了有大肌肉參與的全力運(yùn)動(dòng)所對(duì)應(yīng)的有氧供能比例,如2 min的全力運(yùn)動(dòng)所對(duì)應(yīng)的有氧供能比例為50%。這些對(duì)全力運(yùn)動(dòng)有氧供能比例的描述被后續(xù)眾多運(yùn)動(dòng)生理學(xué)和運(yùn)動(dòng)訓(xùn)練學(xué)著作所引用[11,21,29],然而,這些描述都沒有提及運(yùn)動(dòng)方式對(duì)全力運(yùn)動(dòng)有氧供能比例的可能影響。盡管綜述不同運(yùn)動(dòng)方式(包括跑步、自行車、游泳、劃船等)有氧供能比例的相關(guān)研究可以得到全力運(yùn)動(dòng)持續(xù)時(shí)間和有氧供能比例的相關(guān)性公式(y=22.404×Ln(x)+45.176)[3,25],但這并不能排除運(yùn)動(dòng)方式對(duì)全力運(yùn)動(dòng)有氧供能比例的潛在影響。運(yùn)動(dòng)方式對(duì)全力運(yùn)動(dòng)有氧供能比例的影響有待專門的實(shí)驗(yàn)研究。
鑒于此,本研究擬選取跑步和自行車這兩種運(yùn)動(dòng)方式,比較特定運(yùn)動(dòng)時(shí)間(4 min)內(nèi)兩種運(yùn)動(dòng)方式的有氧供能比例,探究運(yùn)動(dòng)方式是否影響全力運(yùn)動(dòng)時(shí)的有氧供能比例,為全力運(yùn)動(dòng)持續(xù)時(shí)間和有氧供能比例的相關(guān)性公式在不同運(yùn)動(dòng)方式間的應(yīng)用提供理論基礎(chǔ)。由于本研究屬于系列研究的一部分[24],在整體設(shè)計(jì)中,本研究的數(shù)據(jù)被用于與4 min的皮劃艇運(yùn)動(dòng)(對(duì)應(yīng)為皮劃艇奧運(yùn)項(xiàng)目1 000 m的比賽持續(xù)時(shí)間)進(jìn)行對(duì)比,因此,本研究所選取的持續(xù)時(shí)間為4 min。
2.1 研究對(duì)象
16名來(lái)自鐵人3項(xiàng)、長(zhǎng)跑和自行車項(xiàng)目的健康男性業(yè)余愛好者(年齡33.5±10.6歲,身高180±9 cm,體重75.8±8.4 kg,訓(xùn)練年限14±10年)自愿參加本次測(cè)試,并簽署知情同意書。所有受試者熟知測(cè)試流程、要求和可能存在的危險(xiǎn),在測(cè)試前一天未參加劇烈身體活動(dòng),測(cè)試當(dāng)天保持正常高糖飲食習(xí)慣,測(cè)試前2 h內(nèi)未進(jìn)食。
2.2 研究方法
所有受試者在1周內(nèi)參加2次4 min的全力(time trial)運(yùn)動(dòng)測(cè)試(跑步和自行車,二者順序?yàn)殡S機(jī)),兩次測(cè)試間隔>24 h。跑步測(cè)試在室外400 m標(biāo)準(zhǔn)塑膠跑道進(jìn)行,自行車測(cè)試在實(shí)驗(yàn)室內(nèi)的電阻式功率自行車(Lode Excalibur Sport,Lode.,BV,Groningen,The Netherlands)上進(jìn)行。測(cè)試前,受試者先進(jìn)行10 min自選強(qiáng)度的準(zhǔn)備活動(dòng),休息5 min后開始全力運(yùn)動(dòng)。受試者采用自選體力分配方式(pacing strategy)完成全力運(yùn)動(dòng),以在4 min內(nèi)完成盡可能多的距離或做功。測(cè)試過(guò)程中給予口頭鼓勵(lì),盡量確保受試者全力參與測(cè)試。自行車測(cè)試前根據(jù)受試者的自感舒適度調(diào)整功率自行車的座位和扶手位置,測(cè)試過(guò)程中要求受試者盡量保持90 rpm的騎頻。兩類測(cè)試所對(duì)應(yīng)的溫度、氣壓和濕度分別為15~25℃、995~1 010 mbar和30%~60%。
運(yùn)用便攜式氣體代謝儀(MetaMax 3B,Cortex Biophysic,Leipzig,Germany)對(duì)受試者全程進(jìn)行氣體代謝測(cè)試,包括10 min準(zhǔn)備活動(dòng)、5 min休息、4 min全力運(yùn)動(dòng)和運(yùn)動(dòng)后6 min休息。測(cè)試前按照儀器使用要求進(jìn)行氣壓、氣體(標(biāo)準(zhǔn)氣體濃度O2為15.00%,CO2為5.00%)和氣量(氣筒容積為3 L)校準(zhǔn)。采集準(zhǔn)備活動(dòng)前后、全力運(yùn)動(dòng)前后和全力運(yùn)動(dòng)后第1、3、5、7和10 min的耳血20 μl,并用血乳酸分析儀(Biosen S_line,EKF Diagnostic,Barleben,Germany)進(jìn)行分析。
階段1(心動(dòng)力部分)
+A1×(1-e-(t-TD1/τ1)
(1)
階段2(快速部分)
+A2×(1-e-(t-TD1/τ2)
運(yùn)用配對(duì)t檢驗(yàn)(SPSS Statistics 19,IBM Corporation,New York,USA)對(duì)跑步和自行車相關(guān)指標(biāo)進(jìn)行顯著性檢驗(yàn),選取P=0.05的顯著性水平。
4 min全力跑步和自行車的能量供應(yīng)比例見圖2,跑步和自行車兩種運(yùn)動(dòng)方式在磷酸原(11.4±2.6% vs.10.0±2.0%)和有氧供能比例(77.0±3.8% vs.75.9±2.6%)上沒有顯著性差異(P>0.05),但是,在糖酵解供能比例上卻存在顯著性差異(11.6±3.4% vs.14.1±3.3%,P<0.05)。
表1 4 min跑和自行車全力運(yùn)動(dòng)相關(guān)代謝指標(biāo)及動(dòng)力學(xué)指標(biāo)
圖1 1名受試者(7號(hào))4 min跑步和自行車全力運(yùn)動(dòng)對(duì)應(yīng)的示意圖
圖2 4 min跑和自行車全力運(yùn)動(dòng)的能量供應(yīng)比例示意圖
當(dāng)然,本研究一方面只選取了兩種常見的運(yùn)動(dòng)方式(跑步和自行車)進(jìn)行研究,且這兩種運(yùn)動(dòng)方式在肌肉參與部位(下肢都參與)和參與量方面都較為接近,所得到的結(jié)論能否適用于其他運(yùn)動(dòng)方式還不清楚。另一方面,本研究只對(duì)某一特定持續(xù)時(shí)間(4 min)進(jìn)行了研究,這一特定持續(xù)時(shí)間屬于有氧供能主導(dǎo)的時(shí)段(>75 s[3,18]),所得到的結(jié)論能否適用于其他無(wú)氧供能主導(dǎo)的時(shí)段(<75 s[3,18])也不清楚。因此,運(yùn)動(dòng)方式是否影響全力運(yùn)動(dòng)有氧供能比例這一科學(xué)問(wèn)題,還有待未來(lái)對(duì)更多的運(yùn)動(dòng)方式(如上肢類運(yùn)動(dòng)方式)和其他持續(xù)時(shí)間(如30 s、1 min、2 min等)進(jìn)行研究。
本研究以4 min全力跑步和自行車為例,探究了運(yùn)動(dòng)方式是否影響全力運(yùn)動(dòng)的有氧供能比例,結(jié)果顯示,4 min全力跑步和自行車的有氧供能比例沒有顯著性差異。Astrand等人對(duì)全力運(yùn)動(dòng)有氧供能比例的描述,以及基于文獻(xiàn)綜述得到的全力運(yùn)動(dòng)持續(xù)時(shí)間和有氧供能比例的相關(guān)性公式,似乎可以應(yīng)用于不同的運(yùn)動(dòng)方式。但是,此結(jié)論的得出還有待對(duì)其他更多的運(yùn)動(dòng)方式和其他不同的持續(xù)時(shí)間進(jìn)行研究。
[1]黎涌明.攝氧量動(dòng)力學(xué)—?dú)v史、特征和啟示[J].武漢體育學(xué)院學(xué)報(bào),2015,49(3):63-69.
[2]黎涌明,紀(jì)曉楠,資薇.人體運(yùn)動(dòng)的本質(zhì)[J].體育科學(xué),2014,34(2):11-17.
[3]黎涌明,毛承.競(jìng)技體育項(xiàng)目的專項(xiàng)供能比例—亟待糾正的錯(cuò)誤[J].體育科學(xué),2014,34(10):93-96.
[4]ACHTEN J,VENABLES M C,JEUKENDRUP A E.Fat oxidation rates are higher during running compared with cycling over a wide range of intensities[J].Metabolism,2003,52(6):747-752.
[5]ASTRAND P O,RODAHL K.Textbook of Work Physiology[M].New York:McGraw-Hill,1970.
[7]BARSTOW T J,JONES A M,NGUYEN P H,etal.Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise[J].J Appl Physiol,1996,81(4):1642-1650.
[8]BENEKE R.Maximal lactate steady state concentration(ML-SS):Experimental and modelling approaches[J].Eur J Appl Physiol,2003,88(4-5):361-369.
[9]BIJKER K E,DE GROOT G,HOLLANDER A P.Delta efficiencies of running and cycling[J].Med Sci Sports Exe,2001,33(9):1546-1551.
[11]BOMPA T O,HAFF G G.Periodization- theory and Methodology of Training[M].Champaigh:Human Kinetics,2009.22-29.
[12]CAPUTO F,DENADAI B S.Effects of aerobic endurance trai-ning status and specificity on oxygen uptake kinetics during maximal exercise[J].Eur J Appl Physiol,2004,93(1-2):87-95.
[13]CAPUTO F,MELLO M T,DENADAI B S.Oxygen uptake kinetics and time to exhaustion in cycling and running:a comparison between trained and untrained subjects[J].Arch Physiol Biochem,2003,111(5):461-466.
[14]CARTER H,JONES A M,BARSTOW T J,etal.Oxygen uptake kinetics in treadmill running and cycle ergometry:A comparison[J].J Appl Physiol,2000,89(3):899-907.
[15]CIBA-GEIGY.Wissenschaftliche Tabellen Geigy[M].Basel:Ciba-Geigy,1985.
[16]DI PRAMPERO P E.Energetics of muscular exercise[J].Rev Physiol Biochem Pharmacol,1981,89:143-222.
[17]FRAUENDORF H,KOBRYN U,GELBRICH W.Blutdruck-und Herzschlagfrequenzverhalten bei fünf verschiedenen Formen dynamischer Muskelarbeit[J].Zeitschrift für Arbeitswissenschaft,1990,44(4):214-216.
[18]GASTIN P B.Energy system interaction and relative contribution during maximal exercise[J].Sports Med,2001,31(10):725-741.
[19]GREENHAFF P L,HULTMANN E,HARRIS R C.Carbohydrate Metabolism[M].Principles of Exercise Biochemistry.Basel:Karger,2004.
[20]HILL D W,HALCOMB J N,STEVENS E C.Oxygen uptake kinetics during severe intensity running and cycling[J].Eur J Appl Physiol,2003,89(6):612-618.
[21]HOLLMANN W,STRUEDER H K.Sportmedizin:Grundlagen fuer Koerperliche Aktivitaet,Training und Praeventivmedizin[M].Stuttgart:Schattauer,2009:68,501-507.
[22]JONES A M,POOLE D C.Oxygen uptake dynamics:From muscle to mouth-an introduction to the symposium[J].Med Sci Sports Exe,2005,37(9):1542.
[23]KNUTTGEN H G.Oxygen debt after submaximal physical exercise[J].J Appl Physiol,1970,29(5):651-657.
[24]LI Y.Energetics in Canoe Sprint[M].University of Leipzig.Doctor,2015.
[25]LI Y,NIESSEN M,CHEN X,etal.Overestimate of relative aerobic contribution with maximal accumulated oxygen deficit:A review[J].J Sports Med Phys Fit,2015,55(5):377-382.
[26]MARGARIA R,EDWARDS H T,DILL D B.The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction[J].Am J Physiol,1933,106:689-714.
[27]MILLET G P,VLECK V E,BENTLEY D J.Physiological differences between cycling and running:Lessons from triathletes[J].Sports Med,2009,39(3):179-206.
[28]ORIE J,HOFMAN N,DE KONING J J,etal.Thirty-eight years of training distribution in Olympic speed skaters[J].Int J Sports Physiol Perform,2014,9(1):93-99.
[29]POWERS S K,HOWLEY E T.Exercise Physiology:Theory and Application to Fitness and Performance[M].New York:Mc Grow Hill,2007:33-38.
[30]PRINGLE J S,DOUST J H,CARTER H,etal.Oxygen uptake kinetics during moderate,heavy and severe intensity "submaximal" exercise in humans:The influence of muscle fibre type and capillarisation[J].Eur J Appl Physiol,2003,89(3-4):289-300.
[31]ROBERTS A D,MORTON A R.Total and alactic oxygen debts after supramaximal work[J].Eur J Appl Physiol,1978,38(4):281-289.
[32]SANDALS L E,WOOD D,DRAPER S B,etal.Influence of pacing strategy on oxygen uptake during treadmill middle-distance running[J].Int J Sports Med,2006,27(1):37-42.
[33]SCOTT C B,LITTLEFIELD N D,CHASON J D,etal.Differences in oxygen uptake but equivalent energy expenditure between a brief bout of cycling and running[J].Nutr Metab(Lond),2006,(3):1-5.
[34]STEGMANN J.Leistungsphysiologie:Physiologische Grundlagen der Arbeit und des Sports[M].Stuttgart:Georg Thieme Verlag,1991:56-59.
Influence of Exercise Modalities on Relative Aerobic Energy Contribution in 4 min Running and Cycling Time Trial
LI Yong-ming1,2,CHEN Xiao-ping3,HARTMANN Ulich4
Aim The relative aerobic energy contribution is a fundamental characteristic of maximal exercises.Previous investigations have reported some values of relative aerobic energy contribution,or some correlation equation,for different duration of maximal exercises,without verifying the influence of exercise modalities.The aim of this study is to investigate the influence of exercise modalities on relative aerobic energy contribution in 4min running and cycling time trial.Methods This study recruited 16 amateur athletes from triathlon,cycling,and long-distance running (33.5±10.6 yrs,180±9cm,75.8±8.4 kg,training experience 14±10 yrs) to participate in two 4min time trails,with the exercise modalities of field-running,and ergometer-cycling.The energy contributions and oxygen uptake kinetics were compared for these two exercise modalities.We utilized a portable gas analyzer and a blood lactate analyzer to measure and assess the relative parameters.The energy contributions were calculated with the method based on the accumulated oxygen uptake,and blood lactate during the maximal exercise,as well as the fast component of the oxygen debt during the recovery.Results The results demonstrated similar aerobic energy contributions (77.0±3.8% vs.75.9±2.6%,P>0.05),similar phosphate energy contributions (11.4±2.6% vs.10.0±2.0%,P>0.05),but significantly different glycolysis energy contributions (11.6±3.4% vs.14.1±3.3%,P<0.05) between running and cycling.The oxygen uptake kinetics were similar in the fast component(16.2±3.69 s vs.14.5±4.84 s,P>0.05),but significant different in the slow component(0.26±0.09 L/min vs.0.54±0.32 L/min,P<0.05).Conclusion The results from the 4min time trials of running and cycling indicate seemly that the exercise modalities don’t influence the relative aerobic energy contribution in maximal exercises.This conclusion warrants future investigations which emphasize on more exercise modalities,and more duration.
running;cycling;aerobicenergycontribution;oxygenuptakekinetics
1000-677X(2016)09-0048-06
10.16469/j.css.201609007
2016-01-11;
2016-08-11
國(guó)家自然科學(xué)基金項(xiàng)目(31500963);上海市人類運(yùn)動(dòng)能力開發(fā)與保障重點(diǎn)實(shí)驗(yàn)室(上海體育學(xué)院)項(xiàng)目資助(11DZ2261100)。
黎涌明(1985-),男,湖南汨羅人,博士,副教授,博士研究生導(dǎo)師,主要研究方向?yàn)槿梭w運(yùn)動(dòng)的動(dòng)作和能量代謝特征,Tel: (021)51253467,E-mail:59058729@163.com;陳小平,(1956-),男,山東武城人,博士,教授,博士研究生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)訓(xùn)練,Tel:(0574)87600227,E-mail:chenxiaoping@nbu.edu.cn;烏里·哈特曼,(1953-),男,德國(guó)波恩人,博士,教授,博士研究生導(dǎo)師,主要研究方向?yàn)楦?jìng)技體育的能量代謝特征,Tel:+49(0341)9731700,E-mail:uhartmann@uni-leipzig.de。
1.上海體育學(xué)院 體育教育訓(xùn)練學(xué)院,上海 200438;2.上海市人類運(yùn)動(dòng)能力開發(fā)與保障重點(diǎn)實(shí)驗(yàn)室,上海 200438;3.寧波大學(xué) 體育學(xué)院,浙江 寧波 315211;4.(德國(guó))萊比錫大學(xué) 體育科學(xué)學(xué)院,萊比錫 04109 1.Shanghai University of Sport,Shanghai 200438,China;2.Shanghai Key Lab of Human Performance,Shanghai 200438,China;3.Ningbo University,Ningbo 315211,China;4.University of Leipzig,Leipzig 04109,Germany.
G804.2
A