張 坦,崔 迪,張 喆,孫 易,丁樹哲
?
游泳運(yùn)動(dòng)對糖尿病小鼠骨骼肌AMPK/SIRT1/NF-κB炎癥信號(hào)通路的影響
張 坦1,2,崔 迪1,2,張 喆1,2,孫 易1,2,丁樹哲1,2
目的:探討耐力運(yùn)動(dòng)對糖尿病小鼠骨骼肌AMPK/SIRT1/NF-κB炎癥信號(hào)通路及相關(guān)炎癥因子的影響,以其從骨骼肌慢性炎癥的角度為肥胖、糖尿病等代謝類疾病的防治提供新的研究靶向。方法:采用4周高脂膳食喂養(yǎng)加注射鏈脲佐菌素(Streptozotocin,STZ)的方法構(gòu)建糖尿病小鼠模型,建模成功后隨機(jī)分為安靜對照組(C)、運(yùn)動(dòng)對照組(E)、糖尿病安靜組(D)、糖尿病運(yùn)動(dòng)組(DE)。E組和DE組進(jìn)行6周游泳耐力運(yùn)動(dòng),1 h/天,5天/周。末次運(yùn)動(dòng)結(jié)束,空腹12 h后處死小鼠并采樣。RT-PCR及Western Blotting技術(shù)檢測相關(guān)基因的mRNA及蛋白表達(dá)水平。結(jié)果:1)與C組相比,D組小鼠體重極顯著降低(P<0.01),空腹血糖顯著升高(P<0.01);與C組相比,E組小鼠體重顯著降低(P<0.05);與D組相比,DE組小鼠空腹血糖顯著降低(P<0.05);與E組相比,DE組小鼠體重極顯著性降低(P<0.01),空腹血糖極顯著性升高(P<0.01)。2)與C組相比,D組小鼠IL-10mRNA表達(dá)極顯著性降低(P<0.01),E組IL-6 mRNA表達(dá)顯著性升高(P<0.05),IL-10 mRNA表達(dá)極顯著性升高(P<0.01);與D組相比,DE組TNF-α mRNA表達(dá)顯著降低(P<0.05),IL-10 mRNA表達(dá)極顯著性升高(P<0.01);與E組相比,DE組IL-6 mRNA表達(dá)顯著性下降(P<0.05)。3)與C組相比,D組 AMPK蛋白表達(dá)和AMPK活性顯著性下降(P<0.05),NF-κBp65 mRNA表達(dá)顯著性升高(P<0.05);與D組相比,DE組AMPKα2及SIRT1 mRNA表達(dá)極顯著性升高(P<0.01),AMPK及p-AMPK蛋白表達(dá)和AMPK活性顯著性升高(P<0.05),NF-κBp65蛋白表達(dá)極顯著性下降(P<0.01);與E組相比,DE組SIRT1 mRNA表達(dá)極顯著性升高(P<0.01)。結(jié)論:長期耐力運(yùn)動(dòng)可抑制糖尿病小鼠骨骼肌中促炎因子的基因表達(dá),促進(jìn)抗炎因子的基因表達(dá),同時(shí),AMPK/SIRT1/NF-κB炎癥信號(hào)通路的被抑制效應(yīng)得到緩解。
耐力運(yùn)動(dòng);糖尿病;骨骼肌;炎癥;AMPK/SIRT1/NF-кB
現(xiàn)代社會(huì)的不斷進(jìn)步已成功抵御了多種疾病,極大地延長了人類壽命,改善了人類生活質(zhì)量。然而,與此同時(shí),長期高熱量膳食與缺乏運(yùn)動(dòng)導(dǎo)致以胰島素抵抗為主要病理特征的肥胖、糖尿病等代謝類疾病的發(fā)病率在全世界范圍內(nèi)逐年攀升。針對肥胖導(dǎo)致胰島素抵抗的分子機(jī)制,人們提出了包括氧化應(yīng)激、線粒體功能障礙、缺氧等在內(nèi)的多種假說[30]。自1999年,慢性炎癥學(xué)說逐漸得到認(rèn)可[40]。哈佛醫(yī)學(xué)院的Bruce M.Spiegelman首次提出“胰島素抵抗的核心是炎癥”這一概念。肥胖時(shí)機(jī)體常處于慢性炎癥狀態(tài),主要特征是促炎癥因子,如(tumour necrosis factor-α,TNF-α)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)、轉(zhuǎn)化生長因子(transforming growth factor,TGF-β)、單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1,MCP-1/CCL2)等水平升高,同時(shí)炎癥信號(hào)通路,如氨基末端激酶(Jun N-terminal kinase,JNK)、核因子κB (nuclear factor-κB,NF-κB)、絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)等被激活。越來越多的證據(jù)表明,肥胖相關(guān)的慢性炎癥是肥胖誘發(fā)的胰島素抵抗的主要機(jī)制[20,27]。目前,炎癥在運(yùn)動(dòng)、健康和疾病中的作用備受關(guān)注,被列為2014年ACSM年會(huì)主題(http://www.acsm.org/attend-a-meeting/2014-annual-meeting)。近年來國內(nèi)運(yùn)動(dòng)人體科學(xué)領(lǐng)域?qū)β匝装Y的關(guān)注也逐漸增多,但研究基本停留在檢測炎癥因子表達(dá)等水平,對相關(guān)的分子機(jī)制研究尚不夠深入。
骨骼肌是機(jī)體最大的代謝器官,在維持整個(gè)機(jī)體代謝平衡中扮演著極為重要的角色,同時(shí)胰島素介導(dǎo)的葡萄糖攝取80%由骨骼肌完成。近年的研究結(jié)果證實(shí),除脂肪組織和肝臟組織[2]外,骨骼肌是機(jī)體慢性炎癥發(fā)生、發(fā)展的又一重要組織,骨骼肌慢性炎癥是肥胖和T2DM發(fā)病的早期分子事件[9],可導(dǎo)致骨骼肌穩(wěn)態(tài)失調(diào),蛋白水解活性和骨骼肌再生能力減弱[8]。但肥胖導(dǎo)致骨骼肌慢性炎癥的機(jī)制并不完全明了,其中炎癥信號(hào)通路腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)/沉默信息因子2相關(guān)酶1(silent mating type information regulation 2 homolog1,SIRT1)/NF-кB[16,32]信號(hào)通路可能參與其中,但目前關(guān)于運(yùn)動(dòng)對骨骼肌AMPK/SIRT1/NF-кB通路介導(dǎo)的炎癥反應(yīng)影響的研究甚少。鑒于此,本研究擬通過構(gòu)建糖尿病小鼠模型并施以運(yùn)動(dòng)干預(yù),探究AMPK/SIRT1/NF-кB信號(hào)通路與骨骼肌炎癥反應(yīng)的內(nèi)在聯(lián)系及其與代謝性疾病的相關(guān)機(jī)制,以期為肥胖、糖尿病等代謝類疾病的運(yùn)動(dòng)防治提供理論依據(jù)及數(shù)據(jù)支持。
1.1 實(shí)驗(yàn)動(dòng)物
清潔級(jí)4周齡C57BL/6雄性小鼠共39只,體重為16.49±1.50 g,均由上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司提供。實(shí)驗(yàn)動(dòng)物生產(chǎn)許可證號(hào):SCXK(滬)2007-0005實(shí)驗(yàn)動(dòng)物的使用許可證號(hào):SYXK(滬)2004-0001。所有小鼠適應(yīng)性喂養(yǎng)1周后隨機(jī)分為正常對照組(n=16)和糖尿病建模組(n=23),其中正常對照組飼喂普通飼料,糖尿病建模組為高脂飼料(基礎(chǔ)飼料54.6%,豬油16.9%,蔗糖14%,酪蛋白10.2%,預(yù)飼料2.1%,麥芽糊精2.2%)。實(shí)驗(yàn)小鼠自由飲食、飲水,1~2天更換一次墊料。小鼠飼養(yǎng)環(huán)境溫度為20℃~24℃,相對濕度維持在50%~70%,自然光照,通風(fēng)流暢。
1.2 糖尿病小鼠模型的建立
將糖尿病建模組小鼠持續(xù)高脂膳食喂養(yǎng)4周后注射STZ構(gòu)建糖尿病小鼠模型,其中STZ的注射劑量為50 mg/天/kg體重,注射持續(xù)5天,根據(jù)空腹血糖水平確定是否造模成功,以空腹血糖大于11.1 mmol/L為造模成功判定標(biāo)準(zhǔn)[12]。如表1所示,4周高脂膳食聯(lián)合STZ給藥干預(yù)后,糖尿病組小鼠空腹血糖顯著高于正常對照組(P<0.01),提示糖尿病小鼠模型建立成功。最終共有16只小鼠符合糖尿病建模標(biāo)準(zhǔn)。
表1 小鼠的空腹血糖
建模成功后將兩組小鼠再進(jìn)一步分組,其中正常對照組隨機(jī)分為安靜對照組(C,n=8)和運(yùn)動(dòng)對照組(E,n=8),糖尿病建模組隨機(jī)分為糖尿病安靜組(D,n=8)和糖尿病運(yùn)動(dòng)組(DE,n=8)。
1.3 實(shí)驗(yàn)動(dòng)物的運(yùn)動(dòng)方案
鑒于與其它運(yùn)動(dòng)類型相比,游泳運(yùn)動(dòng)是一種對動(dòng)物創(chuàng)傷及痛苦極小的運(yùn)動(dòng)。此外,6周游泳運(yùn)動(dòng)足以增強(qiáng)老年糖尿病大鼠骨骼肌抗氧化能力[31],且糖尿病小鼠無負(fù)重游泳的強(qiáng)度相當(dāng)于未經(jīng)訓(xùn)練個(gè)體最大攝氧量的40%~60%[37]。因此本實(shí)驗(yàn)中E組和DE組的運(yùn)動(dòng)方案為:6周無負(fù)重的游泳耐力運(yùn)動(dòng),每天1 h(4:30 pm-5:30 pm),每周5天(周1~周5)。末次運(yùn)動(dòng)結(jié)束,實(shí)驗(yàn)小鼠空腹12 h后處死。取右側(cè)股四頭肌,迅速裝入已經(jīng)標(biāo)記好的凍存管中,立即置于液氮中速凍,之后轉(zhuǎn)入-80℃冰箱保存,待測。
1.4 Real-Time PCR
主要包括4個(gè)過程:1)骨骼肌中RNA提取。冰上稱取一側(cè)股四頭肌約60 mg,根據(jù)Invitrogen TRIZOL方法提取骨骼肌RNA;2)RNA濃度和純度的檢測。超微紫外/可見光分光光度計(jì)來測所提RNA的濃度和純度;3)RNA反轉(zhuǎn)錄。將提取的RNA用TOYOBO FSQ101試劑盒反轉(zhuǎn)錄為cDNA;4)RT-PCR擴(kuò)增,ABI StepOne 型實(shí)時(shí)熒光定量PCR儀檢測相關(guān)炎癥因子基因以及AMPK/SIRT1/NF-κB信號(hào)通路基因相對含量,擴(kuò)增所用的熒光染料為TOYOBO QPK201 SYBR GREEN,實(shí)驗(yàn)所用引物均由上海生物工程有限公司合成。
1.5 Western-Blotting
取股四頭肌約50 mg冰上剪碎置于研磨管中,加入0.35 ml裂解液(裂解液構(gòu)成為10 ml WB&IP lysis 裂解液+100 μl PMSF+1片磷酸酶抑制劑),OMINI Bead Ruptor 24 型磁珠勻漿儀勻漿,12 000 g離心20 min,轉(zhuǎn)上清液于離心管中,BCA法測定蛋白濃度后變性。蛋白變性并調(diào)平濃度后即可進(jìn)行SDS-PAGE凝膠電泳實(shí)驗(yàn)。本實(shí)驗(yàn)采用12%分離膠電泳,濕轉(zhuǎn)法將蛋白轉(zhuǎn)至PDVF膜上,5%脫脂牛奶封閉1 h,棄掉封閉液加入對應(yīng)一抗4℃孵育過夜,1ⅹTBST洗膜3次,10 min/次,根據(jù)一抗加入相應(yīng)稀釋的二抗,室溫避光孵育2 h,再次洗膜,Millipore ECL超敏試劑盒顯影,Alpha FC2 型凝膠成像系統(tǒng)掃膜并進(jìn)行灰度值分析。其中AMPK、SIRT1、NF-κBp65抗體購于Santa Cruz公司,Phospho-AMPKα(Thr172)抗體購于CST公司,NF-κBp65(acetyl K310)購于abcam公司。
1.6 統(tǒng)計(jì)分析
2.1 耐力運(yùn)動(dòng)對小鼠體重及空腹血糖的影響
本研究發(fā)現(xiàn),與正常對照組相比,糖尿病組小鼠體重極顯著性降低,空腹血糖極顯著性升高,而運(yùn)動(dòng)可以顯著降低糖尿病小鼠的空腹血糖。
如圖1所示,與C組相比,D組小鼠體重極顯著性降低(P<0.01),空腹血糖極顯著性升高(P<0.01);與C組相比,E組小鼠體重顯著性降低(P<0.05);與D組相比,DE組小鼠空腹血糖顯著性降低(P<0.05);與E組相比,DE組小鼠體重極顯著性降低(P<0.01),空腹血糖極顯著性升高(P<0.01)。
圖1 運(yùn)動(dòng)對小鼠體重及空腹血糖的影響示意圖
2.2 耐力運(yùn)動(dòng)對小鼠骨骼肌內(nèi)炎癥因子mRNA表達(dá)的影響
本研究共檢測了小鼠骨骼肌中TNF-α、CCL2、IL-6、白介素10(IL-10)4種炎癥相關(guān)因子的基因表達(dá),結(jié)果顯示,與C組相比,D組小鼠IL-10 mRNA表達(dá)極顯著性降低(P<0.01),E組IL-6 mRNA表達(dá)顯著性升高(P<0.05),IL-10 mRNA表達(dá)極顯著性升高(P<0.01);與D組相比,DE組TNF-α mRNA表達(dá)顯著降低(P<0.05),IL-10 mRNA表達(dá)極顯著性升高(P<0.01);與E組相比,DE組IL-6 mRNA表達(dá)顯著性下降(P<0.05)。
2.3 耐力對小鼠骨骼肌內(nèi)AMPK/SIRT1/NF-κB炎癥信號(hào)通路的影響
與C組相比,D組 AMPK蛋白表達(dá)和AMPK活性顯著性下降(P<0.05),NF-κBp65 mRNA表達(dá)顯著性升高(P<0.05);與D組相比,DE組AMPKα2及SIRT1 mRNA表達(dá)極顯著性升高(P<0.01),AMPK及p-AMPK蛋白表達(dá)和AMPK活性顯著性升高(P<0.05),NF-κBp65蛋白表達(dá)極顯著性下降(P<0.01);與E組相比,DE組SIRT1 mRNA表達(dá)極顯著性升高(P<0.01)。
圖2 運(yùn)動(dòng)對小鼠骨骼肌炎癥因子mRNA表達(dá)影響的示意圖
圖3 運(yùn)動(dòng)對小鼠骨骼肌AMPK/SIRT1/NF-κB炎癥信號(hào)通路的影響示意圖
3.1 耐力運(yùn)動(dòng)對小鼠體重與空腹血糖的影響
體重在生物體的生長、發(fā)育、成熟、衰老等過程中呈現(xiàn)規(guī)律性變化,而糖尿病伴隨有“三多一少”的典型癥狀,因此,及時(shí)檢測糖尿病小鼠體重的變化可反映其生長發(fā)育情況。本研究發(fā)現(xiàn),與正常組相比,糖尿病小鼠體重顯著降低,主要表現(xiàn)為,與C組相比,D組小鼠體重顯著降低(P<0.01);同樣地,與E組相比,DE組小鼠體重顯著降低(P<0.01)。然而遺憾的是,6周耐力運(yùn)動(dòng)對糖尿病小鼠體重的影響不大,其中與C組相比,E組小鼠體重顯著降低(P<0.05),但與D組相比,DE組小鼠體重?zé)o變化。推測可能有多方面原因,首先,大量的研究發(fā)現(xiàn),耐力運(yùn)動(dòng)可通過降低蛋白質(zhì)的合成以及增加蛋白質(zhì)的降解,進(jìn)而抑制肌肉肥大[15]。因此,本實(shí)驗(yàn)中的游泳耐力運(yùn)動(dòng)未能增加糖尿病小鼠的體重,其次,游泳的運(yùn)動(dòng)強(qiáng)度具有不可操縱性,而且運(yùn)動(dòng)首先引起分子機(jī)制層面的變化,即炎癥的發(fā)生是運(yùn)動(dòng)激活的早期信號(hào),隨后才有體重等的整體變化。
糖尿病是一種由于胰島素分泌功能完全/部分喪失或胰島素受體數(shù)目減少和(或)敏感性下降所導(dǎo)致的代謝類疾病。由于胰島素調(diào)節(jié)血糖水平,所以,糖尿病患者的血糖水平升高,當(dāng)血糖水平超過腎糖閾,則使葡萄糖從尿液中排出,因此,糖尿病的特征為高血糖和糖尿。本研究中發(fā)現(xiàn),糖尿病小鼠的空腹血糖有所升高,表現(xiàn)為D組小鼠的空腹血糖顯著高于C組(P<0.01),同時(shí)DE組小鼠的空腹血糖也顯著高于E組(P<0.01)。這是因?yàn)樘悄虿⌒∈笥捎谌狈σ葝u素分泌或者胰島素敏感性下降,無法指引葡萄糖載體4(glucose transport 4,GLUT4)蛋白轉(zhuǎn)移至肌細(xì)胞膜表面,或者肌細(xì)胞中的GLUT4不聽從胰島素的指導(dǎo)。而6周耐力運(yùn)動(dòng)可顯著降低小鼠空腹血糖,表現(xiàn)為DE組小鼠血糖顯著低于D組(P<0.05),這是因?yàn)檫\(yùn)動(dòng)時(shí)胰島β細(xì)胞分泌胰島素減少,血漿胰島素濃度減低,但由于血液重新分配,流到骨骼肌的血量相對增加很多,因此即使血漿胰島素濃度降低,運(yùn)輸?shù)焦趋兰≈械囊葝u素仍然較多。由于血量增多,一些在休息狀態(tài)下未開放的骨骼肌毛細(xì)血管開放,血液中的胰島素可能與一些在休息狀態(tài)下不能接觸的胰島素受體結(jié)合,提高了結(jié)合受體的數(shù)目,因此胰島素的敏感性也得以上調(diào)[5]。胰島素敏感性上升能夠指引更多的GLUT4轉(zhuǎn)移至肌細(xì)胞膜表面,使得機(jī)體對葡萄糖的攝取量增加,從而降低血糖。
3.2 耐力運(yùn)動(dòng)對小鼠骨骼肌內(nèi)炎癥因子mRNA表達(dá)的影響
TNF-α、CCL2、IL-6、IL-10等是衡量骨骼肌炎癥反應(yīng)水平的關(guān)鍵指標(biāo),其中TNF-α是首個(gè)被報(bào)道與肥胖誘導(dǎo)的胰島素抵抗有關(guān)的炎癥因子。1993年哈佛大學(xué)醫(yī)學(xué)院Spiegelman等人首次報(bào)道TNF-α缺失可顯著增加胰島素刺激的葡萄糖攝取,提示TNF-α是肥胖引起胰島素抵抗的重要介質(zhì)[22]。該團(tuán)隊(duì)隨后進(jìn)一步揭示了TNF-α的促炎機(jī)制,即TNF-α通過誘導(dǎo)IRS-1絲氨酸位點(diǎn)磷酸化,抑制IR酪氨酸激酶活性,從而阻礙胰島素信號(hào),形成負(fù)反饋調(diào)節(jié)[21]。趨化因子能夠誘導(dǎo)細(xì)胞到達(dá)炎癥區(qū)域,從而調(diào)控炎癥反應(yīng)。其中研究較廣泛且與胰島素抵抗關(guān)系最為密切的是CCL2。CCL2又稱MCP-1,是趨化因子原型,主要由脂肪細(xì)胞合成分泌,特異性結(jié)合受體CC類趨化因子受體2(CC chemokine receptor 2,CCR2)發(fā)揮生理功能。研究者發(fā)現(xiàn),MCP-1及其受體CCR2在肥胖誘導(dǎo)的胰島素抵抗中起關(guān)鍵作用。MCP-1/ CCR2基因過表達(dá)可引起ATMs浸潤增多,巨噬細(xì)胞數(shù)量顯著增加,并出現(xiàn)胰島素抵抗癥狀。相反,MCP-1/ CCR2基因缺失可降低肥胖引起的巨噬細(xì)胞數(shù)量增加和炎癥水平升高,從而有效預(yù)防肥胖引起的胰島素抵抗。遺憾的是,本研究實(shí)驗(yàn)結(jié)果未能檢測到糖尿病小鼠骨骼肌中CCL2 mRNA表達(dá)的明顯變化,同樣,6周規(guī)律性耐力運(yùn)動(dòng)對小鼠骨骼肌中CCL2 mRNA表達(dá)也無明顯影響,推測原因可能是因?yàn)镃CL2作為趨化因子在骨骼肌慢性炎癥中的研究還不成熟,其在慢性炎癥中所扮演的角色有待進(jìn)一步的深入研究。骨骼肌除參與物質(zhì)與能量代謝外,還可合成與分泌一系列的“肌肉因子”,其中IL-6是迄今為止研究最為廣泛的成員之一[29]。骨骼肌中合成分泌的IL-6可通過抑制促炎因子TNF-α、IL-1β等的釋放而發(fā)揮抗炎作用[28]。此外,IL-6還是機(jī)體重要的能量感受器,通過激活A(yù)MPK增加葡萄糖攝取、促進(jìn)脂肪分解[11]。本研究發(fā)現(xiàn),糖尿病小鼠骨骼肌中IL-6 mRNA表達(dá)降低,而6周規(guī)律性耐力運(yùn)動(dòng)能夠適度上調(diào)小鼠骨骼肌中IL-6 mRNA表達(dá)。IL-6作為骨骼肌的重要抗炎因子,其表達(dá)水平的變化趨勢與TNF-α、CCL2相反,由此反向證明,糖尿病能夠降低小鼠骨骼肌中抗炎因子的表達(dá)來進(jìn)一步加重炎癥反應(yīng),形成惡性循環(huán),而長期有規(guī)律運(yùn)動(dòng)可通過增加骨骼肌中抗炎因子的表達(dá)來適度緩解炎癥狀況。IL-10是目前公認(rèn)的炎癥與免疫抑制因子,體內(nèi)IL-10主要來源于巨噬細(xì)胞和T細(xì)胞,內(nèi)外性刺激(高脂等)首先激活NF-кB信號(hào)通路,進(jìn)而引起巨噬細(xì)胞生成下游靶基因IL-10。本研究表明,糖尿病小鼠骨骼肌中IL- 10 mRNA表達(dá)下降,這再次證明了IL-10在骨骼肌中的抗炎效應(yīng)。令人驚喜的是,6周耐力運(yùn)動(dòng)可顯著上調(diào)小鼠骨骼肌中IL-10 mRNA表達(dá)。
3.3 耐力運(yùn)動(dòng)對骨骼肌AMPK/SIRT1/NF-κB通路的影響
目前研究較多的炎癥信號(hào)通路有NF-кB介導(dǎo)的炎癥信號(hào)通路、JNKs介導(dǎo)的炎癥信號(hào)通路、Janus激酶(Janus kinase,JAK)-信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)介導(dǎo)的炎癥信號(hào)通路。
1986年Sen等人首次報(bào)道了轉(zhuǎn)錄因子NF-кB[33],認(rèn)為它是一種能夠與活化B細(xì)胞的免疫球蛋白к輕鏈上的增強(qiáng)子特異性結(jié)合的核因子,因此被命名為NF-кB。該轉(zhuǎn)錄因子廣泛存在于真核細(xì)胞內(nèi),參與細(xì)胞的增殖、分化、凋亡、炎癥以及免疫應(yīng)答等重要的病理生理過程[4]。目前發(fā)現(xiàn),NF-кB/Rel家族共有5個(gè)成員,即p65(RelA)、RelB、c-Rel、p50的前身p105(NF-кB1)和p52的前身p100(NF-кB2)[19],功能型NF-кB由上述5個(gè)成員以同源或異源二聚體形式組成,其中異源二聚體p50/p65是NF-кB最常見的形式。NF-кB可經(jīng)經(jīng)典激活途徑和非經(jīng)典激活途徑被活化。在正常生理狀態(tài)下,NF-кB存在于細(xì)胞質(zhì)中,與核因子кB抑制蛋白α亞基(nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor,IкBα)結(jié)合處于無活性狀態(tài)。當(dāng)機(jī)體受到外界刺激時(shí),IкB激酶(IкB kinase,IKK)被激活,隨后IKKβ磷酸化IкBα的32位和36位絲氨酸,磷酸化的IкBα再次被泛素化后在26S蛋白酶體的作用下降解,導(dǎo)致NF-кB復(fù)合體的核定位區(qū)域暴露,引發(fā)NF-кB由細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞核,在細(xì)胞核中NF-кB誘導(dǎo)下游靶促炎因子基因,如TNF-α、IL-6和單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein,MCP-1)等的表達(dá)[3,24,26]。該途徑反應(yīng)迅速,5分鐘內(nèi)NF-кB可被激活且達(dá)到最大量。多種因素,如炎癥因子、病毒、細(xì)菌等均可啟動(dòng)該通路。與上述經(jīng)典途徑相對應(yīng),NF-кB活化的非經(jīng)典途徑只存在于少數(shù)類型的細(xì)胞中。AMPK/SIRT1可降低NF-кB的轉(zhuǎn)錄激活能力。在運(yùn)動(dòng)、熱量限制、白藜蘆醇等刺激作用下,細(xì)胞中AMP/ATP比值升高,AMPK被激活,導(dǎo)致NAD+濃度升高,煙酰胺(nicotinamide,NAM)濃度降低,進(jìn)而激活SIRT1。SIRT1是一種進(jìn)化高度保守的NAD+依賴性蛋白去乙?;?,其活性受能量變化調(diào)控。2004年Yeung等人[38]首次證實(shí),SIRT1可直接與NF-кB復(fù)合體的RelA/p65亞基相互作用,去乙?;疨65亞基Lys310位點(diǎn),而Lys310位點(diǎn)的去乙?;山档蚇F-кB的轉(zhuǎn)錄激活能力,最終抑制NF-кB介導(dǎo)的炎癥信號(hào)通路。AMPK/SIRT1抑制NF-кB的轉(zhuǎn)錄激活能力如圖4所示。
圖4 SIRT1通過去乙?;疪elA/p65亞基來抑制NF-κB的轉(zhuǎn)錄激活能力[13]
研究表明,肥胖可激活NF-кB信號(hào)通路,且當(dāng)NF-кB/IKK依賴的炎癥通路被抑制后,肥胖導(dǎo)致的胰島素抵抗癥狀得到明顯改善[39]。Austin等人[7]實(shí)驗(yàn)結(jié)果證實(shí),沉默人體骨骼肌細(xì)胞的IKKβ基因可提高糖攝取能力,進(jìn)而緩解TNF-α所導(dǎo)致的機(jī)體骨骼肌胰島素抵抗癥狀。Green 和Andreasen等人[6,17]研究發(fā)現(xiàn),糖尿病患者肌細(xì)胞中NF-кB活性增強(qiáng),而AMPK能夠削弱該升高趨勢。Coll等人[14]進(jìn)一步研究表明,C2C12骨骼肌細(xì)胞中NF-кB的促炎作用與PPARδ密切相關(guān),即PPARδ激動(dòng)劑可扭轉(zhuǎn)由脂肪酸引發(fā)的NF-кB活性升高,同時(shí)伴隨有胰島素抵抗癥狀的改善。本研究發(fā)現(xiàn),糖尿病小鼠骨骼肌中NF-κBp65 mRNA表達(dá)顯著性升高(P<0.05),同時(shí)AMPK蛋白表達(dá)和AMPK活性顯著性下降(P<0.05),提示AMPK/SIRT1/NF-кB通路參與小鼠骨骼肌慢性炎癥的發(fā)生發(fā)展。
活性氧可通過激活NF-κB誘導(dǎo)促炎因子的基因表達(dá),促炎因子如TNF-α和IL-1通過活性氧激活NF-κB,誘導(dǎo)包括TNF-α和IL-1在內(nèi)的促炎因子基因表達(dá),因此,活性氧和促炎因子之間通過NF-κB形成惡性循環(huán),加重炎癥反應(yīng)[1]。最近研究發(fā)現(xiàn),AMPK可通過抑制ROS-NF-κB通路來緩解慢性炎癥[18]。運(yùn)動(dòng)中機(jī)體所生成的活性氧可激活NF-κB信號(hào)通路,而NF-κB活性及通路相關(guān)基因的表達(dá)與運(yùn)動(dòng)強(qiáng)度、運(yùn)動(dòng)時(shí)間和運(yùn)動(dòng)頻率有關(guān)。其中Vella等人[36]研究發(fā)現(xiàn),急性運(yùn)動(dòng)大鼠其骨骼肌中NF-κB DNA結(jié)合能力與p50蛋白含量均增加,而細(xì)胞質(zhì)中IκB與IKK的磷酸化水平均降低,這說明急性運(yùn)動(dòng)能夠激活NF-κB信號(hào)通路,而且可能是通過氧化還原的方式來完成的。與Vella等人的研究相似,Ji等人[23]實(shí)驗(yàn)結(jié)果也表明,急性高強(qiáng)度抗阻運(yùn)動(dòng)能夠激活大鼠骨骼肌中NF-κB信號(hào)通路。然而,與急性運(yùn)動(dòng)不同,大量研究證實(shí),長期規(guī)律性運(yùn)動(dòng)可降低由衰老和慢性炎癥反應(yīng)所導(dǎo)致的NF-κB活性上調(diào)。其中,Sriwijitkamol等人[35]發(fā)現(xiàn),糖尿病個(gè)體其骨骼肌中IκB蛋白含量降低,同時(shí)IκB/NF-κB通路被激活,而8周有氧運(yùn)動(dòng)可明顯上調(diào)IκB蛋白含量,減少TNF-α合成分泌,增加胰島素介導(dǎo)的葡萄糖攝取。Brooks 等人[10]報(bào)道,8周跑臺(tái)運(yùn)動(dòng)降低小鼠骨骼肌中ROS濃度和NF-κB活性,說明運(yùn)動(dòng)能夠減少骨骼肌中ROS的生成,進(jìn)而保護(hù)機(jī)體免受ROS攻擊。本研究發(fā)現(xiàn),耐力運(yùn)動(dòng)可顯著上調(diào)AMPK的mRNA、蛋白表達(dá)及活性,同時(shí)NF-κBp65蛋白表達(dá)顯著降低,提示,耐力運(yùn)動(dòng)可通過抑制AMPK/SIRT1/NF-κB通路來緩解骨骼肌慢性炎癥。此外,Zhao 等人[41]進(jìn)一步實(shí)驗(yàn)結(jié)果證實(shí),長期游泳運(yùn)動(dòng)可顯著降低NF-κB蛋白表達(dá),而且這種效應(yīng)在早期的、終生的運(yùn)動(dòng)中更加明顯。提示應(yīng)該從小堅(jiān)持運(yùn)動(dòng),而且樹立終生的運(yùn)動(dòng)理念是必須的。以上研究提示,NF-κB的適度表達(dá)在維持免疫系統(tǒng)穩(wěn)態(tài)中不可或缺,長期規(guī)律性運(yùn)動(dòng)可通過下調(diào)NF-κB活性進(jìn)而緩解炎癥反應(yīng)。此外,大量的研究表明,長期劇烈運(yùn)動(dòng)能夠提高NF-κB活性[25,34],意味著運(yùn)動(dòng)強(qiáng)度對NF-κB活性的影響至關(guān)重要,因此,應(yīng)強(qiáng)調(diào)運(yùn)動(dòng)強(qiáng)度的重要性,在對肥胖、糖尿病等代謝類疾病的病人設(shè)計(jì)運(yùn)動(dòng)處方時(shí),應(yīng)慎重考慮運(yùn)動(dòng)強(qiáng)度。
本研究證實(shí),糖尿病小鼠骨骼肌中促炎因子表達(dá)增加,抗炎因子表達(dá)減少,同時(shí)AMPK/SIRT1/NF-κ B炎癥信號(hào)通路被抑制,而長期耐力運(yùn)動(dòng)可抑制糖尿病小鼠骨骼肌中促炎因子的基因表達(dá),促進(jìn)抗炎因子的基因表達(dá),且可能是通過AMPK/SIRT1/NF-κB炎癥信號(hào)通路來實(shí)現(xiàn)的。
[1]陳瑗,周玫.自由基-炎癥與衰老性疾病[M].北京:科學(xué)出版社,2007:74.
[2]姜洋.抗阻訓(xùn)練對衰老小鼠肝臟AMPK/SIRT1/NF-κB信號(hào)通路介導(dǎo)的炎癥反應(yīng)的影響[D].上海:華東師范納大學(xué),2013:21.
[3]樓希文,孫紹剛,王琛,等.轉(zhuǎn)錄因子NF-κB的核內(nèi)活性調(diào)控[J].細(xì)胞生物學(xué)雜志,2009,31(06):741-748.
[4]王玲,單保恩,劉麗宏.轉(zhuǎn)錄因子NF-κB/RelA的磷酸化、乙?;图谆揎椗c活性調(diào)控[J].生命的化學(xué),2012,32(4 ):316-321.
[5]許豪文.運(yùn)動(dòng)生物化學(xué)概論[M].北京:高等教育出版社,2001:56.
[6]ANDREASEN A S,KELLY M,BERG R M,et al.Type 2 diabetes is associated with altered NF-kappaB DNA binding activity,JNK phosphorylation,and AMPK phosphorylation in skeletal muscle after LPS[J].PLoS One,2011,6(9):e23999
[7]AUSTIN R L,RUNE A,BOUZAKR K,et al.siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-alpha-induced insulin resistance in human skeletal muscle[J].Diabetes,2008,57(8):2066-2073.
[8]BEITER T,HOENE M,PRENZLER F,et al.Exercise,skeletal muscle and Inflammation:ARE-binding proteins as key regulators in inflammatory and adaptive networks[J].Exe Immunol Rev,2015,21:42-57.
[9]BLEAU C,KARELIS A D,ST-PIERRE D H,et al.Crosstalk between intestinal microbiota,adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes[J].Diabetes Metab Res Rev,2015,31(6):545-561.
[10]BROOKS S V,VASILAKI A,LARKIN L M,et al.Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation[J].J Physiol,2008,586(16):3979-3990.
[11]CAREY A L,STEINBER G R,MACAULAY S L,et al.Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase[J].Diabetes,2006,55(10):2688-2697.
[12]CHEN F,XIONG H,WANG J,et al.Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats[J].J Ethnopharmacol,2013,149(3):729-736.
[13]CHUNG S,YAO H,CAITO S,et al.Regulation of SIRT1 in cellular functions:role of polyphenols[J].Arch Biochem Biophys,2010,501(1):79-90.
[14]COLL T,ALVAREZ-GUARDIA D,BARROSO E,et al.Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells[J].Endocrinology,2010,151(4):1560-1569.
[15]FYFE J J,BISSHOP D J,STEPTO N K.Interference between concurrent resistance and endurance exercise:molecular bases and the role of individual training variables[J].Sports Med,2014,44(6):743-762.
[16]GREEN C J,MACRAE K,FOGARTY S,et al.Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor kappaB signalling in rat skeletal muscle cells by AMP-activated protein kinase[J].Biochem J,2011,435(2):463-474.
[17]GREEN C J,PEDERSEN M,PEDERSEN B K,et al.Elevated NF-kappaB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase[J].Diabetes,2011,60(11):2810-2819.
[18]GUO Y,ZHANG Y,HONG K,et al.AMPK inhibition blocks ROS-NFkappaB signaling and attenuates endotoxemia-induced liver injury[J].PLoS One,2014,9(1):e86881.
[19]HOESEL B,SCHMID J A.The complexity of NF-kappaB signaling in inflammation and cancer[J].Mol Cancer,2013,12:86.
[20]HOTAMISLIGIL G S.Inflammation and metabolic disorders[J].Nature,2006,444(7121):860-867.
[21]HOTAMISLIGIL G S,PERALDI P,BUDAVARI A,et al.IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance[J].Science,1996,271(5249):665-668.
[22]HOTAMISLIGIL G S,SHARGILL N S,SPIEGELMAN B M.Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance[J].Science,1993,259(5091):87-91.
[23]JI L L,GOMEZ-CABRERA M C,STEINHAFEL N,et al.Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle[J].FASB J,2004,18(13):1499-1506.
[24]KARIN M,BEN-NERIAH Y.Phosphorylation meets ubiquitination:the control of NF-[kappa] B activity[J].Annu Rev Immunol,2000,18:621-663.
[25]KRAMER H F,GOODYEAR L J.Exercise,MAPK,and NF-kappaB signaling in skeletal muscle[J].J Appl Physiol(1985),2007,103(1):388-395.
[26]LEE B C,LEE J.Cellular and molecular players in adipose tis-sue inflammation in the development of obesity-induced insulin resistance[J].Biochim Biophys Acta,2014,1842(3):446-462.
[27]NAVAB M,GHARAVI N,WATTON A D.Inflammation and metabolic disorders[J].Curr Opin Clin Nutr Metab Care,2008,11(4):459-464.
[28]NIMMO M A,LEGGATE M,VIANA J L,et al.The effect of physical activity on mediators of inflammation[J].Diabetes Obes Metab,2013,15 Suppl 3:51-60.
[29]PEDERSEN B K,FEBBRAIO M A.Muscles,exercise and obesity:skeletal muscle as a secretory organ[J].Nat Rev Endocrinol,2012,8(8):457-465.
[30]QATANANI M,LAZAR M A.Mechanisms of obesity-associated insulin resistance:many choices on the menu[J].Genes Dev,2007,21(12) 1443-1455.
[31]ROSETY-Rodriguez M,ROSETY I,FOMIELES-GONZALEZ G,et al.A 6-week training program increased muscle antioxidant system in elderly diabetic fatty rats[J].Med Sci Monit,2012,18(9):R346-R350.
[32]SALMINEN A,HYTTINEN J M,KAAMIRANTA K.AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation:impact on healthspan and lifespan[J].J Mol Med(Berl),2011,89(7):667-676.
[33]SEN R,BALTIMORE D.Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J].Cell,1986,46(5):705-716.
[34]SEO D I,JUN T W,PARK K S,et al.12 weeks of combined exercise is better than aerobic exercise for increasing growth hormone in middle-aged women[J].Int J Sport Nut Exe Metab,2010,20(1):21-26.
[35]SRIWIJITKAMOL A,CHRIST-ROBERTS C,BERRIA R,et al.Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes:reversal by exercise training[J].Diabetes,2006,55(3):760-767.
[36]VELLA L,CALDOW M K,LARSEN A E,et al.Resistance exercise increases NF-kappaB activity in human skeletal muscle[J].Am J Physiol Regul Integr Comp Physiol,2012,302(6):R667-R673.
[37]U H,JIN M,HAN D,et al.Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease:regulation of lipid metabolism via PANDER-AKT pathway[J].Biochem Biophys Res Commun,2015,458(4):862-868.
[38]YEUNG F,HOBERG J E,RAMSEY C S,et al.Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase[J].Embo J,2004,23(12):2369-2380.
[39]YUAN M,KONSTANTOPOULOS N,LEE J,et al.Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta[J].Science,2001,293(5535):1673-1677.
[40]YUDKIN J S,STEHOUWER C D,EMEIS J J,et al.C-reactive protein in healthy subjects:associations with obesity,insulin resistance,and endothelial dysfunction:a potential role for cytokines originating from adipose tissue?[J].Arterioscler Thromb Vasc Biol,1999,19(4):972-978.
[41]ZHAO X,BIAN Y,SUN Y,etal.Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice[J].Exp Gerontol,2013,48(9):869-880.
The Effect of Swimming Exercise on Inflammation via AMPK/SIRT1/NF-κB Signaling Pathway in the Skeletal Muscles of Diabetic Mice
ZHANG Tan1,2,CUI Di1,2,ZHANG Zhe1,2,SUN Yi1,2,DING Shu-zhe1,2
Objective: The purpose of the present study was to investigate the effect of endurance exercise on inflammatory factors and corresponding signaling pathways AMPK/SIRT1/NF-κB in the skeletal muscles of diabetic mice,hoping to provide new evidence for the prevention and treatment of obesity and diabetes from the perspective of inflammation of the skeletal muscle.Methods: The diabetic mice were established by feeding with high-fat diet for 4 weeks,and then injected with Streptozotocin.All the mice were randomly chosen and assigned to either control group (C,n=8) or exercise group (E,n=8),diabetic group (D,n=8) or diabetic exercise group (DE,n=8),Groups E and DE were then interfered with 6-week swimming exercise of moderate intensity,one hour per day,five days per week.RT-PCR was used to measure the mRNA expression of TNF-α,CCL2,IL-6,IL-10,AMPKα1,AMPKα2,SIRT1 and NF-κBp65.Western Blotting was used to measure the protein level of AMPK,p-AMPK,SIRT1,NF-кBp65 and AC-NF-кBp65.Results: 1) Compared with group C,the weight of mice in group D decreased significantly (P<0.01),meanwhile the fasting blood glucose increased significantly(P<0.01);Compared with group C,the weight of mice in group E decreased significantly(P<0.05);Compared with group D,the fasting blood glucose in group DE decreased significantly(P<0.05);Compared with group E,the weight of mice in group DE decreased significantly,while the fasting blood glucose increased significantly(P<0.01).2) Compared with group C,the IL-10 mRNA expression in group D was decreased significantly(P<0.01);while,the IL-6 mRNA expression in group E was increased significantly (P<0.05);Compared with group D,the TNF-α mRNA in group DE was decreased significantly(P<0.05),the IL-10 mRNA in group DE was increased significantly(P<0.01);Compared with group E,the IL-6 mRNA of group DE was decreased significantly(P<0.05).3) Compared with group C,the protein expression and activity of AMPK were decreased significantly(P<0.05) in group D,while the mRNA of NF-κBp65 was increased significantly(P<0.01) in group D;Compared with group D,the mRNA of AMPKα2 and SIRT1 were increased significantly(P<0.01) in group DE,the protein expression of AMPK、p-AMPK and the activity of AMPK were increased significantly(P<0.05),while the protein expression of NF-κBp65 was decreased significantly (P<0.01);Compared with group E,the mRNA of SIRT1 increased significantly (P<0.01).Conclusions: 6 weeks regular swimming exercise can promote the mRNA expression of anti-inflammatory factors,while the pro-inflammatory factors were repressed in skeletal muscles of diabetic mice.What’s more,exercise can reverse relieve the suppression of AMPK/SIRT1/NF-кB by diabetes.
enduranceexercise;diabetes;skeletalmuscle;inflammation;AMPK/SIRT1/NF-кB
1000-677X(2016)09-0040-08
10.16469/j.css.201609006
2015-12-10;
2016-08-22
國家自然科學(xué)基金資助項(xiàng)目(31671241)。
張?zhí)?1987-),女,河南泌陽人,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)適應(yīng)與線粒體調(diào)控,E-mail:zhangtan9999@126.com;丁樹哲(1963-),男,黑龍江望奎人,教授,博士,博士生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)適應(yīng)與線粒體調(diào)控,E-mail:szding@ied.ecnu.edu.cn。
1.華東師范大學(xué) 青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200241;2.華東師范大學(xué) 體育與健康學(xué)院,上海 200241 1.Key Laboratory of Adolescent Health Assessment and Exercise Intervention,Ministry of Education,East China Normal University,Shanghai 200241,China;2.East China Normal University,Shanghai 200241,China.
G804.7
A