王勝青,何萬(wàn)生,彭聰明,3
(1.隴南師范高等專(zhuān)科學(xué)校數(shù)信學(xué)院,甘肅 隴南 742500;2.天水師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 天水 741000;3.蘭州大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 蘭州 730000)
具有非局部源的退化奇異拋物方程組解的爆破
王勝青1,何萬(wàn)生2,彭聰明2,3
(1.隴南師范高等專(zhuān)科學(xué)校數(shù)信學(xué)院,甘肅 隴南742500;2.天水師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 天水741000;3.蘭州大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 蘭州730000)
研究了一類(lèi)新的包含冪函數(shù)和指數(shù)函數(shù)相耦合的具有非局部源的拋物方程組.用正則化的方法證明了局部解的存在唯一性,用上下解方法得到了整體存在和在有限時(shí)刻爆破的充分條件.
退化;整體存在性;爆破
本文考慮了下述帶非局部源的退化奇異反應(yīng)擴(kuò)散方程組:
u0及v0滿足相容性條件,T>0,a>0,α,β∈[0,2).
設(shè)D=(0,a),?t=D×(0,t],及分別是它們的閉包.當(dāng)x趨于0時(shí)ux,uxx和vx,vxx的系數(shù)可能趨于0或∞,故方程是退化奇異的.
該問(wèn)題是一個(gè)描述熱傳導(dǎo)過(guò)程的數(shù)學(xué)模型,具體可參考文獻(xiàn)[1].當(dāng)α=β=0時(shí),(1.1)是一個(gè)具有非局部源的半線性熱方程.具有局部源f(u)的熱方程已經(jīng)受到很多關(guān)注.最主要的工作是由Friedman和文獻(xiàn)[2-4]的作者所做.對(duì)非局部源的首個(gè)Fujita-型結(jié)果是由Galaktionov和Levine在文獻(xiàn)[5]中得到的.文獻(xiàn)[2-3]得到解爆破的一般條件,證明了爆破集是區(qū)域的一個(gè)緊子集,而且得到了爆破解的漸進(jìn)行為.最近,帶非局部源熱方程的研究引起了很多關(guān)注.關(guān)于(1.1),當(dāng)α=β=0時(shí),文獻(xiàn)[6-9]都進(jìn)行了研究.在文獻(xiàn)[10]中,作者研究了下述問(wèn)題:
得到了解的局部存在唯一性.在適當(dāng)條件下,還研究了正解的整體存在性和解在有限時(shí)刻的爆破.他們還得到了解的爆破集是整個(gè)區(qū)域.本文推廣了文獻(xiàn)[7,10]的結(jié)果.但由于退化性的出現(xiàn),我們用了和文獻(xiàn)[7]不同的方法.在第二部分中,建立了比較原理及解的存在唯一性.關(guān)于解在有限時(shí)刻的爆破將在第三部分中討論.
而且滿足
類(lèi)似地,
稱(chēng)為下解,如果(2.1)中的所有反向不等號(hào)成立.
為了證明問(wèn)題(1.1)的正解的存在唯一性,必須構(gòu)建下述比較原理:
引理2.1設(shè)r∈(0,T),ci(x,t),di(x,t)(i=1,2)為定義在[0,a]×[0,r]上的連續(xù)非負(fù)函數(shù),令滿足:
則在[0,a]×[0,T)上,u(x,t)≥0,v(x,t)≥0.
證明 證明類(lèi)似于文獻(xiàn)[11],引理2.1.
引理2.2設(shè)(u(x,t),v(x,t))是問(wèn)題(1.1)的非負(fù)解.假設(shè)一對(duì)函數(shù)
滿足
則在[0,a]×[0,T)上,(w(x,t),z(x,t))≥(≤)(u(x,t),v(x,t)).
顯然,(0,0)是問(wèn)題(1.1)的下解,我們還需要構(gòu)造一個(gè)上解.
引理2.3設(shè)存在正常數(shù)t0(t0<T)使得問(wèn)題(1.1)有上解(f(t),g(t))∈(C[0,t0])2.
為了得到解的存在唯一性,需要一個(gè)正則化過(guò)程,但該過(guò)程是標(biāo)準(zhǔn)的,所以我們直接給出解的存在唯一性定理:
定理2.1存在t0(<T)使得問(wèn)題(1.1)有唯一的非負(fù)解
其中α,β∈[0,2).
證明 證明類(lèi)似于文獻(xiàn)[12],定理2.5.
定理2.2設(shè)T是使得問(wèn)題(1.1)存在唯一解(u(x,t)的t0的上確界.則問(wèn)題(1.1)有唯一的非負(fù)解
若T<+∞,則
證明 證明類(lèi)似于文獻(xiàn)[13]的定理2.5.
下面考慮問(wèn)題(1.1)解的整體存在性及在有限時(shí)刻的爆破.主要結(jié)論如下:
定理3.1 a)若np>1則問(wèn)題(1.1)在任意區(qū)域(0,a)上對(duì)小初值(u0,v0)存在整體解.
b)若np≤1且a適當(dāng)小,則問(wèn)題(1.1)對(duì)小初值(u0,v0)存在整體解.
定理3.2假定下列條件之一成立:
(i)m>0;(ii)q>0;(iii)m=q=0且np>1.
則對(duì)充分大的初值(u0,v0),問(wèn)題(1.1)的解在有限時(shí)刻爆破.
[1]Chan C Y,Chen C S.A numerical method for semilinear singular parabolic quenching problem[J].Quart.Appl.Math.,1989,47:45-57.
[2]Friedman A,McLeod B.Blow-up of positive solutions of semilinear heat equations[J].Indiana Univ.Math.J.,1985,34:425-447.
[3]Giga Y,Kohn R V.Asymptotic self-similar blow-up of semilinear heat equations[J].Comm.Pure.Appl.Math.,1985,38:297-319.
[4]Samarskii A A,Galationov V A,Kurdynumov A P.Blow-up in Quasilinear Parabolic Equations[M].Berlin:Walter de Gruyter,1995.
[5]Galationov,Victor A,Levine,Howard A.A general approach to critical Fujita exponents in nonlinear parabolic problems[J].Nonlinear Anal,1998,34(7):1005-1027.
[6]Wang M X,Wang Y M.Properties of positive solutions for non-local reaction-diffusion problems[J].Mathematical Methods in the Applied Sciences,1996,14:1141-1156.
[7]Jiang L J,Li H L.Uniform blow-up profiles and boundary layer for a parabolic system with nonlocal source[J].Mathematical and Computer Modelling,2007,45:814-824.
[8]Bebernes J,Bressan A,Lacey A.Total blow-up versus single point blow up[J].J.Differential Equations,1988,73:30-44.
[9]Souplet P.Blow-up in nonlocal reaction-diffusion equations[J].SIAM Journal on Mathematical Analysis,1998,29(6):1301-1334.
[10]Chen Y P,Liu Q L,Xie C H.The blow-up properties for a degenerate semilinear parabolic equation with nonlocal source[J].Appl.Math.J.Chinese Univ.Ser.B,2002,17(4):413-424.
[11]Peng C M,Yang Z D,and Xie B L.Global existence and blow-up for the degenerate and singular nonlinear parabolic system with a nonlocal source[J].Nonlinear Analysis,TMA,2010,72:2474-2487.
[12]Zhou J,Mu C L,Li Z P.Blow up for degenerate and singular parabolic system with nonlocal source[J].Boundary Value Problem,2006,21830.
[13]Floater M S.Blow-up at the boundary for degenerate semilinear parabolic equations[J].Archive for Rational Mechanics and Analysis,1991,114(1):57-77.
[14]Chen Y P,Liu Q L,Xie C H.Blow-up for degenerate parabolic equations with nonlocal source[J].Proceedings of the American Mathematical Society,2004,132(1):135-145.
[15]Mclachlan N W.Bessel Functions for Engineers[M].London:Clarendon Press,1955.
2010 MSC:35B15
Blow-up profiles for a degenerate and singular nonlinear parabolic system with nonlocal source
Wang Shengqing1,He Wansheng2,Peng Congming2,3
(1.School of Mathematics and Information Science,Longnan Teachers College,Longnan742500,China;2.School of Mathematics and Statistics,Tianshui Normal University,Tianshui741000,China;3.School of Mathematics and Statistics,Lanzhou University,Lanzhou730000,China)
A new degenerate and singular parabolic system with power functions and exponential functions is investigated in this paper.The existence and uniqueness of local solution are proved by using regularization method,moreover the sufficient conditions for the solution that exists globally or blows up in finite time are obtained by method of subsolutions and supersolutions.
degenerate,global existence,blow up
O175.2
A
1008-5513(2016)05-0448-09
10.3969/j.issn.1008-5513.2016.05.002
2016-06-22.
甘肅省“十三五”教育科學(xué)規(guī)劃項(xiàng)目(GS[2016]GHB0185).
王勝青(1965-),碩士,副教授,研究方向:概率論與數(shù)理統(tǒng)計(jì)、微分方程.