李智強 王國梁 劉文德
(中國農(nóng)業(yè)科學(xué)院植物保護研究所 植物病蟲害生物學(xué)國家重點實驗室,北京 100193)
水稻抗病分子機制研究進展
李智強 王國梁 劉文德
(中國農(nóng)業(yè)科學(xué)院植物保護研究所 植物病蟲害生物學(xué)國家重點實驗室,北京 100193)
水稻作為重要糧食作物之一,是全球一半以上人口的主糧。水稻高產(chǎn)、穩(wěn)產(chǎn)與國民經(jīng)濟發(fā)展密切相關(guān),然而,水稻生產(chǎn)上的各種病蟲害是其穩(wěn)產(chǎn)與增產(chǎn)的嚴(yán)重威脅。培育與種植水稻病害高抗品種是目前最為經(jīng)濟有效、安全健康與環(huán)境友好的水稻病害育種策略,而對水稻抗病分子機制的深入研究,可為培育水稻病害高抗品種提供重要理論基礎(chǔ)。在過去20年間,科學(xué)家們在水稻抗病分子機制方面取得了許多重要進展,綜述了水稻免疫防御系統(tǒng)識別病原菌及其信號傳導(dǎo)機制等方面的研究進展,以及這些研究進展在水稻抗病育種中的應(yīng)用,并討論與展望了水稻抗病分子機制研究領(lǐng)域所面臨的挑戰(zhàn)與發(fā)展方向。
水稻;抗病分子機制;育種
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.010
水稻(Oryza sativa)作為重要糧食作物,養(yǎng)活全球一半左右人口,特別是在東亞國家,有超過2/3人口以稻米為主食,但水稻穩(wěn)定生產(chǎn)與增產(chǎn)一直受到多種病害威脅。在水稻各個生育期,大量病原微生物,包括真菌、細菌,病毒和線蟲對水稻不同器官的侵染,是造成水稻嚴(yán)重減產(chǎn)甚至絕收的主要原因。農(nóng)藥的廣泛與大量使用在一定程度上減緩了各種水稻病害的發(fā)生與危害程度,但同時也嚴(yán)重影響到人類身體健康與生態(tài)環(huán)境安全。因此,培育與種植水稻病害高抗品種是目前最為經(jīng)濟有效、安全健康與環(huán)境友好的水稻病害育種策略。在過去20年間,全世界范圍內(nèi)的科學(xué)家們在水稻抗病分子機制研究方面取得了重要進展,包括水稻抗病及其抗病相關(guān)蛋白對稻瘟病菌、水稻白葉枯病菌等病原物效應(yīng)分子識別、病原物效應(yīng)蛋白對水稻抗病防衛(wèi)反應(yīng)抑制、植物激素在水稻免疫反應(yīng)中的功能以及表觀遺傳修飾在水稻免疫反應(yīng)中的作用?;趯ι鲜龌A(chǔ)理論知識的認識,育種學(xué)家利用目前先進生物技術(shù)與常規(guī)育種技術(shù)相結(jié)合的方法開發(fā)全新育種策略。
根據(jù)科學(xué)意義與經(jīng)濟效益層面進行分析,對水稻可以產(chǎn)生重要影響的病害包括:由子囊菌(Magnaporthe oryzae)引起的稻瘟??;由黃單胞桿菌水稻變種(Xanthomonas oryzae pv. oryzae Xoo)引起的水稻白葉枯??;由擬禾本科根結(jié)線蟲(Meloidogyne graminicola)引起的水稻根結(jié)線蟲病;由葉芽線蟲(Aphelenchoides besseyi)引起的水稻干尖線蟲??;由莖線蟲(Ditylenchus angustus)引起的水稻莖稈線蟲?。?]。近些年來,由于氣候與水稻種植方式的改變以及高產(chǎn)但抗病性欠佳水稻品種大面積推廣,水稻紋枯病、水稻稻曲病、水稻條紋葉枯病等水稻病害發(fā)生頻率逐年增加,發(fā)生區(qū)域與面積也有擴大趨勢。在過去的二十年間,由于研究基礎(chǔ)與方法便利,水稻-稻瘟病菌與水稻-白葉枯病菌互作關(guān)系已被作為植物-微生物互作模式系統(tǒng)進行深入闡釋,特別是在水稻抗稻瘟病、白葉枯病的分子機制及稻瘟病菌致病機理等方面取得了重要進展。
研究表明植物主要通過兩種不同方式抵抗病原物入侵[1]:第一種,由位于植物細胞膜上的模式識別受體(pattern-recognition receptors,PRRs)識別病原物分泌的病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)而誘導(dǎo)的植物抗性反應(yīng),被稱為PAMP誘導(dǎo)免疫反應(yīng)(PAMP-triggered immunity,PTI)。為了克服植物PTI反應(yīng),真菌、細菌、病毒、線蟲等病原物進化出能夠抑制植物PTI的效應(yīng)蛋白(effector)進而導(dǎo)致效應(yīng)蛋白誘導(dǎo)的感病反應(yīng)(effector-triggered susceptibility,ETS)。為了克服病原物ETS,植物進化出第二種防御機制,即通過編碼抗性蛋白識別病原物效應(yīng)蛋白,從而誘導(dǎo)快速而激烈的抗性反應(yīng),稱為效應(yīng)蛋白誘導(dǎo)的免疫反應(yīng)(effector-triggered immunity,ETI)(圖1)。然而,目前研究證明上述兩種植物抗病模式并不能完全解釋植物對病毒的抗性機制[2]。雖然植物對病毒的抗性機制與對細菌/真菌的抗性機制存在很大不同,但近些年一些研究證明,植物RNA干擾(RNAi silencing,RNAi)機制對病毒雙鏈RNA的識別功能可能與PTI存在類似機制,進而抑制病毒入侵[2,3]。病毒為了克服植物的這一抗性機制,已進化出具有抑制植物RNAi的抑制子(viral suppressors of RNAi,VSRs)克服植物RNAi反應(yīng),這一過程類似于ETS;當(dāng)VSRs被植物體內(nèi)相應(yīng)抗性蛋白識別后,誘導(dǎo)激烈的抗性反應(yīng)則類似于ETI。
圖 1 植物免疫反應(yīng)原理圖
植物PRR蛋白結(jié)構(gòu)包括:含有典型胞外富含亮氨酸重復(fù)序列與胞內(nèi)激酶結(jié)構(gòu)域的類跨膜受體激酶(receptor-like kinases,RLKs)和缺少激酶結(jié)構(gòu)域的類受體蛋白(receptor-like proteins,RLPs)[5]。由于RLP缺少胞內(nèi)激酶結(jié)構(gòu)域,因此該類蛋白可與其他含有激酶結(jié)構(gòu)域蛋白互作誘導(dǎo)下游抗病信號傳導(dǎo)。水稻基因組編碼1 131個RLK基因與90個RLP基因,其中,水稻RLK基因是擬南芥中RLK基因數(shù)目的2倍。通過進化分析發(fā)現(xiàn)水稻中RLK基因如此之多,可能是通過重組復(fù)制而來[6,7]。PRR蛋白可識別并響應(yīng)外來病原物以及植物內(nèi)源信號刺激,如脂類、蛋白、核酸和糖類等。目前,大量科學(xué)研究證明PRR蛋白可以特異識別病原物PAMPs,如細菌鞭毛蛋白、肽聚糖類、脂多糖類、真菌幾丁質(zhì)等,進而誘導(dǎo)植物的抗病免疫反應(yīng)[8,9]。
目前研究較為清楚的PRR蛋白為來自擬南芥的鞭毛蛋白受體激酶(receptor kinase flagellin sensing 2,F(xiàn)LS2)。該蛋白通過特異識別細菌鞭毛蛋白N 端一段含22 個氨基酸殘基的保守肽段(flagellin peptide,flg22),激活植物抗病性信號傳導(dǎo)復(fù)合體[10,11]。在水稻中,F(xiàn)LS2同源蛋白OsFLS2可通過識別flg22誘導(dǎo)水稻抗病性反應(yīng)。OsFLS2可與flg22直接識別,并能互補fls2突變體缺陷表型[12,13]。另外OsFLS2可識別不能被FLS2識別的flg22衍生物[13],表明該類蛋白特異性相互識別在不同物種之間存在很大區(qū)別。另外,OsFLS2可通過胞質(zhì)結(jié)構(gòu)域與OsRac1GEF相互作用,OsRac1GEF對PTI重要參與因子OsRac1有調(diào)控作用[14]。另外,OsRac1GEF與識別幾丁質(zhì)的OsCERK1有互作關(guān)系,說明鞭毛蛋白與幾丁質(zhì)誘導(dǎo)的植物抗病信號傳導(dǎo)通路有一定重合。
水稻RLK基因Xa21是第一個被鑒定到的天然免疫受體基因,并對白葉枯病菌具有廣譜抗性[15]。目前,已經(jīng)利用遺傳學(xué)與生物化學(xué)等方法對XA21介導(dǎo)的抗病信號網(wǎng)絡(luò)進行了較為深入的研究,鑒定到包括腺苷三磷酸酶(XB24)、E3鏈接酶(XB3)、PP2C磷酸酶(XB15)、轉(zhuǎn)錄因子WRKY62(XB10)、錨定蛋白(XB25)在內(nèi)的5個XA21結(jié)合蛋白(XA21-binding proteins,XBs),這些蛋白在植物天然免疫過程中起重要調(diào)控作用[16-20]。XB24通過結(jié)合與催化XA21蛋白的絲氨酸與蘇氨酸殘基磷酸化,保持XA21處于非激活狀態(tài)。但當(dāng)XB24/XA21復(fù)合體感知到病原物入侵時,XB24與XA21會彼此脫離,XA21進而被激活,進一步誘導(dǎo)下游大量抗病性信號傳導(dǎo),如XA21激酶結(jié)構(gòu)域切割與轉(zhuǎn)運致細胞核[17,21]。XB15可以通過對XA21的磷酸化,而減弱XA21介導(dǎo)的免疫反應(yīng)[18]。研究證明,XB25的 N端跨膜與正電結(jié)構(gòu)域可與XA21跨膜重復(fù)結(jié)構(gòu)域相互作用[17]。下調(diào)表達XB25蛋白后,XA21表達量也受到下調(diào),并抑制XA21介導(dǎo)抗性反應(yīng)。XBs類蛋白結(jié)構(gòu)與功能多樣性預(yù)示XA21介導(dǎo)水稻抗病信號通路是一個極其復(fù)雜的過程。最近有研究證明,定位于內(nèi)質(zhì)網(wǎng)的多種分子伴侶蛋白對XA21介導(dǎo)的抗性反應(yīng)是必須的,初步猜想可能是這些分子伴侶對XA21的折疊與加工有幫助[22]。綜上所述,水稻編碼大量與多樣性蛋白參與到XA21蛋白激活與XA21蛋白介導(dǎo)的水稻免疫反應(yīng)過程中。
研究表明,核酸結(jié)合與富亮氨酸重復(fù)結(jié)構(gòu)域(NLR)蛋白在植物與動物中均參與調(diào)控免疫反應(yīng)過程[23]。植物基因組含有的NLR基因數(shù)量大大多于動物NLR基因,說明NLR類基因介導(dǎo)免疫反應(yīng)在不同物種中可能存在差別。如,水稻基因組含有480個編碼NLR蛋白的基因,而人類基因組中則只含有10個[24]。迄今為止,在水稻中共鑒定到超過100個R基因,并已成功分離了26個稻瘟病菌R基因與9個白葉枯病菌R基因(表1)。在這些被克隆的R基因中,絕大多數(shù)R基因含有NLR結(jié)構(gòu)域[25]。其中不含有NLR結(jié)構(gòu)域的基因有:編碼RLK結(jié)構(gòu)域的Pi-d2蛋白[26]、隱性R基因Pi21編碼富含脯氨酸的蛋白[27]。有意思的是,NLR基因在植物基因組中往往成簇分布于染色體上,如水稻中的480個NLR基因中的263個NLR基因集中分布于44個基因簇[24]。水稻抗稻瘟病基因Pi2、Pi9和Piz-t是位于6號染色體同一基因簇的3個NLR基因,序列比對分析發(fā)現(xiàn),在野生稻與栽培稻中這一基因簇至少含有8個NLR基因[28]。最近被克隆并對稻瘟病菌具有廣譜抗性的R基因Pi50也位于Pi2/Pi9基因簇[29]。同源分析發(fā)現(xiàn)Pi50蛋白與Pi2、Pi9、Piz-t蛋白具有超過96%的序列相似性,說明Pi50可能是起源于基因旁系同源復(fù)制而導(dǎo)致差異性功能的R基因[30]。該位點的另一等位基因Pi64編碼的蛋白由1 288個氨基酸殘基組成,該蛋白同時定位于胞質(zhì)與細胞核?;虮磉_分析表明,該蛋白在水稻所有組織器官中為組成型表達,并對水稻葉瘟與穗頸瘟有較高抗性[31]。
研究表明,Xa10與Xa23基因編碼兩個TALE(transcription activator-like effector nucleases)依賴型的水稻白葉枯R蛋白[60,61]。XA10蛋白以六聚體形式定位于內(nèi)質(zhì)網(wǎng),并以誘導(dǎo)蛋白通過調(diào)控內(nèi)質(zhì)網(wǎng)與胞內(nèi)鈣離子平衡等保守機制誘導(dǎo)細胞程序性死亡。通過蛋白結(jié)構(gòu)預(yù)測軟件分析發(fā)現(xiàn)XA23與XA10蛋白同源性高達50%,二者具有相似跨膜結(jié)構(gòu)域。研究證明,TALE類病原菌分泌蛋白 AvrXa23可以特激活Xa23表達,在水稻、煙草與番茄中,高表達的Xa23可以誘導(dǎo)激烈的免疫反應(yīng)。另外,XA23與XA10啟動子區(qū)域含有的TALE結(jié)合原件對TALE誘導(dǎo)的植物免疫反應(yīng)是必須的。上述研究結(jié)果證明,水稻基因組進化出的R基因家族成員是通過識別白葉枯病菌分泌的TALE類蛋白來調(diào)控水稻抗病反應(yīng)。
表1 已克隆的水稻抗性基因
植物R基因與病原物無毒基因(Avr基因)相互作用符合經(jīng)典基因?qū)蚣僬f:病原物分泌的無毒蛋白被相應(yīng)植物抗性蛋白識別后,進而誘導(dǎo)與激活下游植物抗性反應(yīng)。目前通過對植物與病原物互作的深入研究,已經(jīng)大大豐富了基因?qū)蚣僬f。研究表明,植物抗性蛋白與病原物無毒蛋白相互作用可分為兩類,第一類為直接互作,第二類為間接互作。其中,水稻抗稻瘟病菌R基因編碼蛋白Pita與AvrPita的互作關(guān)系為直接互作,其他決大多數(shù)R基因與Avr基因均屬于間接互作關(guān)系。Pita與AvrPita為第一對被報道的存在直接互作關(guān)系的蛋白。當(dāng)把Pita蛋白LRR結(jié)構(gòu)域中一個氨基酸突變后,二者互作關(guān)系消失,說明LRR結(jié)構(gòu)域?qū)ita與AvrPita的互作識別是必須的。到目前為止,雖然還沒有數(shù)據(jù)證明AvrPiz-t與Piz-t存在直接的互作關(guān)系,但是,當(dāng)把AvrPiz-t異源表達于含有Piz-t的水稻中時,會誘發(fā)強烈的HR反應(yīng),說明AvrPiz-t與Piz-t在水稻內(nèi)可能存在某種特異識別方式[62]。
病原物效應(yīng)子在廣義上可定義為能夠改變寄主細胞結(jié)構(gòu)與功能的病原物分泌蛋白或小分子物質(zhì)[63]。病原菌分泌的無毒效應(yīng)蛋白可被寄主相應(yīng)R蛋白直接或間接識別,進而激發(fā)下游快速而劇烈的過敏性反應(yīng)。迄今為止,在水稻病原菌中,共克隆與分離到21個無毒效應(yīng)子,其中,有13個效應(yīng)子來自于稻瘟病菌,7個來自于白葉枯病菌,另外一個來自于水稻細菌條斑病菌[4]。無毒效應(yīng)子的鑒定為更進一步深入研究無毒效應(yīng)子與R蛋白的互作關(guān)系與分子基礎(chǔ)提供了有利條件。AvrPib與AvrPi9為最近從稻瘟病菌中分離克隆到的兩個無毒效應(yīng)子,其中AvrPib基因編碼含有77個氨基酸蛋白,目前尚未發(fā)現(xiàn)其同源蛋白[30]。通過對來自全球5個地理區(qū)域的60個稻瘟病菌表型與基因型進行分析發(fā)現(xiàn),AvrPib的進化沒有受到寄主選擇的影響。對108個生理小種進行AvrPib等位重測序分析證明,轉(zhuǎn)座元件的非特異性插入是導(dǎo)致該基因毒性喪失的主要因素。水稻廣譜主效抗稻瘟病基因Pi9對應(yīng)的無毒基因AvrPi9最近已經(jīng)通過基因組比較方法被成功克隆。研究證明,AvrPi9在稻瘟病菌侵染早期階段具有較高水平表達,并隨著侵染的進行,AvrPi9蛋白轉(zhuǎn)移至水稻細胞中。與AvrPib同樣,轉(zhuǎn)坐元件對AvrPi9毒性的獲得與喪失具有重要作用[64]。
當(dāng)?shù)疚敛【谶m宜條件下接觸水稻后,會分泌大量效應(yīng)子進入水稻細胞,并可進一步轉(zhuǎn)移至相鄰細胞中與寄主蛋白相互作用,為稻瘟病菌進一步侵染與擴散做準(zhǔn)備。最近研究發(fā)現(xiàn)大量病原菌無毒效應(yīng)子的寄主內(nèi)靶標(biāo)蛋白對調(diào)控寄主抗性具有重要作用。如AvrPiz-t與 E3泛素連接酶蛋白APIP6相互作用,并抑制水稻PTI。有趣的是,AvrPiz-t與APIP6互作后,會導(dǎo)致后者降解。APIP6的RNAi轉(zhuǎn)基因水稻的PTI受到明顯抑制,且稻瘟病菌抗性也同樣受到抑制,說明APIP6對水稻免疫反應(yīng)起正調(diào)控作用[62]。最近研究發(fā)現(xiàn),AvrPiz-t與另一個E3類蛋白APIP10相互作用,并促進后者的降解,有趣的是,APIP10可促進AvrPiz-t泛素化水平,進而引起AvrPiz-t降解。在Piz-t背景下下調(diào)APIP10表達后,可引起水稻細胞死亡表型,同時,Piz-t表達量明顯上調(diào),進而引起稻瘟病菌抗性增強,說明APIP10對水稻免疫反應(yīng)起負調(diào)控作用[65]。
在植物免疫反應(yīng)過程中,水楊酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)與乙烯(ethylene,ET)等植物激素作為信號傳遞因子對植物免疫反應(yīng)具有重要調(diào)控作用[66]。在過去數(shù)十年間,植物生長相關(guān)激素如植物生長素、赤霉素、油菜素內(nèi)酯與脫落酸等均參與調(diào)控植物免疫反應(yīng),對維持植物生長與免疫反應(yīng)動態(tài)平衡起到重要作用[67]。大量研究證明,提高植物抗病性突變體材料往往具有生長受到抑制的表型。同樣,對植物生長與發(fā)育具有重要調(diào)控作用的基因突變后,往往會改變植物對病原物的抗性。因此,植物抗病性的激活與植物正常生長發(fā)育可能存在一定拮抗關(guān)系。水稻通常會在葉與嫩芽中含有較高含量的SA,而在根與懸浮培養(yǎng)的細胞中含量較低[68]。有趣的是,假單胞菌、稻瘟病菌與水稻紋枯病菌侵染過的水稻體內(nèi)并不積累過高水平SA[69]。但是,水稻可以響應(yīng)外源SA處理,包括誘導(dǎo)水楊酸葡糖基轉(zhuǎn)移酶表達以及過氧化氫積累,說明SA對氧化還原反應(yīng)具有重要調(diào)控作用[70]。在過去十幾年中,科學(xué)實驗證明大量SA信號通路因子參與植物免疫反應(yīng),說明SA信號通路對水稻免疫反應(yīng)具有重要調(diào)控作用。通過反向遺傳學(xué)篩選,發(fā)現(xiàn)SA信號通路因子編碼類肉桂酰輔酶A還原酶的基因SNL6對水稻病原相關(guān)蛋白表達與依賴于OsNPR1的白葉枯抗性是必須的[71]。水稻SNL6突變體內(nèi)的木質(zhì)素含量會大量積累,但木質(zhì)素積累與OsNPR1介導(dǎo)植物抗病性之間的關(guān)系還需要進一步深入研究。WRKY類轉(zhuǎn)錄因子OsWRKY45可以被SA及其衍生物苯并噻二唑(benzothiadiazole,BTH)所誘導(dǎo)。研究證明,超表達OsWRKY45轉(zhuǎn)基因水稻可以提高對稻瘟病抗性,而該基因RNAi轉(zhuǎn)基因水稻則減弱了BTH誘導(dǎo)的稻瘟病抗性。有意思的是OsWRKY45在植物抗病性功能并不依賴于OsNPR1[72]。
茉莉酸(JA)及其衍生物茉莉酸甲酯(methyl jasmonate,MeJA)是一類脂肪酸衍生物,研究結(jié)果表明,JA及其衍生物對植物生長發(fā)育具有重要意義。另外,當(dāng)植物處于機械傷害及死體營養(yǎng)病原物侵害等非生物與生物脅迫過程中,JA及其衍生物起重要調(diào)控作用[71]。研究表明,水稻OsPR1a、OsPR1b、OsPR2等 PR基因受JA誘導(dǎo)表達,另外,外源JA可以提高水稻對稻瘟病抗性[66]。研究證明,在水稻中超表達JA合成相關(guān)基因OsAOS2可以上調(diào)PR基因表達與對稻瘟病菌抗性[73]。最近研究表明稻瘟病菌編碼的一種抗生素合成單氧酶(Abm)可促進水稻內(nèi)源JA轉(zhuǎn)化為12OH-JA,進而減弱稻瘟病菌侵染過程中水稻免疫反應(yīng)[74]。上述結(jié)果證明,JA在水稻對真菌病害免疫反應(yīng)過程中起重要作用。
乙烯(ET)作為重要植物激素,參與調(diào)控種子萌發(fā)、幼苗生長、器官發(fā)育、果實成熟、器官衰老及脫離等植物生長發(fā)育過程。研究證明ET也參與植物逆境調(diào)控反應(yīng),如鹽脅迫、冷脅迫、水淹及病原微生物侵染等[75]。研究表明,由于病原物與環(huán)境條件不同,ET可以作為正、負調(diào)控因子對植物免疫反應(yīng)進行調(diào)控[76,77]。研究表明,水淹與無氧條件下所誘導(dǎo)的ET合成對水稻田間稻瘟病菌抗性非常重要,另外,外源ET合成抑制劑與ET合成促進劑可以下調(diào)與上調(diào)水稻對稻瘟病菌的抗性[78]。研究表明,ET含量的上升是伴隨著HR反應(yīng)發(fā)生,并可以誘導(dǎo)抗病相關(guān)基因(PR)表達。當(dāng)用ET合成抑制劑處理后,ET的釋放受到抑制,同時感病反應(yīng)更加強烈[79]。超表達ET合成相關(guān)基因ACS2的轉(zhuǎn)基因水稻對稻病菌與白葉枯病菌表現(xiàn)出明顯抗性增強反應(yīng),令人興奮的是,超表達ACS2的轉(zhuǎn)基因水稻生長表型與產(chǎn)量并末受到影響[80]。上述結(jié)果證明,ET在植物對真菌病害的基礎(chǔ)抗性過程中起重要作用。
赤霉素(gibberellin,GAs)是一種廣泛存在的植物激素,最初來源于赤霉菌,并可以引起水稻惡苗病。 然而該激素的重要性及其調(diào)控植物免疫反應(yīng)分子機制近些年才得到深入研究。水稻黑條矮縮病毒侵染后,水稻表現(xiàn)明顯矮化與深綠葉表型,這種表型與GAs缺陷突變體表型極為相似。研究證明,外源GAs可以減緩由水稻黑條矮縮病毒引起的水稻矮化與深綠葉表型[81]。最近研究表明,GAs合成相關(guān)基因GA20ox超表達株系內(nèi)GAs含量明顯提高,并顯著降低對稻瘟病抗性。GA20ox RNAi轉(zhuǎn)基因水稻可增強對稻瘟病菌與白葉枯病菌抗性[82]。上述結(jié)果證明GAs不僅在調(diào)控水稻株高方面起重要作用,在水稻免疫過程中同樣起重要作用。
油菜素內(nèi)酯(brassinosteroids,BR)在調(diào)節(jié)植物生長發(fā)育與多種生理過程中起重要作用,如細胞伸長、維管組織分化、根伸長、光反應(yīng)、抗逆反應(yīng)及早衰等[83,84]。BR受體BRI1是一個定位質(zhì)膜,編碼富含亮氨酸重復(fù)類激酶(leucine-rich repeat receptor-like kinase,RLK)的蛋白[85]。研究證明BR與BRI1結(jié)合后,可以促進磷酸基團在BRI1與BAK1間轉(zhuǎn)移[86]。有趣的是,BR與BRI1結(jié)合,可激活BRI1-XA21嵌合體受體激酶誘導(dǎo)的XA21介導(dǎo)抗病反應(yīng)[87]。最近研究表明,外源BR合成抑制劑可增強植物對白葉枯病菌抗性。而BR缺陷型突變體同樣可以增強植物對白葉枯病菌抗性,并且BR介導(dǎo)的抗病過程是通過SA與GA通路實現(xiàn)的[88]。
組蛋白修飾與染色質(zhì)重塑等表觀遺傳調(diào)控過程在動物與植物抵抗病原物侵染過程中起重要作用[89,90]。組蛋白乙?;c去乙酰化是一種可調(diào)控相關(guān)基因差異表達的組蛋白修飾方式之一。組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferases,HAT)與組蛋白脫乙酰酶(histone deacetylases,HDAC)分別控制組蛋白乙酰化與去乙?;?。目前,已有報道證明HDAC類蛋白可通過Toll-like receptor(TLR)通路與Interferon(FIN)信號通路調(diào)控動物免疫反應(yīng)。HDT701是水稻中HDAC類蛋白家族成員之一,并為植物所特有,作為負調(diào)控因子調(diào)節(jié)水稻免疫反應(yīng)。當(dāng)用親合性稻瘟病菌生理小種接種后,HDT701表達量明顯上調(diào),然而不親合小種接種水稻后,其表達量受到抑制。HDT701超表達轉(zhuǎn)基因水稻表現(xiàn)出對稻瘟病菌與白葉枯病菌更嚴(yán)重感病表型與組蛋白H4乙?;较陆惮F(xiàn)象,同時,HDT701 RNAi轉(zhuǎn)基因水稻增強對上述兩種病原菌抗性與上調(diào)組蛋白H4乙?;剑?1]。
據(jù)統(tǒng)計,由于人口快速增長,到2030年全球糧食增產(chǎn)要達到150%才能滿足人類需求[92]。由于各種條件限制,如栽培技術(shù),高產(chǎn)品種培育遇到更大瓶頸及大量病蟲害發(fā)生與流行嚴(yán)重等限制了全球糧食作物穩(wěn)產(chǎn)與增產(chǎn)。在過去的20年間,在中國與非洲國家,作物抗病性育種取得了巨大進步。例如,大量作物病害主效抗性基因克隆與分子標(biāo)記輔助育種(marker-assisted selection,MAS)應(yīng)用,大大加快了優(yōu)良抗性品種培育效率[92-94]。隨著新技術(shù)的開發(fā)與應(yīng)用,大量新技術(shù)與方法已經(jīng)廣泛被應(yīng)用于水稻抗病育種工作中,如全基因組關(guān)聯(lián)分析(genome wide association studies,GWAS)技術(shù),TALEN(transcription activator-like effector nucleases),CRISPR(clustered regularly interspaced short palindromic repeats /CRISPR-associated 9,CRISPR/Cas9)技術(shù)以及宿主誘導(dǎo)的基因沉默(host induced gene silence,HIGS)技術(shù)等。最近GWAS技術(shù)在水稻、玉米等多種作物中已成功應(yīng)用于控制數(shù)量性狀基因的定位[95,96]。最近研究發(fā)現(xiàn),利用來自5個國家的5個稻瘟病菌生理小種對414份來自世界多地區(qū)水稻材料進行GWAS分析,共鑒定到66個稻瘟病候選抗性位點,其中53個位點為初次報道[97]。這表明,GWAS分析與傳統(tǒng)定位方法有一定的重合性,但基于其大規(guī)模性與大數(shù)據(jù)量的優(yōu)勢,GWAS可為水稻抗病育種提供更多候選資源。最近幾年發(fā)展起來的基因編輯技術(shù)在水稻抗病育種方面具有巨大應(yīng)用潛能。TALEN是一種利用病原物分泌的TAL效應(yīng)子識別目標(biāo)基因特異序列,通過與核酸內(nèi)切酶結(jié)合并對目標(biāo)序列進行切割的一種基因編輯技術(shù)。目前利用TALEN技術(shù),已經(jīng)得到對Xanthomonas spp.具有良好抗性轉(zhuǎn)基因水稻[98]。新技術(shù)CRISPR/Cas9基因編輯技術(shù)的應(yīng)用,使基因定點編輯變得更加方便與快捷[99]。到目前為止,CRISPR基因編輯技術(shù)已在小鼠、斑馬魚、果蠅、線蟲、擬南芥、玉米及水稻等多個物種中成功應(yīng)用。利用CRISPR技術(shù)對六倍體小麥3個Mlo基因進行定點編輯,得到了抗性持久,穩(wěn)定遺傳的六倍體小麥株系[100]。最新研究報告稱來自于Argonaute蛋白(NgAgo)家族的核酸內(nèi)切酶可以利用DNA作為向?qū)Ы到馊肭諨NA。NgAgo蛋白在向?qū)NA的引導(dǎo)下,能夠在人細胞中進行特定基因定點編輯[101]。由于Cas9必須依賴于目標(biāo)位點位于PAM上游,才可能發(fā)揮切割作用,而NgAgo編輯技術(shù)則沒有這一限制,因此,NgAgo編輯技術(shù)比CRISPR編輯技術(shù)在作物抗病性方面的遺傳改良與培育可能擁有更為廣泛應(yīng)用前景,但這一技術(shù)的重復(fù)性及效率目前還存在爭議,需要進一步的研究證實。HIGS技術(shù)是最近幾年發(fā)展起來的一種利用RNAi原理抑制病原菌侵染的技術(shù)。第一個成功應(yīng)用HIGS技術(shù)進行抗性研究結(jié)果證明,當(dāng)在植物內(nèi)表達PRSV(papaya ringspot virus,PRSV)外殼蛋白可有效抑制PRSV侵染[102]。目前有研究證明,在植物體內(nèi)表達特異識別病原物重要基因的雙鏈RNA時,可以有效提高植物自身對病原物抗性,并且在大麥與小麥抗白粉病育種中成功應(yīng)用[103,104]。
在過去20年間,科學(xué)界在水稻先天免疫分子機制方面取得了巨大進步。迄今為止,有超過40個PRR與R基因被成功克隆,這些基因在抵抗真菌、細菌及病毒入侵過程起重要作用[59]。這些基因也為培育水稻高抗品種提供了重要理論基礎(chǔ)與遺傳材料,如鄒德堂等[105]利用顯性標(biāo)記pB8對黑龍江省96份水稻主栽品種進行Pi9基因篩選,發(fā)現(xiàn)早熟青森、墾粳1號等44個品種含有Pi9基因,苗期和分蘗期平均發(fā)病級別均為2.4級;青森5號、長白9號等52個品種不含Pi9基因,苗期和分蘗期平均發(fā)病級別分別為5.1和5.4級,研究結(jié)果可為水稻品種改良以及抗病資源合理利用奠定基礎(chǔ);Pi35是最近被克隆的一個稻瘟病抗性基因,是Pish 的等位變異基因[48]。攜帶Pi35 基因的日本粳稻品種北海188(Hokkai 188)和藤系138(Fukei 138)自育成30多年來一直保持穩(wěn)定的高水平葉瘟抗性;其中,藤系138 在20世紀(jì)80 年代中期被引入黑龍江、吉林等省,并以之作為抗性親本培育了一批推廣品種[106]。另外,對水稻先天免疫受體因子的鑒定及其識別真菌、細菌及病毒分子機制研究、受體復(fù)合體的結(jié)構(gòu)分析為水稻抗病性研究與高抗品種的培育提供了新思路與理論基礎(chǔ)。以下幾個方面還需進一步深入研究:(1)PRR與NLR相互識別所介導(dǎo)的植物抗病性機制;(2)信號傳遞因子如何識別PRR與NLR互作信號及調(diào)控下游PR基因表達;(3)表觀遺傳修飾參與調(diào)控水稻先天免疫機制;(4)如何將目前水稻先天免疫基礎(chǔ)理論與抗病育種實際更加有機結(jié)合,以提高抗病品種培育效率,縮短新品種選育時間。
[1]Boller T, He C. Innate immunity in plants:An arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928):742-744.
[2]Nakahara K, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity[J]. Current Opinion in Plant Biology, 2014, 20:88-95.
[3]Zvereva A, Pooggin M. Silencing and innate immunity in plant defense against viral and non-viral pathogens[J]. Viruses, 2012,4(11):2578-2597.
[4]Liu W, Wang G. Plant innate immunity in rice:a defense against pathogen infection[J]. National Science Review, 2016. doi: 10. 1093/nsr/nww015
[5] Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology, 2008, 20(1):10-16.
[6]Shiu S, Karlowski W, Pan R, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. Plant Cell,2004, 16(5):1220-1234.
[7]Fritz-Laylin L, Jones J. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis 1[J]. Plant Physiology, 2005, 138(2):611-623.
[8]Chen X, Ronald P. Innate immunity in rice[J]. Trends in Plant Science, 2011, 16(8):451-459.
[9]Liu B, Li J, Ao Y, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J]. Plant Cell, 2012, 24(8):3406-3419.
[10]Delphine C, Martin R, Thomas B, et al. The Arabidopsis receptor kinase fls2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.
[11]Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004,428(6984):764-767.
[12]Shinya T, Osada T, Desaki Y, et al. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands[J]. Plant & Cell Physiology, 2010, 51(2):262-270.
[13]Takai R, Isogai A, Takayama S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular Plant-Microbe Interactions, 2009, 21(12):1635-1642.
[14]Akimoto K, Katakami H, Kim H, et al. Epigenetic inheritance in rice plants[J]. Annals of Botany, 2007, 100(2):205-217.
[15]Song W, Wang G, Chen L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science,1995, 270(5243):1804-1806.
[16]Chen X, Chern M, Canlas P, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America,2010, 107(17):8029-8034.
[17]Ying J, Chen X, Ding X, et al. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance[J]. Plant Journal, 2013, 73(5):814-823.
[18]Park C, Peng Y, Chen X, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(11):1910-1926.
[19]Peng Y, Bartley L, Chen X, et al. OsWRKY62 is a negative regulator of basal and Xa21 mediated defense against Xanthomonas oryzae pv. oryzae in Rice[J]. Molecular Plant, 2008, 1(3):446-458.
[20]Wang Y, Pi L, Chen X, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. Plant Cell, 2006, 18(12):3635-3646.
[21]Park C, Ronald PC. Cleavage and nuclear localization of the rice XA21 immune receptor[J]. Nature Communications, 2012, 3(2):177-180.
[22]Park C, Sharma R, Lefebvre B, et al. The endoplasmic reticulumquality control component SDF2 is essential for XA21-mediated immunity in rice[J]. Plant Science, 2013, 210(9):53-60.
[23]Xin L, Kapos P, Zhang Y. NLRs in plants[J]. Current Opinion in Immunology, 2015, 32:114-121.
[24]Zhou T, Wang Y, Chen J, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J]. Molecular Genetics & Genomics,2004, 271(4):402-415.
[25]Chen L, Hamada S, Fujiwara M, et al. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J]. Cell Host & Microbe, 2010, 7(3):185-196.
[26]Chen X, Shan J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant Journal for Cell & Molecular Biology, 2006, 46(5):794-804.
[27]Fukuoka S, Saka N, Koga H, et al. Loss of function of a prolinecontaining protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943):998-1001.
[28]Nan J, Li Z, Wu J, et al. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson[J]. Rice, 2012, 5(1):1-7.
[29]Zhu X, Shen C, Yang J, et al. The identification of Pi50(t),a new member of the rice blast resistance Pi2/Pi9 multigene family[J]. Theoretical & Applied Genetics, 2012, 124(7):1295-1304.
[30]Su J, Wang W, Han J, et al. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus[J]. Theoretical & Applied Genetics, 2015, 128(11):2213-2225.
[31]Ma J, Lei C, Xu X, et al. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice[J]. Molecular Plant-Microbe Interactions, 2015, 28(5):558-568.
[32]Hayashi N, Inoue H, Kato T, et al. Durable panicle blastresistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J]. Plant Journal for Cell & Molecular Biology,2010, 64(3):498-510.
[33]Zeng X, Yang X, Zhao Z, et al. Characterization and fine mapping of the rice blast resistance gene Pia[J]. Science China Life Sciences, 2011, 54(4):372-378.
[34]Wang Z, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant Journal, 1999,19(1):55-64.
[35]Shang J, Tao Y, Chen X, et al. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes[J]. Genetics, 2009, 182(4):1303-1311.
[36]Zhai C, Lin F, Dong Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011, 189(1):321-334.
[37]Rai A, Kumar S, Gupta S, et al. Functional complementation of rice blast resistance gene Pi-k h(Pi54)conferring resistance to diverse strains of Magnaporthe oryzae[J]. Journal of Plant Biochemistry & Biotechnology, 2011, 20(20):55-65.
[38]Ashikawa I, Hayashi N, Yamane H, et al. Two adjacent nucleotidebinding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180(4):2267-2276.
[39]Yuan B, Zhai C, Wang W, et al. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes[J]. Theoretical & Applied Genetics, 2011, 122(122):1017-1028.
[40]Takahashi A, Hayashi N, Miyao A, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposontagging[J]. Bmc Plant Biology, 2010, 10(1):1-14.
[41]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter[J]. Plant Journal for Cell & Molecular Biology,2009, 57(3):413-425.
[42]Bryan G, Wu K, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11):2033-2046.
[43]Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11):1216-1228.
[44]Hua L, Wu J, Chen C, et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast[J]. Theoretical & Applied Genetics, 2012, 125(5):1047-1055.
[45]Lee S, Song M, Seo Y, et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coilnucleotide-binding-leucine-rich repeat genes[J]. Genetics,2009, 181(4):1627-1638.
[46]Qu S, Liu G, Bellizzi M, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3):1901-1914.
[47]Jie C, Liu W, Zhuang J, et al. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae[J]. Journal of Genetics & Genomics, 2011, 38(5):209-216.
[48]Fukuoka S, Yamamoto S, Mizobuchi R, et al. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast[J]. Scientific Reports, 2014, 4:4450.
[49]Liu X, Lin F, Wang L, et al. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4):2541-2549.
[50]Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3):1871-1880.
[51]Liu Y, Liu B, Zhu X, et al. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broadspectrum resistance to Magnaporthe oryzae in rice[J]. Theoretical & Applied Genetics, 2013, 126(4):985-998.
[52]Cesari S, Thilliez G, Ribot C, et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVRPia and AVR1-CO39 by direct binding[J]. Plant Cell, 2013, 25(4):1463-1481.
[53] Lyer-Pascuzzi A, Mccouch S. Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5[J]. Phytopathology, 2008, 98:289-295.
[54]Yuan M, Chu Z, Li X, et al. Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice[J]. Plant & Cell Physiology, 2009, 50(5):947-955.
[55]Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant Cell & Environment, 2011, 34(11):1958-1969.
[56]Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant Journal, 2004, 37:517-527.
[57]Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26[J]. Tag Theoretical & Applied Genetics. theoretische Und Angewandte Genetik, 2006, 113(7):1347-1355.
[58]Gu K, Yang B, Tian D, et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005,435(7045):1122-1125.
[59]Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1,a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668.
[60]Tian D, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum[J]. Plant Cell, 2014, 26(1):497-515.
[61]Wang C, Zhang X, Fan Y, et al. XA23 Is an executor r protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015, 8(2):290-302.
[62]Park C, Chen S, Shirsekar G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. Plant Cell, 2012, 24(11):4748-4762.
[63]Hogenhout S, Hoorn R, Terauchi R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular plant-microbe interactions:MPMI, 2009, 22(2):115-122.
[64]Wu J, Kou Y, Bao J, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015, 206(4):1463-1475.
[65]Chan H, Shirsekar G, Bellizzi M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice[J]. Plos Pathogens, 2016, 12(3):e1005529.
[66] Yang DL, Yang YN, He ZH, et al. Roles of plant hormones and their interplay in rice immunity[J]. Molecular Plant, 2013, 6(3):675-685.
[67]Bari R, Jones J. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4):473-488.
[68]Chen Z, Iyer S, Caplan A, et al. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues[J]. Plant Physiology, 1997, 114(1):193-201.
[69]Silverman P, Seskar M, Kanter D, et al. Salicylic acid in rice(biosynthesis, conjugation, and possible role)[J]. Plant Physiology, 1995, 108(2):633-639.
[70]Ganesan V, Thomas G. Salicylic acid response in rice:influence of salicylic acid on H2O2accumulation and oxidative stress[J]. Plant Science An International Journal of Experimental Plant Biology, 2001, 160(6):1095-1106.
[71]Bart R, Chern M, Vegasánchez M, et al. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae[J]. Plos Genetics, 2010, 6(9):110-117.
[72]Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J].Plant Cell, 2007, 19(6):2064-2076.
[73]Mei C, Qi M, Sheng G, et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Molecular plant-microbe interactions:MPMI,2006, 19(10):1127-1137.
[74]Patkar R, Benke P, Qu Z, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity[J]. Nature Chemical Biology, 2015, 11(9):733-740.
[75]Liu Q, Chen Y, Pan H, et al. Emerging connections in the ethylene signaling network[J]. Trends in Plant Science, 2009, 14(5):270-279.
[76]Broekaert W, Delauré S, Bolle M, et al. The role of ethylene in hostpathogen interactions[J]. Annual Review of Phytopathology,2006, 44:393-416.
[77]Loon L, Geraats B, Linthorst H. Ethylene as a modulator of disease resistance in plants[J]. Trends in Plant Science, 2006, 11(4):184-191.
[78]Singh M, Lee F, Counce P, et al. Mediation of partial resistance to rice blast through anaerobic induction of ethylene[J]. Phytopathology, 2004, 94(8):819-825.
[79]Iwai T, Miyasaka A, Seo S, et al. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology, 2006, 142(3):1202-1215.
[80]Helliwell E, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2013, 11(1):33-42.
[81]Zhu S, Gao F, Cao X, et al. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms[J]. Plant Physiology,2005, 139(4):1935-1945.
[82]Qin X, Liu J, Zhao W, et al. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice[J]. Molecular plant-microbe interactions:MPMI, 2013, 26(2):227-239.
[83]Kim T, Wang Z. Brassinosteroid signal transduction from receptor kinases to transcription factors[J]. Annual Review of Plant Biology, 2010, 61(4):681-704.
[84]高靜, 張昊, 王鳳茹, 等. 油菜素內(nèi)酯提高水稻抗病性的分子機制[J]. 植物保護學(xué)報, 2016, 43(2):347-348.
[85]Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997,90(5):929-938.
[86]Jia L, Wen J, Lease K, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.
[87]He Z, Wang Z, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1[J]. Science,2000, 288(5475):2360-2363.
[88]Vleesschauwer D, Buyten E, Satoh K, et al. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice[J]. Plant Physiology, 2012, 158(4):1833-1846.
[89]Hamon M, Cossart P. Histone modifications and chromatin remodeling during bacterial infections[J]. Cell Host & Microbe,2008, 4(2):100-109.
[90]Ma K, Flores C, Ma W. Chromatin configuration as a battlefield in plant-bacteria interactions[J]. Plant Physiology, 2011, 157(2):535-543.
[91]Ding B, Bellizzi M, Ning Y, et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. Plant Cell, 2012, 24(9):3783-3794.
[92]Rao Y, Li Y, Qian Q. Recent progress on molecular breeding of rice in China[J]. Plant Cell Reports, 2014, 33(4):551-564.
[93]何峰, 張浩, 劉金靈, 等. 水稻抗稻瘟病天然免疫機制及抗病育種新策略[J]. 遺傳, 2014, 36(8):756-765.
[94]馬軍韜, 張國民, 辛愛華, 等. 水稻品種抗稻瘟病分析及基因聚合抗性改良[J]. 植物保護學(xué)報, 2016, 43(2):177-183.
[95]Zheng Y. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1):32-39.
[96]Kump K, Bradbury P, Wisser R, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature Genetics,2011, 43(2):163-168.
[97]Kang H, Zhang Y, Wang Y, et al. Molecular Dissection of theComplex Genetic Architecture of Rice Immunity to the Blast Fungus Magnaporthe oryzae using GWAS[C]. Jeju, Korea:International Plant and Animal Genome Conference, 2013.
[98]Li T, Liu B, Spalding M, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nature Biotechnology,2012, 30(5):390-392.
[99]Pennisi E. The CRISPR craze[J]. Science, 2013, 341(6148):833-836.
[100] Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014,32(9):947-951.
[101] Feng G, Xiao Z, Feng J, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nature Biotechnology, 2016, 34(7):768-773.
[102] Gonsalves D. Control of papaya ringspot virus in papaya:a case study[J]. Annual Review of Phytopathology, 1998, 36(1):415-437.
[103] Nowara D, Gay A, Lacomme C, et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010, 22(9):3130-3141.
[104] Nunes C, Dean R. Host-induced gene silencing:a tool for understanding fungal host interaction and for developing novel disease control strategies[J]. Molecular Plant Pathology, 2012,13(5):519-529.
[105] 鄒德堂, 姜思達, 趙宏偉, 等. 廣譜抗性基因Pi9在黑龍江省水稻品種中的分布[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報, 2016, 47(7):1-8.
[106] 馬建, 馬小定, 趙志超, 等. 水稻抗稻瘟病基因Pi35 功能性分子標(biāo)記的開發(fā)及其應(yīng)用[J]. 作物學(xué)報, 2015, 41(12):1779-1790.
(責(zé)任編輯 馬鑫)
Recent Progress in Molecular Mechanism of Rice Disease Resistance
LI Zhi-qiang WANG Guo-liang LIU Wen-de
(State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Sciences,Beijing 100193)
Rice as one of the most important crop which is the staple food for more than half of the population in the world. Maintaining high and stable rice yield are closely related to the national economic development. However,various plant diseases and insect pests pose to seriously yield production lost threat on rice. Breeding and plant high disease resistance cultivar is the most economic effective,safe,healthy and environment friendly rice disease breeding strategy,and in-depth studies in rice disease resistance molecular mechanism can provide important theoretical basis for cultivation of high disease resistance rice varieties. In the past two decades,scientists have made important progress in the molecular mechanism of rice disease resistance. This review summarizes the recent progress towards understanding the recognition and signaling events that govern rice innate immunity and the application in rice disease resistance breeding. We also discuss and prospect the challenges and future directions for research that will further our understanding of rice disease resistance.
rice;disease resistance;molecular mechanism;breeding
2016-09-07
國家自然科學(xué)基金項目(31422045,31272034)
李智強,博士,研究方向:植物抗病分子機制;E-mail:zhiqiangdo_771@163.com
劉文德,博士,研究員,研究方向:分子植物病理學(xué);E-mail:wendeliu@126.com