邵嚴(yán)昊,顧耀東,,李建設(shè)
(1.寧波大學(xué) 體育學(xué)院,浙江 寧波 315211;2.寧波大學(xué) 大健康研究院,浙江 寧波 315211)
?
·運(yùn)動生物力學(xué)·
游泳出發(fā)階段的運(yùn)動學(xué)研究進(jìn)展
邵嚴(yán)昊1,顧耀東1,2,李建設(shè)2
(1.寧波大學(xué) 體育學(xué)院,浙江 寧波 315211;2.寧波大學(xué) 大健康研究院,浙江 寧波 315211)
隨著對游泳的研究不斷深入,出發(fā)階段對比賽成績影響的研究逐年增加。運(yùn)動生物力學(xué)在出發(fā)階段技術(shù)動作分析中起到重要作用,文章總結(jié)了大量國內(nèi)外相關(guān)文獻(xiàn),從生物力學(xué)角度綜述出發(fā)階段的技術(shù)動作特征,并重點(diǎn)探討出發(fā)前15m各個(gè)階段之間肢體配合對競賽成績的影響。旨在加強(qiáng)教練員與運(yùn)動員對出發(fā)階段技術(shù)訓(xùn)練的重視,同時(shí)幫助運(yùn)動員優(yōu)化技術(shù)動作提供理論依據(jù)。
生物力學(xué);游泳;競賽成績;技術(shù)動作;適應(yīng)性變化
游泳比賽是由出發(fā)、途中游、轉(zhuǎn)身、終點(diǎn)沖刺和到邊技術(shù)5個(gè)環(huán)節(jié)組成,游泳出發(fā)階段作為第一個(gè)環(huán)節(jié)十分重要,在比賽中把聽到發(fā)令槍響到頭部游進(jìn)前15m標(biāo)志線作為完整的出發(fā)階段,這段距離占到50m泳道的30%,在以百分之一秒決定勝負(fù)的短距離游泳比賽中出發(fā)技術(shù)直接影響著比賽的名次和成績。在剛剛過去的2015年喀山游泳世錦賽男子50m自由泳決賽前三名的成績僅僅相差0.36s,100m自由泳決賽冠亞軍的成績也僅相差0.11s,而在2012年的倫敦奧運(yùn)會男子100m自由泳冠亞軍的成績更是以0.01s分出的勝負(fù),可見技術(shù)細(xì)節(jié)的保障非常重要。隨著游泳比賽影響力的日益增強(qiáng)、運(yùn)動員整體水平的提高、比賽激烈程度的加劇,現(xiàn)代游泳相關(guān)研究的范圍也越來越廣泛,并且呈明顯加快的趨勢[42]。2015年喀山世錦賽,一種針對蹲踞式出發(fā)技術(shù)應(yīng)運(yùn)而生的 “可調(diào)節(jié)后蹬板”出現(xiàn)在大眾視野。比賽中游泳出發(fā)階段技術(shù)的研究參數(shù)主要包括:出發(fā)階段時(shí)間(出發(fā)前15m時(shí)間)、轉(zhuǎn)身時(shí)間(碰墻轉(zhuǎn)身前7.5m)、末尾階段時(shí)間(距墻5m)、游泳的距離、劃水頻率和速度[36]。此外,還要對出發(fā)階段、轉(zhuǎn)身和末尾階段時(shí)間對比賽成績的作用進(jìn)行定量評估[1,17,29,39,59]。對短距離比賽數(shù)據(jù)的統(tǒng)計(jì)分析結(jié)果表明,發(fā)現(xiàn)出發(fā)前15m時(shí)間約占比賽時(shí)間總數(shù)的0.8%到26.1%[29]。研究指出,游泳運(yùn)動員能否高效利用潛水技巧在入水滑行階段生成較高速度將對比賽的每個(gè)階段產(chǎn)生影響[25,30]。
本文以運(yùn)動學(xué)(kinematics);競賽成績(performance);技術(shù)動作(technique);適應(yīng)性變化(variability);游泳(swimming);出發(fā)(start)為關(guān)鍵詞在MEDLINE、ScienceDirect OnLine、CNKI和谷歌學(xué)術(shù)數(shù)據(jù)庫中進(jìn)行檢索。通過對所有檢索到的文獻(xiàn)進(jìn)行整理分類,最終篩選出67條文獻(xiàn)引用。
研究選取29種變量:8種時(shí)間,7種角度,14種速度[4]。在分析游泳出發(fā)階段動作表現(xiàn)的運(yùn)動學(xué)參數(shù)時(shí),為便于研究通常把出發(fā)階段分成不同階段,可分為臺上時(shí)間、騰空時(shí)間和水下時(shí)間[6,1,18,57]。最近的研究認(rèn)為,出發(fā)階段是從聽到開始信號開始到離開泳臺的時(shí)間[7,8,49]。以上研究采用安裝在與運(yùn)動方向垂直的數(shù)碼攝像機(jī)進(jìn)行采集,與此不同,Vantorre等[52]使用兩臺固定攝像機(jī),一臺安裝在游泳出發(fā)處,另一臺安置在出發(fā)15m處,機(jī)高2.5m,距離泳池5m遠(yuǎn)的地方,在一定范圍內(nèi)使用水下移動相機(jī)測量劃水長度和頻率。另有大量研究利用特制泳臺記錄從預(yù)備動作到離開泳臺這段時(shí)間推進(jìn)力的變化,并對泳臺起跳過程進(jìn)行動力學(xué)量化分析,繪制泳臺起跳階段的作用力曲線[7,11,27,49,54,55,59,63]。
2.1泳臺起跳階段
隨著時(shí)間的推移和科技的進(jìn)步,游泳出發(fā)技術(shù)經(jīng)歷了幾次技術(shù)革新,從最初的“擺臂式”到“抓臺式”,再到目前使用最普遍的“蹲踞式”。游泳出發(fā)階段的動力學(xué)研究指出,從聽到開始信號到離開泳臺的階段與田徑比賽的起跑階段十分相似[2,24,27,38,59,65]。然而從生物力學(xué)角度來看,即使在相同階段仍然有許多方面不同。由于運(yùn)動員之間的個(gè)體差異和不同特長,在出發(fā)階段的動作也有所不同。短距離游泳運(yùn)動員需要觸墻向后轉(zhuǎn)身使自身繼續(xù)向前游,而長距離游泳運(yùn)動員則需要注意比賽距離、在水面上的時(shí)間和每次入水時(shí)身體的方向。需要指出的是,分解出發(fā)階段不僅是個(gè)空間問題,而且是關(guān)于整個(gè)開始階段運(yùn)動期間動力系統(tǒng)變化的問題。對泳臺階的相關(guān)研究[7,52,67]表明,聽到開始信號的快速反應(yīng)和泳臺上生成向前沖的初速度是決定整體速度的兩個(gè)關(guān)鍵因素。此外,成人運(yùn)動員將后蹬板設(shè)置在第4、5檔位時(shí),其離臺的水平速度、后置腿的最大力量等方面都顯著高于前三個(gè)檔位,這與運(yùn)動員的身高、下肢長度等個(gè)體差異也有一定關(guān)系[66]。游泳運(yùn)動員不僅在起跳階段的反應(yīng)要更加迅速,而且從泳臺起跳到入水滑行的時(shí)間段需要獲得足夠大初速度和加速度[13]。換句話說,需要在泳臺上花足夠的時(shí)間產(chǎn)生更大的作用力并盡可能快地離開泳臺[31]。有研究建議運(yùn)動員在準(zhǔn)備起跳時(shí)前置腿的膝關(guān)節(jié)角度以135~145°為宜,后置腿的膝關(guān)節(jié)角度以100~110°(水平速度更大)或80~90°(更能發(fā)揮后置腿的垂直蹬伸力量)為宜[67]。
與傳統(tǒng)的抓臺式出發(fā)不同(圖1),新的蹲踞式出發(fā)技術(shù)在預(yù)備階段就預(yù)先調(diào)整好了身體重心,能夠盡量縮短緩沖時(shí)間快速進(jìn)入蹬伸發(fā)力階段,并減少臺上用時(shí)[66]。以自由泳為例,2015年喀山世錦賽6個(gè)自由泳單項(xiàng)決賽前八名運(yùn)動員,反應(yīng)時(shí)(Response time: R.T.)的平均成績比2009年采用舊出發(fā)臺時(shí)的R.T.的平均成績總體縮短了0.05s,其中后蹬板促進(jìn)后蹬力量的增加及身體重心的變化等都對R.T.成績產(chǎn)生了直接影響。
圖1 同一名運(yùn)動員的后置腿膝關(guān)節(jié)在新、舊泳臺上的角度變化
2.2騰空階段和入水階段
出發(fā)階段的動作分解標(biāo)準(zhǔn)一直是不明確的。Maglischo[41]把手碰到水時(shí)稱為入水階段的開始,這個(gè)定義也廣泛用于確定騰空階段末尾的指標(biāo)。游泳運(yùn)動員需要在泳臺起跳階段獲得足夠大的初速度以幫助騰空階段獲得最大限度的跳躍距離[23,46]。Barlow H等[66]認(rèn)為騰空時(shí)間不應(yīng)算作出發(fā)階段的時(shí)間,但是騰空跳躍的距離仍是決定出發(fā)階段表現(xiàn)的變量之一(r = -0.482)。Maglischo[41]指出騰空階段使用屈體姿勢或平展姿勢都會強(qiáng)烈影響運(yùn)動員身體在空中的軌跡,屈體姿勢比平展姿勢有更久的滯空時(shí)間、更好的起跳與入水角度和更快的入水速度。Wilson和Marino[64]研究中發(fā)現(xiàn)屈體姿勢比平展姿勢有更短的出發(fā)前10m運(yùn)動時(shí)間、更好的入水角度、更短的入水距離和以更好的髖關(guān)節(jié)角度入水。Kilduff 等[25]研究稱,在出發(fā)前8m的時(shí)間內(nèi)抓臺式出發(fā)——平展姿勢比抓臺式出發(fā)——屈體姿勢的入水角度更小,時(shí)間也更短。因此,平直姿勢入水的目標(biāo)是為了快速入水時(shí)保持更平滑的身體姿勢并更早開始劃水動作。屈體姿勢是為了入水時(shí)能夠產(chǎn)生更小的水花獲得更快的速度。Vantorre[52]等指出,多數(shù)精英運(yùn)動員的出發(fā)技戰(zhàn)術(shù)各不相同,個(gè)體差異性主要體現(xiàn)在如何通過控制肢體動作來達(dá)到獨(dú)特風(fēng)格的出發(fā)軌跡。以Volkov 出發(fā)動作為例,腿蹬水時(shí)手臂向后劃,或騰空時(shí)手臂立即伸至頭前[52-55]。然而,游泳運(yùn)動員的在騰空階段的目標(biāo)不僅是跳躍距離達(dá)到最大化。Mclean[37]和 Vantorre[53]等指出,游泳運(yùn)動員必須有足夠的角動量才能做出一個(gè)標(biāo)準(zhǔn)的入水動作,這意味著他們需要足夠的時(shí)間來調(diào)整身體姿勢,從產(chǎn)生的水洞入水,習(xí)慣上稱為洞式入水。手臂的動作會影響游泳出發(fā)階段向前調(diào)整的角動量,向前擺臂是為使身體減少旋轉(zhuǎn),與之相反向后擺臂會增加身體的旋轉(zhuǎn)。因此,為使用入水前產(chǎn)生更大的角動量,游泳運(yùn)動員可以作一個(gè)平直的起跳(較小的角動量和一個(gè)平直的軌跡),或者做一個(gè)向后擺臂的Volkov出發(fā)動作(較大的角動量和一個(gè)拋物線軌跡)[47,56]。
2.3水下滑行階段
水上動作(泳臺,騰空,入水階段)完成后,游泳運(yùn)動員必須處理好從空中到水中動作姿勢的過渡。頭鉆入水中滑行開始,頭鉆出水面滑行結(jié)束。在入水之后,游泳運(yùn)動員想要盡可能維持前一階段中獲得的初速度就要保持穩(wěn)定流線型的姿態(tài)并逐步轉(zhuǎn)化為水平姿勢,這一階段稱為入水滑行階段。Cossor等[16]和Sanders等[45]研究指出,比賽成績與出發(fā)階段中水下滑行時(shí)間高度相關(guān)。然而,很少有研究能準(zhǔn)確測量出兩者間的相關(guān)程度。Guimaraes和 Hay[20]指出,出發(fā)階段的水下滑行時(shí)間比泳臺起跳時(shí)間或騰空時(shí)間對比賽成績的影響更大。維持穩(wěn)定流線型的姿態(tài)入水對減緩初速度的損失至關(guān)重要。有充分的證據(jù)顯示,入水后游泳運(yùn)動員被動前進(jìn)時(shí),仰臥位會比俯臥位產(chǎn)生更大的阻力[14,18]。這些觀察結(jié)果表明,相比于身體表面積,身體形態(tài)在決定總的阻力比重上所起的作用更大。例如,雙手相握疊時(shí)比雙手與肩膀呈直線平行時(shí)阻力相對減少7%[10](圖2)。鑒于出發(fā)階段的重要性,一些研究人員提出了采用流體動力學(xué)分析量化滑行時(shí)質(zhì)量與阻力系數(shù)的方法?;械淖枇σ匾约邦~外增加的質(zhì)量是影響衡量滑行效率的指標(biāo)[40,41,58]。Bixler等[9]在游泳研究中驗(yàn)證了這一方法?;械奶匦泽w現(xiàn)在運(yùn)動員采用的姿勢及身體周圍水流流動特性兩方面?;械囊?單位為m)是當(dāng)一個(gè)滑行的軀體(游泳運(yùn)動員)達(dá)到一個(gè)2m/s的初速度然后在0.5s后減速到1 m/s之間的距離。 Naemi和Sanders[41]表示這與運(yùn)動員的體型有關(guān)系。流線型的軀體的慣性和水中阻力的特性會影響到滑行效率。一項(xiàng)關(guān)于蛙泳出發(fā)階段過程中相同階段平均滑行速度(1.37±0.124m·s-1)的研究發(fā)現(xiàn),第一次劃臂前第一階段位置滑行的值明顯低于蛙泳在水下第二階段位置滑行的值。這也印證了Seifert等[47]關(guān)于蛙泳運(yùn)動員趨向于在蛙泳出發(fā)階段的第二階段位置花費(fèi)時(shí)間更多的觀點(diǎn)。
圖2 在被動前行時(shí)不同姿勢對應(yīng)的流體阻力(以滑行時(shí)雙手相握比雙手與肩膀呈直線平行為基準(zhǔn)的百分比[10] )
2.4水下運(yùn)動
在水下階段,游泳運(yùn)動員必須控制入水滑行,水下蹬腳以及劃出水面的三個(gè)階段的時(shí)間[19,34,52]。根據(jù)國際泳聯(lián)規(guī)定,除蛙泳外的游泳出發(fā)階段不僅局限在泳臺起跳和空中階段,還要持續(xù)到游泳運(yùn)動員入水滑行后再次浮出水面游泳前行到達(dá)15m的標(biāo)志處為止。然而即使入水滑行階段在比賽開始貢獻(xiàn)了很大的距離,特別是蛙泳,出發(fā)階段的水下部分的研究仍然十分稀少[1,16,20,59]。Cossor和 Mason[16]通過對100m仰泳和100m蛙泳比賽出發(fā)階段的研究發(fā)現(xiàn),水下速度和出發(fā)前15m的平均速度呈負(fù)相關(guān)(r=-0.734)。研究者普遍強(qiáng)調(diào)量化出發(fā)階段水下部分的重要性,但相關(guān)研究較少[10,15,19,32,33,50]。一些研究者們認(rèn)為,高效的水下滑行階段是良好游泳出發(fā)階段的基礎(chǔ)[45,59,60]。Pereira 等[43]的研究表明,在從入水到15m標(biāo)記處之間的時(shí)間是在游泳出發(fā)階段的關(guān)鍵。國際泳聯(lián)規(guī)定蛙泳水下滑行階段的規(guī)范引起一些研究者開始關(guān)注關(guān)于水下推進(jìn)力、滑行動作和出發(fā)階段速度的分析[47,57]。這些研究表明,國家和國際健將兩個(gè)級別的游泳運(yùn)動員在出水階段作蛙泳手臂回復(fù)動作時(shí)通常表現(xiàn)出同樣的問題,腳向后蹬水和手臂擺動屬于反作用的疊加,這是游泳進(jìn)程中首先要解決的。此外,這些作者研究發(fā)現(xiàn)由于速度的增加導(dǎo)致臂-腿協(xié)調(diào)達(dá)到最優(yōu)化狀態(tài)變得困難,限制了自適應(yīng)變化的范圍。在自由泳比賽中,游泳運(yùn)動員一般很快就開始劃水,產(chǎn)生的阻力也比他們繼續(xù)滑行了一段時(shí)間再劃水產(chǎn)生的阻力要大[46]。Elipot 等[19]也強(qiáng)調(diào)水下滑行和腿蹬水與維持跳水開始時(shí)初速度間關(guān)系的重要性。Houel 等[22]指出,游泳最適宜在滑行約6m后開始海豚踢,并需要更有效更快速地踢水以獲得更大速度。一項(xiàng)關(guān)于專業(yè)和非專業(yè)游泳運(yùn)動員在水下階段的研究描述了其在水下階段的表現(xiàn),包括一次踢腿階段和水下腿擺動的次數(shù)[54]。
Vantorre等[52]將出發(fā)階段劃分成六個(gè)階段:①泳臺階段(開始信號到腳趾離開泳臺瞬間之間的時(shí)間);②騰空階段(腳趾離開泳臺瞬間到手入水之間的時(shí)間);③入水階段(從手碰到水到腳趾完全入水之間的時(shí)間);④滑行階段(從腳趾完全入水到在水下開始腳蹬水之間的時(shí)間);⑤蹬腿階段(從開始腳踢水到開始用手劃水之間的時(shí)間);⑥游泳階段(從第一次手劃水到頭到達(dá)15m標(biāo)識處之間的時(shí)間)。
游泳出發(fā)階段研究的主要目標(biāo)是根據(jù)運(yùn)動員的表現(xiàn)確定最有效的出發(fā)技術(shù)。可以采用逐步分析法等方法重點(diǎn)分析出發(fā)階段各部分的定性特征。例如,Vantorre等調(diào)研了專業(yè)運(yùn)動員在前15m水下階段的動作特點(diǎn),分析了如踢腿、腿部擺動的次數(shù)和劃臂次數(shù)等各種行為參數(shù)。這些研究者們?yōu)榇_定出發(fā)階段最高效的時(shí)間分配方案而評估每個(gè)階段所應(yīng)分配的時(shí)間。利用這些定性參數(shù)聚類分析的方法確定這些專業(yè)運(yùn)動員是否使用同一戰(zhàn)術(shù)獲得最佳出發(fā)表現(xiàn)。而一次高效出發(fā)階段分配方案的確定需要符合兩個(gè)主要特征:掌握何時(shí)停止滑行并開始踢腿和掌握何時(shí)從開始踢腿過渡到全速游泳。
回顧國內(nèi)外游泳出發(fā)階段運(yùn)動學(xué)的相關(guān)研究成果可發(fā)現(xiàn),出發(fā)階段作為游泳比賽的開始,無論對于國際賽事還是業(yè)余比賽來說與比賽最終成績的聯(lián)系顯而易見,其主要作用體現(xiàn)在提高游泳運(yùn)動員的訓(xùn)練和比賽時(shí)的運(yùn)動表現(xiàn)。運(yùn)動表現(xiàn)的提升一方面需要運(yùn)動員在出發(fā)階段選擇適合自己的技戰(zhàn)術(shù)和高效時(shí)間分配的方案,另一方面又需要對出發(fā)過程中肢體動作(如滑動距離、腿部擺動頻率等)運(yùn)動學(xué)參數(shù)進(jìn)行準(zhǔn)確評估。然而,目前對于出發(fā)階段的研究大部分集中在泳臺上的生物力學(xué)方向(例如出發(fā)姿勢的比較和泳臺形狀的改進(jìn)等),而占據(jù)主要成績的水下部分相關(guān)研究仍然較為稀少(包括入水角度、入水速度、滑行姿勢等方面)。因此,在以后的研究中應(yīng)在保持水上技術(shù)革新的同時(shí),更需關(guān)注運(yùn)動員在出發(fā)階段水下部分運(yùn)動學(xué)的研究,為更好地提高游泳成績提供進(jìn)一步科學(xué)的理論支持。
[1]Arellano R, Moreno F J, Martinez M, et al.A device for quantitative measurement of starting time in swimming[J].Swimming Science VII,1996:195-200.
[2]Ayalon A, Van Gheluwe B, Kanitz M, et al.A comparaison of four racing styles of racing strat in swimming[J].Biomechanics and Medicine in Swimming II,1975:233-241.
[3]Bartlett R, Wheat J, Robins M. Is movement variability important for sports biomechanists[J].Sports biomechanics,2007,6(2):224-243.
[4]張銘.游泳出發(fā)技術(shù)研究綜述[J].成都體育學(xué)院學(xué)報(bào),2003,29(5):64-66.
[5]Bartlett, R,Lamontagne, M, Robertson, G and Sveistrup. Is movement variability important for sports biomechanists[J].In:X^XIIth International Symposium on Biomechanics in Sports, Ottawa, Canada,2004:521-524.
[6]滿明輝.淺談游泳出發(fā)臺出發(fā)技術(shù)研究現(xiàn)狀[J].內(nèi)蒙古體育科技,2006(2):88-89.
[7]Benjanuvatra N, Edmunds K, Blanksby B. Jumping ability and swimming grab-start performance in elite and recreational swimmers[J].International Journal of Aquatic Research and Education,2007,1(3):231-241.
[8]Bishop D C, Smith R J, Smith M F, et al. Effect of plyometric training on swimming block start performance in adolescents[J].The Journal of Strength & Conditioning Research,2009,23(7):2137-2143.
[9]Bixler B, Pease D, Fairhurst F. The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer[J].Sports Biomechanics,2007,6(1):81-98.
[10]Blanksby B A, Gathercole D G, Marshall R N. Force plate and video analysis of the tumble turn by age-group swimmers[J].Journal of Swimming Research,1996:40-45.
[11]Blanksby B, Nicholson L, Elliott B. Swimming: Biomechanical analysis of the grab, track and handle swimming starts: an intervention study[J].Sports Biomechanics,2002,1(1):11-24.
[12]Bloom J A, DISCH J G. Differences in flight, reaction & movement time for the grab & conventional starts[J].Swimming Technique,1978,15(2):34-36.
[13]Breed R V P, Young W B. The effect of a resistance training programme on the grab, track and swing starts in swimming[J].Journal of sports sciences,2003,21(3):213-220.
[14]Clarys J P, Jiskoot J. Total resistance of selected body positions in the front crawl[J].Swimming II,1975:110-117.
[15]Clothier P J, McElroy G K, Blanksby B A, et al. Traditional and modified exits following freestyle tumble turns by skilled swimmers[J].South African Journal for Research in Sport, Physical Education and Recreation,2000,2(1):41-55.
[16]Cossor J, Mason B. Swim start performances at the Sydney 2000 Olympic Games[C].ISBS-Conference Proceedings Archive.2001,1(1).
[17]Costill D L. Handbook of Sports Medicine and Science, Swimming[M].lackwell Publishing,1992.
[18]Counsilman J E. Forces in swimming two types of crawl stroke[J].Research Quarterly. American Association for Health,Physical Education and Recreation,1955,26(2):127-139.
[19]Elipot M, Dietrich G, Hellard P, et al. High-level swimmers’ kinetic efficiency during the underwater phase of a grab start[J].Journal of applied biomechanics,2010,26(4):501-507.
[20]Guimaraes A, Hay J G. A Mechanical Analysis of the Grab Starting Technique in Swimming[J].International journal of sport biomechanics,1985,1(1).
[21]Hay J G. The status of research on the biomechanics of swimming[J].Swimming Science V,1988:3-14.
[22]Houel N, Elipot M, André F, et al. Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during underwater phase of a grab start[J].Journal of applied biomechanics,2013,29(1):49-54.
[23]Hubert M, Silveira G A, Freitas E, et al. Speed variation analysis before and after the stroke in swimming starts[J].Biomechanics and Medicine in Swimming,2006:44-45.
[24]Issurin V B, Verbitsky O. Track start vs. Grab start: evidence of the Sydney Olympic Games[J].Biomechanics and medicine in swimming IX, 2003: 213-218.
[25]Kilduff L P, Cunningham D J, Owen N J, et al. Effect of postactivation potentiation on swimming starts in international sprint swimmers[J].The Journal of Strength & Conditioning Research,2011,25(9):2418-2423.
[26]Krüger T, Wick D, Hohmann A, et al. Biomechanics of the grab and track start technique[C].Proceeding of the IX nternational Symposium on Biomechanics and Medicine in Swimming.—France: University of Saint-Etienne.2003:219-223.
[27]Lee C W, Huang C, Wang L I, et al.Comparison of the dynamics of the swimming grab start, squat jump, and countermovement jump of the lower extremity[C].XIX International Symposium on Biomechanics in Sports. Blackwell, JR and Sanders, RH, eds. San Francisco,CA.2001:143-146.
[28]Lewis S. Comparison of five swimming starting techniques[J].Swimming Technique,1980,16(4):124-128.
[29]Lyttle A, Benjanuvatra N. Start Right-A Biomechanical Review of Dive Start Performance[J].Zugriff am,2005,15.
[30]Lyttle A, Blanksby B, Seifert L, et al. World book of swimming: From Science to Performance. The world book of swimming. From science to performance[J].2011.
[31]Lyttle A D, Blanksby B A, Elliott B C, et al. Optimal depth for streamlined gliding[J].Biomechanics and medicine in swimming VIII, 1999:165-170.
[32]Lyttle A D, Blanksby B A, Elliott B C, et al.The effect of depth and velocity on drag during the streamlined glide[J].Journal of Swimming Research,1998,13.
[33]Lyttle A D, Blanksby B A, Elliott B C, et al.Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn[J].Journal of Sports Sciences,2000,18(10):801-807.
[34]Maglischo E W. Front crawl stroke[J].Swimming fastest,2003:95-144.
[35]Mason B, Alcock A, Fowlie J. A kinetic analysis and recommendations for elite swimmers performing the sprint start[C].ISBS-Conference Proceedings Archive.2007,1(1).
[36]Mason B, Cossor J. What can we learn from competition analysis at the 1999 Pan Pacific Swimming Championships[C].Proceedings of XVIII international symposium on biomechanics in sports-Applied program.2000:75-82.
[37]Mclean, S. Beckett K D, Richard N H. Addition of an approach to a Swimming Relay Start[J].Journal of applied biomechanics,2000,16:342-355.
[38]Miller M, Allen D, Pein R. A kinetic and kinematic comparison of the grab and track starts in swimming[J].Biomechanics and medicine in swimming IX,2003:231-242.
[39]Mills B D, Gehlsen G. A multidisciplinary investigation of the relation of state sport confidence with preference and velocity of swimming starts[J].Perceptual and motor skills,1996,83(1):207-210.
[40]Naemi R, Easson W J, Sanders R H. Hydrodynamic glide efficiency in swimming[J].Journal of Science and Medicine in Sport,2010,13(4):444-451.
[41]Naemi R, Sanders R H. A “hydrokinematic” method of measuring the glide efficiency of a human swimmer[J].Journal of biomechanical engineering,2008,130(6):061016.
[42]Pelayo P, Alberty M, Seifert L, et al. World book of swimming: From Science to Performance.The history of swimming research[J].2011.
[43]Pereira S, Araujo L, Roesler H. The influence of variation in height and slope of the starting platforms on the starting time of speed swimmers[J].Biomechanics and Medicine in Swimming IX,2002:237-241.
[44]Pereira, S., Ruschel, C. and Araujo, L. Biomechanical analysis of the underwater phase in swimming start.[J].Biomechanics and Medicine in Swimming X,2006:79-81.
[45]Sanders R, Bonnar S. Start technique-recent findings[J].2004.
[46]Sanders R, Byatt-Smith J. Improving feedback on swimming turns and starts exponentially[C].ISBS-Conference Proceedings Archive.2001,1(1).
[47]Seifert L, Vantorre J, Chollet D. Biomechanical analysis of the breaststroke start[J].International journal of sports medicine, 2007,28(11):970-976.
[48]Seifert L, Vantorre J, Chollet D, et al. Different profiles of the aerial start phase in front crawl[J].The Journal of Strength & Conditioning Research,2010,24(2):507-516.
[49]Slawson S E, Conway P P, Cossor J, et al. The categorisation of swimming start performance with reference to force generation on the main block and footrest components of the Omega OSB11 start blocks[J]. Journal of sports sciences,2013,31(5):468-478.
[50]Takeda T, Ichikawa H, Takagi H, et al. Do differences in initial speed persist to the stroke phase in front-crawl swimming[J].Journal of sports sciences,2009,27(13):1449-1454.
[51]Takeda T, Nomura T. What are the differences between grab and track start[C].X International Symposium on Biomechanics and Medicine in Swimming Porto: Faculty of Sport, University of Porto.2006:102-105.
[52]Vantorre J, Seifert L, Bideau B, et al. Influence of swimming start styles on biomechanics and angular momentum[C].Biomechanics and medicine in swimming XI: proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo.2010:135-137.
[53]Vantorre J, Seifert L, Fernandes R J, et al. Comparison of grab start between elite and trained swimmers[J].International journal of sports medicine,2010,31(12):887.
[54]Vantorre J, Seifert L, Fernandes R J, et al. Kinematical profiling of the front crawl start[J].Int J Sports Med,2010,31(1):16-21.
[55]Vantorre J, Seifert L, Fernandes R J, et al. Biomechanical influence of start technique preference for elite track starters in front crawl[J].The Open Sports Sciences Journal,2010,3:137-139.
[56]Vantorre J, Seifert L, Vilas-boas J, et al. Biomechanical analysis of starting preference for expert[J].Portuguese Journal of Sport Sciences,2011,11(2):415-418.
[57]Vilas-Boas J P. The Leon Lewillie Memorial Lecture: Biomechanics and Medicine in Swimming[J].Past, Present and Future. In: K Per-Ludvik, KS Robert, C Jan (Eds). Biomechanics and Medicine in Swimming XI. Norwegian School of Sport Science:Oslo,2010:12-19.
[58]Vilas-Boas J P, Costa L, Fernandes R J, et al. Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke[J].Journal of applied biomechanics,2010,26(3):324-331.
[59]Vilas-Boas J P, Cruz J, Sousa F, et al. Biomechanical analysis of ventral swimming starts: comparison of the grab start with two track-start techniques[J].Biomechanics and medicine in Swimming IX,2003:249-253.
[60]Vilars-Boas J P, Cruz M J, Sousa F, et al. Integrated kinematic and dynamic analysis of two track-start techniques[C].ISBS-Conference Proceedings Archive.2000,1(1).
[61]Warren W H. The dynamics of perception and action[J].Psychological review,2006,113(2):358.[62]Welcher R L, Hinrichs R N, George T R. Front-or rear-weighted track start or grab start: Which is the best for female swimmers[J].Sports Biomechanics,2008,7(1):100-113.
[63]West D J, Owen N J, Cunningham D J, et al. Strength and power predictors of swimming starts in international sprint swimmers[J].The Journal of Strength & Conditioning Research,2011,25(4):950-955.
[64]Wilson D S, Marino W G. Kinematic analysis of three starts[J].Swimming Technique,1983,19(4):30-34.
[65]Zatsiorsky V M, Bulgakova N Z, Chaplinsky N M. Biomechanical analysis of starting techniques in swimming[J].Swimming III,1979:199-206.
[66]Barlow H, Halaki M, Stuelcken M, et al. The effect of different kick start positions on OMEGA OSB11 blocks on free swimming time to 15m in developmental level swimmers[J].Human movement science,2014,34:178-186.
[67]馬保雷.基于游泳蹲踞式出發(fā)技術(shù)的生物力學(xué)研究分析[J].電子測試,2014(9X):145-146.
Kinematics Research Progress of Swim-Start
SHAO Yan-hao1,GU Yao-dong1,2,LI Jian-she2
(1.Faculty of Sports Science, Ningbo University, Ningbo 315211, China; 2.Research Academy of Grand Health, Ningbo University, Ningbo 315211, China)
With the further study of swimming, researches about the effects of start stage on competitions are increasing. Techniques used at the start stage are closely related to study on sports biomechanics. This thesis has summarized a large number of relevant documents, analyzed the sports features at the start stage from the point of view of biomechanics and discussed how the limb coordination at all stages will influence the results in the first 15 meters before starting up. The aim is not only to focus on the scientific and technological development of modern swimming sports, but also to help athletes get better results by applying more proper technical movements.
biomechanics; swimming; performance; technique; variability
1004-3624(2016)05-0100-06
國家社會科學(xué)基金項(xiàng)目(16BTY085)和浙江省社科規(guī)劃‘之江青年課題’(16ZJQN021YB) 研究成果
2016-06-20
邵嚴(yán)昊(1992-),男,安徽阜陽人,在讀碩士研究生,研究方向?yàn)檫\(yùn)動生物力學(xué).
G804.66
A