亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        GEOMETRIC TRANSIENCE FOR NON-LINEAR AUTOREGRESSIVE MODELS

        2016-10-13 08:12:22SONGYanhong
        數(shù)學(xué)雜志 2016年5期
        關(guān)鍵詞:中南財(cái)經(jīng)政法大學(xué)充分條件分類號(hào)

        SONG Yan-hong

        (School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,China)

        GEOMETRIC TRANSIENCE FOR NON-LINEAR AUTOREGRESSIVE MODELS

        SONG Yan-hong

        (School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,China)

        In the paper,we study the stochastic stability for non-linear autoregressive models.By establishing an appropriate Foster-Lyapunov criterion,a sufficient condition for geometric transience is presented.

        geometric transience;non-linear autoregressive model;Foster-Lyapunov criterion

        2010 MR Subject Classification:60J05;60J20;37B25

        Document code:AArticle ID:0255-7797(2016)05-0987-06

        1 Introduction

        Consider a non-linear autoregressive Markov chainondefined by

        First,let us recall some notations and definitions,see[3,5,6]for details.Denote by)the Borel σ-field on R,and write=.The n-steptransition kernel of the chain Φnis defined as

        The chain Φnis Lebesgue-irreducible,if for every

        Obviously,the subset of a petite set is still petite.By[7,Lemma 2.1]or[8,Theorem 1],we know that the non-linear autoregressive model is Lebesgue-irreducible,and every compact set inis petite.

        be the first return and first hitting times,respectively,on A.It is obvious that τA=σAif Φ0∈Ac.Denote by L(x,A)=the probability of the chain Φnever returning to A.

        The chain Φnis called geometrically transient,if it is ψ-irreducible for some non-trivial measure ψ,and R can be covered ψ-a.e.by a countable number of uniformly geometrically transient sets.That is,there exist sets D and Ai,i=1,2,···such that=D∪where ψ(D)=0 and each Aiis a uniformly geometrically transient set of the chain Φn.

        To state the main result of this paper,we need the following assumptions:

        Theorem 1.1Assume(A1)and(A2).Then the non-linear autoregressive model Φnis geometrically transient.

        Remark 1.2It is easy to see that(A2)is equivalent to the condition in[9,Theorem 3.1],where transience for the the non-linear autoregressive model Φnwas confirmed.Here,we get a stronger result(i.e.geometric transience)in Theorem 1.1.

        2 Proof of Theorem 1.1

        This section is devoted to proving Theorem 1.1 by using the Foster-Lyapunov(or drift)condition for geometric transience.

        It is well known that Foster-Lyapunov conditions were widely used to study the stochastic stability for Markov chains.For examples,Down,Meyn and Tweedie[10-13]studied the drift conditions for recurrence,ergodicity,geometric ergodicity and uniform ergodicity.The drift conditions for sub-geometric ergodicity were discussed in[1,4,14-17]and so on.In [18,19],the drift conditions for transience were obtained.

        Recently,we investigated the drift condition for geometric transience in[6].One of the main results shows that the chain Φnis geometrically transient,if there exist some set,constants λ,b∈(0,1),and a function W≥1A(with W(x0)<∞for somesatisfying the drift condition

        As far as we know,however,this drift condition can not be applied directly for the nonlinear autoregressive model considered in this paper.Alternatively,we will establish a more practical drift condition for geometric transience.First,we need the following two lemmas,which are taken from[6].

        Lemma 2.1The chain Φnis geometrically transient if and only if there exist someand a constant κ>1 such that

        Proposition 2.3The chain Φnis geometrically transient,if there exist a petite set,constants λ∈(0,1),b∈(0,∞),and a non-negative measurable function W bounded on A satisfying

        and

        ProofSince W is non-negative and),we have.Set

        Hence by the comparison theorem of the minimal non-negative solution(see[20,Theorem 2.6]),we know from(2.3)and(2.4)that

        By(2.5)and noting that D?Ac,we have for all x∈R,

        Thus there exists some set C?A withsuch that

        According to Lemma 2.1,in the following,it is enough to prove that for some κ>1,

        Combining Lemma 2.2(1)with(2.5)and(2.1),we get for all x∈A,

        Since W is bounded on A,

        Noting that A is petite and C?A,according to(2.7)and the proof of[3,Theorem 15.2.1],we obtain that for all 1<κ≤λ-1/2<∞.This together with(2.6) yields the desired assertion.

        Now,we are ready to prove Theorem 1.1.

        Proof of Theorem 1.1By(A2),there exist constants θ>0 and c>0 satisfying

        Choose

        That is,

        Noting that W is bounded,it is obvious that for some b∈(0,∞),

        Combining this with(2.9),the drift condition(2.1)holds.Thus the non-negative autoregressive model Φnis geometrically transient by Proposition 2.3.

        References

        [1]Douc R,F(xiàn)ort G,Moulines E,Soulier P.Practical drift conditions for subgeometric rates of convergence[J].Ann.Appl.Prob.,2004,14(3):1353-1377.

        [2]Fort G,Moulines E.Polynomial ergodicity of Markov transition kernels[J].Stoch.Proc.Appl.,2003,103(1):57-99.

        [3]Meyn S P,Tweedie R L.Markov chains and stochastic stability(2nd ed.)[M].London:Springer-Verlag,1993.

        [4]Tuominen P,Tweedie R L.Subgeometric rates of convergence of f-ergodic Markov chains[J].Adv. Appl.Prob.,1994,26(3):775-798.

        [5]Gao Zhenlong,Wang Weigang,Hu Dihe.The convergence for transition functions of Markov chains in random environments[J].J.Math.,2008,28(5):546-550.

        [6]Mao Yonghua,Song Yanhong.On geometric and algebraic transience for discrete-time Markov chians[J].Stoch.Proc.Appl.,2014,124(4):1648-1678.

        [7]An H Z,Huang F C.The geometrical ergodicity of nonlinear autoregressive models[J].Stat.Sinica,1996,6:943-956.

        [8]Bhattacharya R,Lee C.On geometric ergodicity of nonlinear autoregressive models[J].Stat.Prob. Lett.,1995,22(4):311-315.

        [9]Lee O.Geometric ergodicity and transience for nonlinear autoregressive models[J].Comm.Korean Math.Soc.,1995,10(2):409-417.

        [10]Down D,Meyn S P,Tweedie R L.Exponential and uniform ergodicity of Markov processes[J].Ann. Prob.,1995,23(4):1671-1691.

        [11]Meyn S P,Tweedie R L.Stability of Markovian processes I:criteria for discrete-time chains[J].Adv. Appl.Prob.,1992,24(3):542-574.

        [12]Meyn S P,Tweedie R L.Stability of Markovian processes II:continuous time processes and sampled chains[J].Adv.Appl.Prob.,1993,25(3):487-517.

        [13]Meyn S P,Tweedie R L.Stability of Markovian processes III:Foster-Lyapunov criteria for continuous time processes[J].Adv.Appl.Prob.,1993,25(3):518-548.

        [14]Jarner S F,Roberts G O.Polynomial convergence rates of Markov chains[J].Ann.Appl.Prob.,2002,12(1):224-247.

        [15]Mao Yonghua.Algebraic convergence for discrete-time ergodic Markov chains[J].Sci.China Ser.A,2003,46(5):621-630.

        [16]Mao Yonghua.Ergodic degrees for continuous-time Markov chains[J].Sci.China Ser.A,2004,47(2):161-174.

        [17]Fort G,Roberts G O.Subgeometric ergodicity of strong Markov processes[J].Ann.Appl.Prob.,2005,15(2):1565-1589.

        [18]Stramer O,Tweedie R L.Stability and instability of continuous time Markov processes[C].Chichester:Wiley,Prob.,Stat.Optim.,1994:173-184.

        [19]Tweedie R L.Criteria for classifying general Markov chians[J].Adv.Appl.Prob.,1976,8(4):737-771.

        [20]Chen Mufa.From Markov chains to non-equilibrium particle systems(2nd ed.)[M].Singapore:Word Sci.,2004.

        非線性自回歸模型的幾何非常返性

        宋延紅
        (中南財(cái)經(jīng)政法大學(xué)統(tǒng)計(jì)與數(shù)學(xué)學(xué)院,湖北武漢430073)

        本文研究了非線性自回歸模型的隨機(jī)穩(wěn)定性.通過建立恰當(dāng)?shù)腇oster-Lyapunov條件,得到了非線性自回歸模型幾何非常返的充分條件.

        幾何非常返;非線性自回歸模型;Foster-Lyapunov條件

        MR(2010)主題分類號(hào):60J05;60J20;37B25O211.62;O211.9

        date:2016-03-11Accepted date:2016-06-01

        Supported by National Natural Science Foundation of China(11426219;11501576).

        Biography:Song Yanhong(1983-),female,born at Yantai,Shandong,lecturer,major in probability.

        猜你喜歡
        中南財(cái)經(jīng)政法大學(xué)充分條件分類號(hào)
        集合、充分條件與必要條件、量詞
        Research on the Efficiency of Financial Funds for Supporting Agriculture from the Perspective of Synergy
        有限μM,D-正交指數(shù)函數(shù)系的一個(gè)充分條件
        The Study of Language and Sex: Review of Sex, Covert Prestige and Linguistic Change in the Urban British English of Norwich
        An investigation of teachers’ perceptions and practices of CLT with regard to learners’ interaction and participation in classrooms
        A Study on the Change and Developmentof English Vocabulary
        Translation on Deixis in English and Chinese
        The law of exercise applies on individual behavior change development
        p-超可解群的若干充分條件
        關(guān)于EP算子的若干充分條件
        香蕉视频一级片| 蜜桃av精品一区二区三区| 高清精品一区二区三区| 2019最新国产不卡a| 国产女人91精品嗷嗷嗷嗷| 中文字幕久久国产精品| 一区二区三区中文字幕p站| 亚洲国产另类精品| 国产高潮精品久久AV无码| 丁香婷婷激情俺也去俺来也 | 亚洲国产精品无码久久一线| 曰批免费视频播放免费直播| 久久99热精品免费观看欧美| 国产在线观看黄片视频免费| 无码人妻精品一区二区三区蜜桃 | 99久久精品国产亚洲av天| 中文av字幕一区二区三区| 亚洲精品www久久久久久 | 亚洲一区区| 免费观看日本一区二区三区| 亚洲日韩精品无码专区网址| av人摸人人人澡人人超碰小说| 亚洲av永久无码精品成人| 日本一区二区三区区视频| 男人的天堂无码动漫av| 欧美在线综合| 日本高清一区二区三区在线| 欧美牲交a欧美牲交aⅴ免费下载 | a国产一区二区免费入口| 日本岛国大片不卡人妻| 激情五月我也去也色婷婷| 久久超碰97人人做人人爱 | 日本久久高清一区二区三区毛片| 亚洲国产欧美日韩一区二区| 久久久国产精品三级av| 亚洲欧洲成人a∨在线观看| 日本亚洲国产一区二区三区| 中文字幕日韩熟女av| 日本熟女中文字幕在线| 国产成人啪精品视频免费软件| 高清国产亚洲va精品|