亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Preparation and characterization of hexagonal SrMnO3 nanofibers by electrospinning

        2016-10-10 01:32:15ZhuHuaZhongXin
        合成纖維工業(yè) 2016年4期
        關(guān)鍵詞:纖維結(jié)構(gòu)吡咯烷酮紡絲

        Zhu Hua, Zhong Xin

        (School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)

        ?

        Preparation and characterization of hexagonal SrMnO3nanofibers by electrospinning

        Zhu Hua, Zhong Xin

        (School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)

        SrMnO3/polyvinylpyrrolidone(PVP)compositenanofibershavebeenpreparedsuccessfullybyelectrospinningprocessfromstrontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydrate.ThehexagonalSrMnO3nanofiberswasobtainedaftercalcinationat800 ℃for3h.TheeffectofPVPconcentrationonthefiberstructurewasinvestigated.Thestructureandpropertiesofnanofiberswerecharacterized.TheresultsshowedthatSrMnO3/PVPcompositenanofibersbecameuniformandthebeadedstructuredisappearedwhenthemassfractionofPVPreached8%;PVPcompletelydecomposedandallthefeedstockstransformedintoSrMnO3duringthecalcinationat700 ℃,thusagoodpurityhexagonalSrMnO3fiberof150-200nminthediameterwereobtained.

        strontiummanganate;polyvinylpyrrolidone;electrospinning;calcination;nanofibers

        Electrospinningtechniquehasbeenactivelyexploitedasasimpleandversatilemethodforgeneratingcontinuousnanofiberswhichhashighporousstructure,lowdensityandhighspecificsurfacearea[1-3].DuetothespecialskeletalstructurewhichwasconsistedofathreedimensionalnetworkofMnO6octahedra,strontiummanganate(SrMnO3)hassomepropertiessuchaselectronicproperties,thermochromism,thermalconductivity,magneticproperty,etc[4].Recently,themixtureofinorganicandorganicsaltsdissolvinginpolyvinylpyrrolidone(PVP)asstartingmaterials,inorganic-polymericfibershavepreparedbyelectrospinning.Theinorganic-polymericfiberswouldtransformintonanofibersbysubsequentcalcinationsathightemperature.Asfarasweknow,thepreparationofSrMnO3nanofibershasneverbeenreported.HerewereportthepreparedofSrMnO3nanofibersviaelectrospinningcombinedwithsol-gelprocess,andthepropertieswerecharacterizedforitsfutureapplications.

        1 Experimental

        Strontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydratewereusedastherawmaterialsforthepreparationofSrMnO3nanofibers.PVPwiththerelativemolecularmassof1.3×106wasusedasaviscosity-controllingagent.Asolutionwaspreparedbydissolving4mmolstrontium(Ⅱ)nitrateand4mmolmanganese(Ⅱ)acetatetetrahydratein3mLdemonizedwater,whichwasaddedwithacertainamountofPVPdissolvingin11mLethanolaqueous,stirringfor12hatroomtemperature.Thenthehomogeneoushybridsolwasobtained.Theaboveprecursorsolwasloadedina20mLplasticsyringeof25gaugeswithstainlesssteelneedle.Thedistancebetweenthespinneretandcollectorwasfixedas10cmandthehigh-voltagesupplywasmaintainedat15kV.Thespinningratewascontrolledat1.5mL/h.SrMnO3/PVPcompositenanofiberswascollectedonthecollector.Thesefiberswerecalcinatedatarateof2 ℃/minandremainedinairatmospherefor3hat800 ℃.ThushexagonalSrMnO3nanofiberswereobtained.

        TheX-raydiffraction(XRD)patternsweremeasuredonaRigakuGeigerfluxinstrument.ThesizeandmorphologyofSrMnO3fiberswereobservedwithJEOLJSM-6390scanningelectronmicroscope(SEM).EnergydispersiveX-ray(EDX)spectrographwasrecordedonINCA200EDSattachedwithSEMtostudythephasepurityofSrMnO3nanofibersthroughtheelementalanalysis.Thermogravimetric(TG)analysiswascarriedoutonaTAQ50thermogravimetricanalyzerinnitrogenatmosphere,andthetemperature-risingratewas10 ℃/min.Fouriertransformationinfrared(FTIR)spectroscopywasrecordedonaPerkinElmerspectrum100.

        2 Results and discussion

        2.1SEMandEDXanalysis

        Fig.1showsthattheconcentrationofPVPhasasignificanteffectontheformation,uniformityandhomogeneityofnanofibers.Thesizeandmorphologyhasmarkeddifferenceunderdifferentconcentrations.Non-uniformfiberswithbeadedstructureareformedwhenthemassfractionofPVPwasbelow6%.WiththeincreaseofPVPconcentration,thesurfacetensionandviscosityarecorrespondinglyincreased,theresistanceairflowtensileforceandstaticelectricityarealsoincreasedintheelectrospinningprocess,andthestructureoftheobtainedfibersbecomeuniform.ThebeadedstructuredisappearsandthefibersbecomeuniformatthePVPmassfractionof8%.Therandomlyorientedhybridfiberswithsmoothsurfaceandaveragediameterof300-400nmcanbeobservedasthemassfractionofPVPwas10%.TheobtainedfiberismoreuniformthanthatoflowPVPconcentration.Theresultsarewellconsistentwiththepublishedliterature[5].

        AsFig.2ashown,thefibrousstructureisretainedonthewholeexceptthatasmallamountoffibersarebrokenafterannealingat800 ℃.Andtheaveragediameterisreducedto150-200nmduetotheevaporationanddecompositionofPVPandvolatilecomponents.ThefiberssurfacebecomesroughbecauseofthedecompositionofPVPandtheformationofcrystallites.SrMnO3nucleialsogrowtoformlargernanoparticles.AsFig.2bshown,allpeaksarecorrespondingtoSr,MnandO,exceptAupeak(Auissprayedontothenanofibersbeforescanninginordertogethighqualitymorphologyimages).TheresultshowsthattheSrMnO3nanofibersholdgoodpurityafterremovalofPVP.

        Fig.2 SEM images and EDX pattern of SrMnO3 nanofibers

        2.2XRDanalysis

        AsindicatedinFig.3,strongpeaksareobservedat2θof32.84°associatedwith(110)planes.Othermaindiffractionpeaksat2θof27.22°, 35.19°, 43.19°, 48.90°, 58.62°, 60.17°and68.87°areassignedtothediffractionof(102), (103), (202), (203), (300), (213)and(220)crystalfacets,respectively.AlldiffractionpeaksshowgoodconsistencywithJCPDSCardNo.24—1213ofperovskitephaseofSrMnO3[6].Asinglehexagonalperovskitesystemwasdetermined.NotypicalpeakofpolymerisobservedinFig.3,indicatingthatPVPwasdecomposedandremovedafterannealingat800 ℃.

        Fig.3 XRD patterns of SrMnO3 nanofibers

        2.3Thermogravimetricanalysis

        AsshowninFig.4,theweightlossprocesshas3stages.Theweightlossis11.4 %atthefirststagebelow120 ℃,whichwascausedbythelossofsurfaceadsorbatesandresidualmoisture[7];theweightlossof35.5%over250-400 ℃isduetothedecompositionoforganiccontents(PVP)[5];similarly,theweightlossof33.7%over400-700 ℃isduetothedecompositionoftheorganometallicprecursor(manganeseacetate)andstrontiumnitrate;theweightlossiscompletedbelow700 ℃andthetotalweightlossisabout80.4%;noweightlossisobservedabove700 ℃andtheTGcurvebecomeshorizontal.TheTGcurveindicatesthatSrMnO3fibersamplescanbefabricatedatatemperatureof700 ℃andabove.

        Fig.4 TG curve of SrMnO3/PVP composite nanofiber

        2.4FTIRspectrometry

        AsFig.5shown,forPVP,thebroadbandaround3 200-3 600cm-1correspondstoO—Hstretchingvibration;thetripletpeakspresentat2 954cm-1correspondingtotheasymmetricandsymmetricC—Hstretchingvibrationsofmethylgroups(fromacetate)[8];andtheotherthreedominantpeaksatabout1 654, 1 442and1 292cm-1correspondtothestretchingvibrationofCO,C—HandC—Nbonds,respectively[9].ForSrMnO3/PVPcompositenanofiber,theCOstretchingvibrationcharacteristicpeakred-shiftsto1 652cm-1,theC—Hstretchingvibrationpeaksblue-shiftsto2 956and1 444cm-1,respectively;andthestretchingofC—Nat1 292cm-1isweakened.ForSrMnO3nanofiber,allthePVPpeaksvanish,indicatingthatthePVPwasfulldecomposed,threenewpeaksappearat765, 663, 542cm-1,whichareascribedtothestretchingvibrationofmetal-oxide(M—O)bondsinSrMnO3,matchingwellwiththepublishedliterature[6].TheFTIRresultsareingoodagreementwiththeSEM,XRDandTGresults.

        Fig.5 FTIR spectra of PVP and SrMnO3/PVP composite nanofiber and SrMnO3 nanofiber1—PVP;2—SrMnO3/PVP composite nanofiber;3—SrMnO3 nanofiber

        3 Conclusions

        a.SrMnO3/PVPcompositenanofiberswithadiameterof300-400nmweresuccessfullyfabricatedbyelectrospinningtechniqueandpurehexagonalSrMnO3fiberswithadiameterof150-200nmwerepreparedbytheheattreatmentofSrMnO3/PVPcompositenanofibersat800 ℃ .

        b.PVPconcentrationplaysanimportantroleintheformation,uniformityandhomogeneityofnanofibers.ThefiberbecameuniformwhenthePVPmassfractionreached8%.

        c.PVPwasdecomposedandremovedfromSrMnO3/PVPcompositefiberaftertheheattreatmentat700 ℃ .

        References

        [1]WangJinxian,ZhengXiaoqiu,DongXiangting,etal.SynthesisofLaMnO3nanofibersviaelectrospinning[J].ApplPhysRes, 2009, 1(2): 30-36.

        [2]BhardwajN,KunduSC.Electrospinning:Afascinatingfiberfabricationtechnique[J].BiotechnolAdv,2010,28(3):325-347.

        [3]LiDan,XiaYounan.Directfabricationofcompositeandceramichollownanofibersbyelectrospinning[J].NanoLett, 2004, 4(5):933-938.

        [4]HeirasJ,PichardoE,MahmoodA,etal.Thermochromismin(Ba,Sr)-Mnoxides[J].JPhysChemSolid, 2002, 63(4):591-595.

        [5]ChandradassJ,KimH,MomadeFWY.SynthesisofultrafineMgFe2O4,nanofibersviaelectrospiningusingsol-gelprecursor[J].JSol-GelSciTechnol, 2013, 65(2):189-194.

        [6]KhazaeiM,MalekzadehA,AminiF,etal.Effectofcitricacidconcentrationasemulsifieronperovskitephaseformationofnano-sizedSrMnO3andSrCoO3samples[J].CrystResTechnol, 2010, 45(10):1064-1068.

        [7]ImranZ,BatoolSS,IsrarMQ,etal.Fabricationofcadmiumtitanatenanofibersviaelectrospinningtechnique[J].CeramInt, 2012, 38(4):3361-3365.

        [8]TianHuyong,LuoWeigen,PuXinghua,etal.SynthesisandanalysesofthermaldecompositionandmicrostructureofSr-dopedbariumtitanatealkoxidederivedprecipitatesandthinfilms[J].ThermochimActa, 2000, 360(1):57-62.

        [9]CuiQizheng,DongXiangting,WangJinxian,etal.Directfabricationofceriumoxidehollownanofibersbyelectrospinning[J].JRareEarth, 2008, 26(5):664-669.

        靜電紡絲技術(shù)合成SrMnO3納米纖維及結(jié)構(gòu)表征朱華,鐘欣(四川文理學(xué)院化學(xué)化工學(xué)院,四川 達(dá)州 635000)摘要:以四水乙酸錳和硝酸鍶為原料,通過(guò)靜電紡絲法制備了錳酸鍶(SrMnO3)/聚乙烯吡咯烷酮(PVP)復(fù)合納米纖維,在800 ℃下處理3h,得到六方晶形結(jié)構(gòu)的SrMnO3納米纖維,考察了PVP濃度對(duì)纖維結(jié)構(gòu)的影響,并對(duì)纖維的結(jié)構(gòu)與性能進(jìn)行了表征。結(jié)果表明:PVP質(zhì)量分?jǐn)?shù)為8%時(shí),SrMnO3/PVP復(fù)合纖維表面光滑,均勻性好;熱處理溫度達(dá)700 ℃時(shí),SrMnO3/PVP復(fù)合纖維中PVP完全分解,原料全部轉(zhuǎn)化為SrMnO3,所得SrMnO3納米纖維直徑為150~200nm的六方晶形結(jié)構(gòu),且具有良好的純度。關(guān)鍵詞:錳酸鍶聚乙烯吡咯烷酮靜電紡絲法燒結(jié)納米纖維

        date:10- 06- 2016;reviseddate: 25- 06- 2016.

        AppliedBasicResearchProgramsofScienceandTechnologyDepartmentofSichuan(2015JY0254).

        TQ343.2Documentcode:AArticleID: 1001- 0041(2016)04- 0058- 03

        Biography:HuaZhu(1981-),male,lecturer,beengagedinthestudyoffinechemicals.E-mail:Zhuhua2006@163.com.

        猜你喜歡
        纖維結(jié)構(gòu)吡咯烷酮紡絲
        N-甲基吡咯烷酮降解菌株的篩選鑒定及應(yīng)用
        同軸靜電紡絲法制備核-殼復(fù)合納米纖維
        聚乙烯吡咯烷酮分子三級(jí)中紅外光譜研究
        靜電紡絲法制備正滲透膜材料
        云南化工(2021年7期)2021-12-21 07:27:36
        股骨近端纖維結(jié)構(gòu)不良的研究進(jìn)展
        東華大學(xué)開(kāi)發(fā)出全纖維結(jié)構(gòu)智能電子皮膚
        歐盟重新評(píng)估聚乙烯吡咯烷酮(E1201)和聚乙烯聚吡咯烷酮(E1202)作為食品添加劑的安全性
        纖維結(jié)構(gòu)不良合并動(dòng)脈瘤樣骨囊腫一例
        磁共振成像(2015年9期)2015-12-26 07:20:34
        靜電紡絲制備PVA/PAA/GO三元復(fù)合纖維材料
        數(shù)字直流調(diào)速器6RA70在紡絲牽伸系統(tǒng)中的應(yīng)用
        国产精品爽爽v在线观看无码| 杨幂国产精品一区二区| 国产日韩精品视频一区二区三区| 国产三级黄色大片在线免费看| 乱中年女人伦| 亚洲日韩国产精品第一页一区| 亚洲熟妇大图综合色区| 精品国模人妻视频网站| 伊人中文字幕亚洲精品乱码| 俺去俺来也在线www色官网| 久久久亚洲经典视频| 国产一区二区毛片视频| 亚洲最大免费福利视频网| 亚洲精品一区久久久久久| 国产精品久久久久久久久免费观看| 免费看黄在线永久观看| 亚洲国产av无码精品无广告| 欧洲一卡2卡三卡4卡免费网站| 综合色天天久久| 91中文在线九色视频| 欧美a级在线现免费观看| 中文字幕av一区中文字幕天堂| 在线观看国产精品91| 黄色潮片三级三级三级免费| 美女mm131爽爽爽| 精品少妇人妻av免费久久久| 极品粉嫩小仙女高潮喷水视频 | 国产91会所女技师在线观看| 精品露脸国产偷人在视频| 国产精品_国产精品_k频道| 午夜精品一区二区三区无码不卡| 亚洲情久久久精品黄色| 日韩视频在线观看| 蜜臀av一区二区| 亚洲中文字幕有码av| 在线a亚洲视频播放在线播放| 777亚洲精品乱码久久久久久 | 色婷婷精久久品蜜臀av蜜桃| 午夜被窝精品国产亚洲av香蕉 | 亚洲国产麻豆综合一区| 亚洲国产都市一区二区|