Zhu Hua, Zhong Xin
(School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)
?
Preparation and characterization of hexagonal SrMnO3nanofibers by electrospinning
Zhu Hua, Zhong Xin
(School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)
SrMnO3/polyvinylpyrrolidone(PVP)compositenanofibershavebeenpreparedsuccessfullybyelectrospinningprocessfromstrontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydrate.ThehexagonalSrMnO3nanofiberswasobtainedaftercalcinationat800 ℃for3h.TheeffectofPVPconcentrationonthefiberstructurewasinvestigated.Thestructureandpropertiesofnanofiberswerecharacterized.TheresultsshowedthatSrMnO3/PVPcompositenanofibersbecameuniformandthebeadedstructuredisappearedwhenthemassfractionofPVPreached8%;PVPcompletelydecomposedandallthefeedstockstransformedintoSrMnO3duringthecalcinationat700 ℃,thusagoodpurityhexagonalSrMnO3fiberof150-200nminthediameterwereobtained.
strontiummanganate;polyvinylpyrrolidone;electrospinning;calcination;nanofibers
Electrospinningtechniquehasbeenactivelyexploitedasasimpleandversatilemethodforgeneratingcontinuousnanofiberswhichhashighporousstructure,lowdensityandhighspecificsurfacearea[1-3].DuetothespecialskeletalstructurewhichwasconsistedofathreedimensionalnetworkofMnO6octahedra,strontiummanganate(SrMnO3)hassomepropertiessuchaselectronicproperties,thermochromism,thermalconductivity,magneticproperty,etc[4].Recently,themixtureofinorganicandorganicsaltsdissolvinginpolyvinylpyrrolidone(PVP)asstartingmaterials,inorganic-polymericfibershavepreparedbyelectrospinning.Theinorganic-polymericfiberswouldtransformintonanofibersbysubsequentcalcinationsathightemperature.Asfarasweknow,thepreparationofSrMnO3nanofibershasneverbeenreported.HerewereportthepreparedofSrMnO3nanofibersviaelectrospinningcombinedwithsol-gelprocess,andthepropertieswerecharacterizedforitsfutureapplications.
Strontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydratewereusedastherawmaterialsforthepreparationofSrMnO3nanofibers.PVPwiththerelativemolecularmassof1.3×106wasusedasaviscosity-controllingagent.Asolutionwaspreparedbydissolving4mmolstrontium(Ⅱ)nitrateand4mmolmanganese(Ⅱ)acetatetetrahydratein3mLdemonizedwater,whichwasaddedwithacertainamountofPVPdissolvingin11mLethanolaqueous,stirringfor12hatroomtemperature.Thenthehomogeneoushybridsolwasobtained.Theaboveprecursorsolwasloadedina20mLplasticsyringeof25gaugeswithstainlesssteelneedle.Thedistancebetweenthespinneretandcollectorwasfixedas10cmandthehigh-voltagesupplywasmaintainedat15kV.Thespinningratewascontrolledat1.5mL/h.SrMnO3/PVPcompositenanofiberswascollectedonthecollector.Thesefiberswerecalcinatedatarateof2 ℃/minandremainedinairatmospherefor3hat800 ℃.ThushexagonalSrMnO3nanofiberswereobtained.
TheX-raydiffraction(XRD)patternsweremeasuredonaRigakuGeigerfluxinstrument.ThesizeandmorphologyofSrMnO3fiberswereobservedwithJEOLJSM-6390scanningelectronmicroscope(SEM).EnergydispersiveX-ray(EDX)spectrographwasrecordedonINCA200EDSattachedwithSEMtostudythephasepurityofSrMnO3nanofibersthroughtheelementalanalysis.Thermogravimetric(TG)analysiswascarriedoutonaTAQ50thermogravimetricanalyzerinnitrogenatmosphere,andthetemperature-risingratewas10 ℃/min.Fouriertransformationinfrared(FTIR)spectroscopywasrecordedonaPerkinElmerspectrum100.
2.1SEMandEDXanalysis
Fig.1showsthattheconcentrationofPVPhasasignificanteffectontheformation,uniformityandhomogeneityofnanofibers.Thesizeandmorphologyhasmarkeddifferenceunderdifferentconcentrations.Non-uniformfiberswithbeadedstructureareformedwhenthemassfractionofPVPwasbelow6%.WiththeincreaseofPVPconcentration,thesurfacetensionandviscosityarecorrespondinglyincreased,theresistanceairflowtensileforceandstaticelectricityarealsoincreasedintheelectrospinningprocess,andthestructureoftheobtainedfibersbecomeuniform.ThebeadedstructuredisappearsandthefibersbecomeuniformatthePVPmassfractionof8%.Therandomlyorientedhybridfiberswithsmoothsurfaceandaveragediameterof300-400nmcanbeobservedasthemassfractionofPVPwas10%.TheobtainedfiberismoreuniformthanthatoflowPVPconcentration.Theresultsarewellconsistentwiththepublishedliterature[5].
AsFig.2ashown,thefibrousstructureisretainedonthewholeexceptthatasmallamountoffibersarebrokenafterannealingat800 ℃.Andtheaveragediameterisreducedto150-200nmduetotheevaporationanddecompositionofPVPandvolatilecomponents.ThefiberssurfacebecomesroughbecauseofthedecompositionofPVPandtheformationofcrystallites.SrMnO3nucleialsogrowtoformlargernanoparticles.AsFig.2bshown,allpeaksarecorrespondingtoSr,MnandO,exceptAupeak(Auissprayedontothenanofibersbeforescanninginordertogethighqualitymorphologyimages).TheresultshowsthattheSrMnO3nanofibersholdgoodpurityafterremovalofPVP.
Fig.2 SEM images and EDX pattern of SrMnO3 nanofibers
2.2XRDanalysis
AsindicatedinFig.3,strongpeaksareobservedat2θof32.84°associatedwith(110)planes.Othermaindiffractionpeaksat2θof27.22°, 35.19°, 43.19°, 48.90°, 58.62°, 60.17°and68.87°areassignedtothediffractionof(102), (103), (202), (203), (300), (213)and(220)crystalfacets,respectively.AlldiffractionpeaksshowgoodconsistencywithJCPDSCardNo.24—1213ofperovskitephaseofSrMnO3[6].Asinglehexagonalperovskitesystemwasdetermined.NotypicalpeakofpolymerisobservedinFig.3,indicatingthatPVPwasdecomposedandremovedafterannealingat800 ℃.
Fig.3 XRD patterns of SrMnO3 nanofibers
2.3Thermogravimetricanalysis
AsshowninFig.4,theweightlossprocesshas3stages.Theweightlossis11.4 %atthefirststagebelow120 ℃,whichwascausedbythelossofsurfaceadsorbatesandresidualmoisture[7];theweightlossof35.5%over250-400 ℃isduetothedecompositionoforganiccontents(PVP)[5];similarly,theweightlossof33.7%over400-700 ℃isduetothedecompositionoftheorganometallicprecursor(manganeseacetate)andstrontiumnitrate;theweightlossiscompletedbelow700 ℃andthetotalweightlossisabout80.4%;noweightlossisobservedabove700 ℃andtheTGcurvebecomeshorizontal.TheTGcurveindicatesthatSrMnO3fibersamplescanbefabricatedatatemperatureof700 ℃andabove.
Fig.4 TG curve of SrMnO3/PVP composite nanofiber
2.4FTIRspectrometry
AsFig.5shown,forPVP,thebroadbandaround3 200-3 600cm-1correspondstoO—Hstretchingvibration;thetripletpeakspresentat2 954cm-1correspondingtotheasymmetricandsymmetricC—Hstretchingvibrationsofmethylgroups(fromacetate)[8];andtheotherthreedominantpeaksatabout1 654, 1 442and1 292cm-1correspondtothestretchingvibrationofCO,C—HandC—Nbonds,respectively[9].ForSrMnO3/PVPcompositenanofiber,theCOstretchingvibrationcharacteristicpeakred-shiftsto1 652cm-1,theC—Hstretchingvibrationpeaksblue-shiftsto2 956and1 444cm-1,respectively;andthestretchingofC—Nat1 292cm-1isweakened.ForSrMnO3nanofiber,allthePVPpeaksvanish,indicatingthatthePVPwasfulldecomposed,threenewpeaksappearat765, 663, 542cm-1,whichareascribedtothestretchingvibrationofmetal-oxide(M—O)bondsinSrMnO3,matchingwellwiththepublishedliterature[6].TheFTIRresultsareingoodagreementwiththeSEM,XRDandTGresults.
Fig.5 FTIR spectra of PVP and SrMnO3/PVP composite nanofiber and SrMnO3 nanofiber1—PVP;2—SrMnO3/PVP composite nanofiber;3—SrMnO3 nanofiber
a.SrMnO3/PVPcompositenanofiberswithadiameterof300-400nmweresuccessfullyfabricatedbyelectrospinningtechniqueandpurehexagonalSrMnO3fiberswithadiameterof150-200nmwerepreparedbytheheattreatmentofSrMnO3/PVPcompositenanofibersat800 ℃ .
b.PVPconcentrationplaysanimportantroleintheformation,uniformityandhomogeneityofnanofibers.ThefiberbecameuniformwhenthePVPmassfractionreached8%.
c.PVPwasdecomposedandremovedfromSrMnO3/PVPcompositefiberaftertheheattreatmentat700 ℃ .
References
[1]WangJinxian,ZhengXiaoqiu,DongXiangting,etal.SynthesisofLaMnO3nanofibersviaelectrospinning[J].ApplPhysRes, 2009, 1(2): 30-36.
[2]BhardwajN,KunduSC.Electrospinning:Afascinatingfiberfabricationtechnique[J].BiotechnolAdv,2010,28(3):325-347.
[3]LiDan,XiaYounan.Directfabricationofcompositeandceramichollownanofibersbyelectrospinning[J].NanoLett, 2004, 4(5):933-938.
[4]HeirasJ,PichardoE,MahmoodA,etal.Thermochromismin(Ba,Sr)-Mnoxides[J].JPhysChemSolid, 2002, 63(4):591-595.
[5]ChandradassJ,KimH,MomadeFWY.SynthesisofultrafineMgFe2O4,nanofibersviaelectrospiningusingsol-gelprecursor[J].JSol-GelSciTechnol, 2013, 65(2):189-194.
[6]KhazaeiM,MalekzadehA,AminiF,etal.Effectofcitricacidconcentrationasemulsifieronperovskitephaseformationofnano-sizedSrMnO3andSrCoO3samples[J].CrystResTechnol, 2010, 45(10):1064-1068.
[7]ImranZ,BatoolSS,IsrarMQ,etal.Fabricationofcadmiumtitanatenanofibersviaelectrospinningtechnique[J].CeramInt, 2012, 38(4):3361-3365.
[8]TianHuyong,LuoWeigen,PuXinghua,etal.SynthesisandanalysesofthermaldecompositionandmicrostructureofSr-dopedbariumtitanatealkoxidederivedprecipitatesandthinfilms[J].ThermochimActa, 2000, 360(1):57-62.
[9]CuiQizheng,DongXiangting,WangJinxian,etal.Directfabricationofceriumoxidehollownanofibersbyelectrospinning[J].JRareEarth, 2008, 26(5):664-669.
靜電紡絲技術(shù)合成SrMnO3納米纖維及結(jié)構(gòu)表征朱華,鐘欣(四川文理學(xué)院化學(xué)化工學(xué)院,四川 達(dá)州 635000)摘要:以四水乙酸錳和硝酸鍶為原料,通過(guò)靜電紡絲法制備了錳酸鍶(SrMnO3)/聚乙烯吡咯烷酮(PVP)復(fù)合納米纖維,在800 ℃下處理3h,得到六方晶形結(jié)構(gòu)的SrMnO3納米纖維,考察了PVP濃度對(duì)纖維結(jié)構(gòu)的影響,并對(duì)纖維的結(jié)構(gòu)與性能進(jìn)行了表征。結(jié)果表明:PVP質(zhì)量分?jǐn)?shù)為8%時(shí),SrMnO3/PVP復(fù)合纖維表面光滑,均勻性好;熱處理溫度達(dá)700 ℃時(shí),SrMnO3/PVP復(fù)合纖維中PVP完全分解,原料全部轉(zhuǎn)化為SrMnO3,所得SrMnO3納米纖維直徑為150~200nm的六方晶形結(jié)構(gòu),且具有良好的純度。關(guān)鍵詞:錳酸鍶聚乙烯吡咯烷酮靜電紡絲法燒結(jié)納米纖維
date:10- 06- 2016;reviseddate: 25- 06- 2016.
AppliedBasicResearchProgramsofScienceandTechnologyDepartmentofSichuan(2015JY0254).
TQ343.2Documentcode:AArticleID: 1001- 0041(2016)04- 0058- 03
Biography:HuaZhu(1981-),male,lecturer,beengagedinthestudyoffinechemicals.E-mail:Zhuhua2006@163.com.