亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        三氯生毒性效應(yīng)及水質(zhì)基準(zhǔn)研究進(jìn)展

        2016-06-28 08:54:33鄭欣劉婷婷王一喆王曉南劉征濤張亞輝楊霓云閆振廣
        關(guān)鍵詞:急性毒性

        鄭欣,劉婷婷,王一喆,王曉南,劉征濤,張亞輝,楊霓云,閆振廣

        中國環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評估國家重點(diǎn)實(shí)驗(yàn)室,國家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險(xiǎn)評估重點(diǎn)實(shí)驗(yàn)室,北京 100012

        ?

        三氯生毒性效應(yīng)及水質(zhì)基準(zhǔn)研究進(jìn)展

        鄭欣,劉婷婷,王一喆,王曉南,劉征濤,張亞輝,楊霓云,閆振廣*

        中國環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評估國家重點(diǎn)實(shí)驗(yàn)室,國家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險(xiǎn)評估重點(diǎn)實(shí)驗(yàn)室,北京 100012

        摘要:三氯生(TCS)是一種高效的廣譜抗菌劑,廣泛用于個(gè)人護(hù)理品和工業(yè)產(chǎn)品中,在水體和陸生環(huán)境及生物體內(nèi)均被檢測到,具有較高的潛在生態(tài)風(fēng)險(xiǎn)。文章綜述了近年來國內(nèi)外有關(guān)三氯生的生物毒性效應(yīng),分別對其在生物分子水平、細(xì)胞水平、組織器官水平及個(gè)體水平的毒性效應(yīng)進(jìn)行了分析總結(jié)。此外,對三氯生的水質(zhì)基準(zhǔn)研究現(xiàn)狀進(jìn)行了分析,并對其可能的研究方向進(jìn)行了探討。相關(guān)研究發(fā)現(xiàn),三氯生可對水生生物特別是藻類產(chǎn)生較高的急性毒性。三氯生可在生物分子水平上產(chǎn)生毒性效應(yīng),影響酶和基因的正常表達(dá)及生理功能;還可產(chǎn)生細(xì)胞毒性,導(dǎo)致生物體組織器官產(chǎn)生畸變、癌變。三氯生對生物體具有顯著的內(nèi)分泌干擾效應(yīng),可擾亂生物體的生殖系統(tǒng)、甲狀腺系統(tǒng)和神經(jīng)系統(tǒng)的正常生理功能。但目前還沒有充分的證據(jù)表明,通過日常使用個(gè)人護(hù)理品攝入的三氯生會對人體產(chǎn)生毒性效應(yīng)。此外,雖然三氯生在水體中具有較高的暴露風(fēng)險(xiǎn),但其水質(zhì)標(biāo)準(zhǔn)基準(zhǔn)研究并不完善,相關(guān)研究還較少。鑒于三氯生對水生生物具有較高的毒性效應(yīng),今后應(yīng)加強(qiáng)三氯生水質(zhì)基準(zhǔn)方面的研究,不斷豐富三氯生的水生生物毒性數(shù)據(jù)庫,并進(jìn)一步探索其在生物分子水平上的水質(zhì)基準(zhǔn)研究,以建立更科學(xué)有效的水質(zhì)基準(zhǔn)和標(biāo)準(zhǔn)。

        關(guān)鍵詞:三氯生;急性毒性;分子細(xì)胞毒性;致畸致癌性;內(nèi)分泌干擾性;水質(zhì)基準(zhǔn)

        引用格式:鄭欣, 劉婷婷, 王一喆, 王曉南, 劉征濤, 張亞輝, 楊霓云, 閆振廣. 三氯生毒性效應(yīng)及水質(zhì)基準(zhǔn)研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2016, 25(3): 539-546.

        ZHENG Xin, LIU Tingting, WANG Yizhe, WANG Xiaonan, LIU Zhengtao, ZHANG Yahui, YANG Niyun, YAN Zhenguang. Research Progress on the Toxic Effects and Water Quality Criteria of Triclosan [J]. Ecology and Environmental Sciences, 2016, 25(3): 539-546.

        三氯生(Triclosan,TCS)作為一種廣譜抗菌劑,被廣泛應(yīng)用于個(gè)人護(hù)理產(chǎn)品(如牙膏、化妝品)、日用消費(fèi)類產(chǎn)品(如纖維織品)、醫(yī)療用品(如牙科類耗材、醫(yī)用殺菌劑等)以及家居清潔用品(Daughton et al.,1999)。TCS的大量應(yīng)用使其在各種環(huán)境介質(zhì)中廣泛存在,其主要通過污水廠出水排放進(jìn)入水體,最終進(jìn)入到地表水、土壤和地下水,現(xiàn)已在污水處理廠進(jìn)出水、污泥、河流、河口及沉積物中都有檢測到TCS(Chu et al.,2007;Chalew et al.,2009)。據(jù)調(diào)查,美國表層水體中TCS的質(zhì)量濃度為250~850 ng·L-1(Capdevielle et al.,2007),中國河流(遼河、海河、黃河、珠江和東江)表層水體中TCS質(zhì)量濃度高達(dá)478 ng·L-1,在沉積物中的質(zhì)量濃度高達(dá)2723 ng·L-1(Zhao et al.,2013)。TCS為疏水性物質(zhì),其辛醇水分配比(Kow)為4.8,具有在生物體內(nèi)富集的趨勢。研究調(diào)查顯示,TCS在水生植物(如剛毛藻Cladophora、寬葉香蒲Typha latifolia L.等)、水生動物(如海豚),甚至人類血漿和母乳中均有較高的檢出率(高海萍等,2012)。

        隨著TCS在環(huán)境介質(zhì)和生物體內(nèi)檢出率的逐年升高,其對生態(tài)環(huán)境和人類健康的潛在威脅越來越受到關(guān)注。研究發(fā)現(xiàn),TCS可使污水處理系統(tǒng)產(chǎn)生大量抗性細(xì)菌,這些抗性細(xì)菌隨出水排放到環(huán)境中,可能對生態(tài)環(huán)境造成較大的危害(Pruden,2014)。此外,TCS由于具有親脂性,可長期在生物體內(nèi)累積,對生物具有潛在的威脅(周世兵等,2008)。目前,已有大量研究探索了TCS對生物可能產(chǎn)生的毒性效應(yīng),本文對這些研究成果進(jìn)行了系統(tǒng)性描述,發(fā)現(xiàn)TCS對生物體在個(gè)體水平乃至分子水平均可產(chǎn)生毒性效應(yīng)。

        鑒于TCS對生物的急慢性毒性效應(yīng)和生理生態(tài)毒性,許多國家對食品和個(gè)人護(hù)理品中TCS的添加量進(jìn)行了限制(Dayan et al.,2007),但是卻很少有國家對TCS在水體中的濃度設(shè)定安全閾值。近些年TCS在我國水體中的暴露潛勢逐漸上升,顯示出較高的生態(tài)風(fēng)險(xiǎn)(Chen et al.,2014)。然而相關(guān)的基準(zhǔn)標(biāo)準(zhǔn)研究并不完善,對水質(zhì)管理造成了一定的困難。本文對TCS的水質(zhì)基準(zhǔn)研究現(xiàn)狀進(jìn)了分析,并探討了可能的研究方向,以期建立更加完善合理的水質(zhì)基準(zhǔn),為TCS的標(biāo)準(zhǔn)制定和生態(tài)風(fēng)險(xiǎn)預(yù)防管理提供參考。

        1 水生生物急性毒性效應(yīng)

        TCS在水體中廣泛存在,其對水生生物的毒性效應(yīng)是殺菌效果的100~1000倍(Chalew et al.,2009)。本文從相關(guān)文獻(xiàn)及數(shù)據(jù)庫中搜集整理了TCS對水生生物的急性毒性數(shù)據(jù)(表1),毒性數(shù)據(jù)涉及到的生物包括水生植物、魚類、兩棲類、甲殼類、軟體動物、昆蟲等。其中,對TCS最敏感的前5種生物均為藻類,與之前的研究結(jié)論一致(高海萍等,2012;Dann et al.,2011)。除藻類外,魚類也表現(xiàn)出很高的敏感性,如泥鰍Misgurnus anguillicaudatus和麥穗魚Pseudorasbora parva的敏感性僅次于藻類。

        2 酶和基因毒性

        表1 三氯生的水生生物急性毒性Table 1 Acute toxicity of triclosan on aquatic organisms

        表2顯示,TCS可對生物體產(chǎn)生分子水平的毒性效應(yīng)。TCS在酶和蛋白水平上的毒性效應(yīng)表現(xiàn)為,TCS可通過誘導(dǎo)氧化壓力對生物體內(nèi)的抗氧化酶系統(tǒng)產(chǎn)生抑制作用,如氧化物歧化酶(SOD)、丙二醛(MDA)、氨基比林N-脫甲基酶(APND)、過氧化氫酶(CAT)和谷胱甘肽-S-轉(zhuǎn)移酶(GST);并對生物體的細(xì)胞色素氧化酶系統(tǒng)產(chǎn)生影響,如P450、CYP1A等;此外,還有研究顯示TCS可影響熱休克蛋白Hsp70的表達(dá)(Liang et al.,2013;Peng et al.,2013;Binelli et al.,2009;Pedriali,2012;武小燕,2013;Lin et al.,2010;Lin et al.,2014)?;蛩降挠绊懕憩F(xiàn)為,TCS可直接導(dǎo)致DNA的損傷,也可能作為加合物對DNA的合成產(chǎn)生影響,干擾DNA的正常生理遺傳功能(Binelli et al.,2009;Pedriali,2012;Lin et al.,2014)。此外,TCS可通過干擾細(xì)胞內(nèi)分子信號的傳導(dǎo)對機(jī)體產(chǎn)生毒性效應(yīng)。利用熒光探針的流式細(xì)胞儀測定TCS對小鼠胸腺細(xì)胞中Zn2+濃度的影響,發(fā)現(xiàn)亞致死濃度的TCS可誘導(dǎo)細(xì)胞內(nèi)的氧化應(yīng)激反應(yīng),導(dǎo)致與硫醇蛋白結(jié)合的Zn2+釋放,促使細(xì)胞內(nèi)Zn2+濃度升高,導(dǎo)致機(jī)體免疫力下降(Tamura et al.,2012)。此外,還有研究顯示TCS可限制L型Ca2+在心肌細(xì)胞和骨骼肌細(xì)胞相關(guān)信號通路中的轉(zhuǎn)導(dǎo),導(dǎo)致心肌和骨骼肌收縮力的減弱,相關(guān)證據(jù)包括:暴露在TCS中不到20 min,麻醉小鼠的心臟功能減弱了25%;向小鼠施以單劑量的TCS,60 min后小鼠的握力減弱了18%;黑頭鰷魚Fathead minnow在TCS中暴露7 d后,游泳速度比正常魚類顯著降低(Ahn et al.,2008;Cherednichenkoa et al.,2012)。

        表2 TCS對生物體的酶和基因毒性Table 2 Toxic effects of TCS on enzyme and gene

        3 細(xì)胞毒性效應(yīng)

        表3 TCS的細(xì)胞毒性效應(yīng)Table 3 Mutagenic and carcinogenic effects of TCS

        TCS是否具有致突變和致癌效應(yīng)一直存有爭議(表3)。有研究者以沙門菌株為對象進(jìn)行致突變試驗(yàn),結(jié)果并未發(fā)現(xiàn)突變效應(yīng)(Onodera et al., 1995)。但由于TCS對于細(xì)菌本身就是高毒性物質(zhì),其致突變效應(yīng)難于檢測,因此以細(xì)菌類生物作為致突變效應(yīng)的試驗(yàn)對象并不合理,其研究結(jié)果還有待進(jìn)一步確認(rèn)(Rodricks et al.,2010)。而其后的研究中,部分研究顯示TCS可促進(jìn)癌細(xì)胞的增殖,如人類肝癌細(xì)胞、卵巢癌細(xì)胞、前列腺癌細(xì)胞和乳腺癌細(xì)胞(Ma et al.,2013;Yueh et al.,2014;Kim et al.,2014;Kim et al.,2015;Henry et al.,2013)。還有一部分研究卻顯示TCS對癌細(xì)胞有抑制作用,如前列腺癌細(xì)胞、乳腺癌細(xì)胞、人類眼癌細(xì)胞、上皮癌細(xì)胞和絨毛膜癌細(xì)胞(Sadowski et al.,2014;Liu et al.,2002;Deepa et al.,2012;Honkisz et al.,2012;Schmid et al.,2005)。值得注意的是,以前列腺癌細(xì)胞和乳腺癌細(xì)胞為試驗(yàn)對象的研究均出現(xiàn)了相反的作用效果,差異的原因還有待于進(jìn)一步研究。機(jī)理研究顯示,TCS對癌細(xì)胞增殖的效應(yīng)可能是通過雌/雄激素介導(dǎo)的信號通路調(diào)控與細(xì)胞周期和凋亡有關(guān)的周期蛋白D1、P21和Bax的表達(dá),從而促進(jìn)癌細(xì)胞的生長(Yueh et al.,2014;Kim et al.,2014);而抑制作用則是通過對FAS表達(dá)的限制引起的,TCS對癌細(xì)胞產(chǎn)生促進(jìn)效應(yīng)還是抑制效應(yīng)可能與某些條件有關(guān),但仍需進(jìn)一步探索(Henry et al.,2013)。此外,上述研究均是以癌細(xì)胞為試驗(yàn)對象,并不能證明TCS會誘導(dǎo)正常細(xì)胞的畸變或癌化。研究顯示,TCS在相似范圍內(nèi)對良性細(xì)胞并未顯示出細(xì)胞毒性,如米勒神經(jīng)膠質(zhì)細(xì)胞和纖維母細(xì)胞(Honkisz et al.,2012;Schmid et al.,2005)。推測其原因?yàn)?,F(xiàn)AS在癌細(xì)胞中有較高的含量,在正常細(xì)胞中則含量較少(Brusselmans et al.,2009),由于TCS可通過抑制FAS對細(xì)胞產(chǎn)生毒性作用,因此TCS對癌細(xì)胞的影響要大于正常細(xì)胞,但該推測有待研究進(jìn)行驗(yàn)證。

        4 內(nèi)分泌干擾性

        4.1 生殖系統(tǒng)毒性

        TCS與雌激素在結(jié)構(gòu)上相似,可通過與內(nèi)源性雌激素競爭結(jié)合雌激素受體(ER),從而直接影響ER的促轉(zhuǎn)錄活性,引起雌激素效應(yīng)(或抗雄激素效應(yīng))。如表4顯示,TCS可加快雌鼠的性成熟,增加其子宮重量;并可使孕鼠產(chǎn)道開口提前;對于雄鼠,TCS可降低其睪丸、前列腺等性腺器官的重量,顯著減少雄激素相關(guān)蛋白及固醇生成酶的基因表達(dá),并降低血清中雄性相關(guān)激素的水平,TCS可在雄鼠副睪中累積,引起其組織形態(tài)發(fā)生改變,并對精子的形態(tài)和數(shù)量產(chǎn)生影響。表4還顯示,TCS可提高雄性水生動物體卵黃原蛋白的含量,并對其精子的形態(tài)和數(shù)量產(chǎn)生影響。體外細(xì)胞試驗(yàn)也顯示,TCS可限制睪丸間質(zhì)細(xì)胞中黃體生成素和絨膜促性腺激素誘導(dǎo)的睪酮的生成,其可能的機(jī)制是:環(huán)腺苷酸(cAMP)具有調(diào)節(jié)神經(jīng)遞質(zhì)合成,促進(jìn)激素分泌的作用,而TCS可降低腺苷酸環(huán)化酶的活性,減少cAMP的產(chǎn)量并抑制固醇生成酶基因的轉(zhuǎn)錄和表達(dá),導(dǎo)致固醇系統(tǒng)的紊亂,從而抑制睪丸素的合成。雖然TCS在結(jié)構(gòu)上與雌激素相似,但卻可以顯示出一定的雄激素效應(yīng)(或抗雌激素效應(yīng))。如表4所示,TCS可抑制羊胎盤中雌激素硫酸轉(zhuǎn)移酶的活性,影響胎盤對胎兒的雌激素供給;可改變雄性青鳉魚的鰭長并可能對其性別比例產(chǎn)生影響,還可降低非洲爪蟾血清中卵黃原蛋白和睪酮的水平;體外乳腺癌細(xì)胞試驗(yàn)也顯示,TCS可增強(qiáng)二氫睪酮調(diào)節(jié)的雄激素受體應(yīng)答基因的轉(zhuǎn)錄激活,其增強(qiáng)作用可達(dá)到180%。

        機(jī)理研究顯示,TCS可分別與細(xì)胞中的雌激素受體和雄激素受體結(jié)合,既顯示出雌激素效應(yīng)又顯示出雄激素效應(yīng);同時(shí),在與雌激素或雄激素共存時(shí),卻可分別限制雌激素誘導(dǎo)的ERE-CAT受體的表達(dá)和雄激素誘導(dǎo)的LTR-CAT受體的表達(dá),顯示出抗雌激素活性或抗雄激素活性(Henry et al.,2013)。TCS顯示出抗雌激素活性的性質(zhì)與其他外源性雌激素(如對羥苯甲酸酯、多氯聯(lián)苯、己烯雌酚等)相比比較特別,因?yàn)楹笳咧伙@示出雌激素活性而未顯示抗雌激素活性,這種差異可能是由于它們在分子結(jié)構(gòu)上存在差異以及它們與受體結(jié)合模式上存在差異,其機(jī)理需要更深入的研究(Byford et al.,2002;Darbre et al.,2002)。

        4.2 甲狀腺系統(tǒng)毒性

        表4 TCS對生殖系統(tǒng)的毒性效應(yīng)Table 4 Toxic effects of TCS on reproductive system

        TCS的內(nèi)分泌干擾性還表現(xiàn)為對生物體甲狀腺系統(tǒng)的影響(表5)(Schuur et al.,1998;Veldhoen et al.,2006;Crofton et al.,2007;Paul et al.,2010;Paul et al.,2012;Paul et al.,2013;Pinto et al.,2013)。TCS可通過間接的方式對甲狀腺系統(tǒng)代謝產(chǎn)生影響,如TCS可降低生物體內(nèi)甲狀腺激素受體α的轉(zhuǎn)錄水平,或抑制T2磺基轉(zhuǎn)移酶的活性,對甲狀腺激素介導(dǎo)的生長發(fā)育過程產(chǎn)生影響。此外,還有學(xué)者推測TCS可通過PXR和CAR信號通路上調(diào)肝酶代謝相關(guān)基因的表達(dá),增強(qiáng)對甲狀腺素T4的代謝,從而導(dǎo)致生物體內(nèi)甲狀腺素水平的降低,引起低甲狀腺素血癥。然而,其后的一些研究并未能提供有力支持,該假設(shè)有待于進(jìn)一步驗(yàn)證(Zorrilla et al.,2009;Paul et al.,2012;Paul et al.,2013)。除了通過間接方式對甲狀腺系統(tǒng)代謝產(chǎn)生影響,TCS也可能直接對甲狀腺組織及其激素產(chǎn)生影響。研究顯示,TCS可引起斑馬魚體內(nèi)促甲狀腺激素(TSH)和碘化鈉載體(NIS)相關(guān)基因的上調(diào)表達(dá),并可引起甲狀腺組織形態(tài)學(xué)上的畸變,但其機(jī)制還有待于進(jìn)一步研究(Pinto et al.,2013)。

        5 神經(jīng)系統(tǒng)毒性

        TCS作為內(nèi)分泌干擾物質(zhì),相關(guān)研究多集中于其對生殖系統(tǒng)和甲狀腺系統(tǒng)影響,關(guān)于其對神經(jīng)系統(tǒng)影響的研究則比較少。Szychowski et al.(2015)首次對TCS的神經(jīng)毒性機(jī)制進(jìn)行了研究,發(fā)現(xiàn)TCS可通過誘導(dǎo)FasR和caspase-8的表達(dá)來激活外部細(xì)胞凋亡信號通路,從而引起腦內(nèi)神經(jīng)元細(xì)胞的凋亡。但TCS是否還可以通過其他途徑對神經(jīng)系統(tǒng)產(chǎn)生影響還需要更多的探索。研究顯示,與TCS在結(jié)構(gòu)上非常相似的三氯卡班(TCC)能夠通過增強(qiáng)外源性雌激素誘導(dǎo)的芳香化酶AroB的過度表達(dá),對腦組織的發(fā)育產(chǎn)生影響(Chung,2011),因此是否可以推測TCS也能通過與TCC相似的機(jī)制對腦組織產(chǎn)生影響還需要研究進(jìn)行驗(yàn)證。此外,由于甲狀腺對腦組織的發(fā)育有重要作用,而TCS可對生物體的甲狀腺系統(tǒng)產(chǎn)生影響(Pinto et al.,2013),因此推測TCS也可能通過影響甲狀腺系統(tǒng)從而對腦神經(jīng)系統(tǒng)的發(fā)育產(chǎn)生危害,但此機(jī)制還需要進(jìn)一步驗(yàn)證。

        6 人體健康毒性效應(yīng)

        關(guān)于TCS對人體的毒性作用,大多進(jìn)行的是體外細(xì)胞試驗(yàn)研究。如利用人體乳腺癌細(xì)胞進(jìn)行的TCS毒性檢測,顯示TCS可以促進(jìn)人體乳腺癌細(xì)胞的增殖;以及利用人體間充質(zhì)干細(xì)胞進(jìn)行的體外細(xì)胞試驗(yàn),顯示TCS在低濃度(0.156~2.5 μmol·L-1下會抑制人體hMSCs脂肪細(xì)胞的分化(Guo et al.,2012)。盡管TCS在人體外細(xì)胞試驗(yàn)中顯示出一定的毒性效應(yīng),但還沒有證據(jù)表明TCS可對人體產(chǎn)生毒性。Allmyr et al.(2009)研究了TCS對人體甲狀腺系統(tǒng)的影響,通過14 d的暴露檢測,人體血液中TCS的含量顯著提高,但并未對甲狀腺激素及相關(guān)酶的活性產(chǎn)生影響,表明正常使用含TCS的個(gè)人護(hù)理品不會對人體的甲狀腺內(nèi)穩(wěn)態(tài)產(chǎn)生影響。Ros-Llor et al.(2014)研究認(rèn)為,即使頻繁使用含有TCS的口腔清洗劑也不會對人體產(chǎn)生基因毒性。Witorsch(2014)通過對現(xiàn)有的關(guān)于TCS對哺乳動物和人類影響的相關(guān)文獻(xiàn)的整理,認(rèn)為現(xiàn)有研究雖然證明TCS可對動物產(chǎn)生毒性,但其作用機(jī)制在人體內(nèi)是不存在的,因此通過日常使用個(gè)人護(hù)理品而攝入的TCS,不具有對人體產(chǎn)生內(nèi)分泌干擾的風(fēng)險(xiǎn)。TCS對人體不產(chǎn)生毒性效應(yīng)的原因可能是,TCS在人體內(nèi)并不持久,會在24 h內(nèi)被快速排出體外,因此在人體內(nèi)的積累較少(Sandborgh-Englund et al.,2006)。即使有報(bào)道顯示,人體乳液中的TCS含量可高達(dá)2.1 mg·kg-1,但仍會通過人體可能的解毒機(jī)制逐漸消除,但這種解毒機(jī)制還有待于進(jìn)一步研究(Dayan,2007)。

        7 水質(zhì)基準(zhǔn)研究

        表5 TCS對甲狀腺系統(tǒng)的毒性效應(yīng)Table 5 Toxic effects of TCS on thyroid system

        雖然研究顯示TCS具有潛在的生態(tài)風(fēng)險(xiǎn),但由于TCS屬于一種新型污染物,關(guān)于其標(biāo)準(zhǔn)的制定還比較欠缺,如我國地表水水質(zhì)標(biāo)準(zhǔn)還未有關(guān)于其標(biāo)準(zhǔn)閾值的規(guī)定。此外,TCS的水質(zhì)基準(zhǔn)的研究也比較少,美國等發(fā)達(dá)國家還沒有關(guān)于其水質(zhì)基準(zhǔn)的研究。最近,我國學(xué)者利用10種中國本土水生生物進(jìn)行了TCS的急慢性試驗(yàn),并推導(dǎo)出TCS的急性基準(zhǔn)值(Criteria Maximum Concentration,CMC)和慢性基準(zhǔn)值(Criteria Continuous Concentration,CCC)分別為0.009和0.002 mg·L-1(Wang et al.,2013),該結(jié)果對于我國制定TCS的水質(zhì)標(biāo)準(zhǔn)制訂具有一定的指導(dǎo)意義。

        通常水質(zhì)基準(zhǔn)是建立在個(gè)體水平毒性數(shù)據(jù)的基礎(chǔ)上,如急性水質(zhì)基準(zhǔn)的建立是以LC50或EC50為毒性終點(diǎn),慢性水質(zhì)基準(zhǔn)的建立是以最低有影響濃度LOEC或最大無影響濃度NOEC等為毒性終點(diǎn)。然而,當(dāng)生物體暴露于污染物時(shí),基因表達(dá)的改變通常要先于細(xì)胞、組織、個(gè)體和群體的改變,相比于個(gè)體水平的生存指標(biāo)或生殖指標(biāo),基因表達(dá)水平上的響應(yīng)更具有早期預(yù)警的作用,因此基因毒性數(shù)據(jù)可能比急慢性毒性數(shù)據(jù)更為敏感(Menzel et al.,2009)。但其后的研究并不能為該假設(shè)提供有力證明,部分重金屬(Cd、Zn)的研究顯示出相反的趨勢,即其基因毒性數(shù)據(jù)敏感性遠(yuǎn)低于其慢性毒性數(shù)據(jù)(Fedorenkova et al.,2010;Yan et al.,2012)。這可能是由多方面的原因造成的,如相關(guān)的毒性數(shù)據(jù)較少,使研究結(jié)果的可靠性降低;此外,試驗(yàn)數(shù)據(jù)的目標(biāo)基因可能并不是對污染物最敏感的響應(yīng)基因,造成了基因毒性數(shù)據(jù)的敏感性低于個(gè)體水平的慢性數(shù)據(jù)。因此,基因毒性數(shù)據(jù)是否能應(yīng)用于水質(zhì)基準(zhǔn)的研究仍需要進(jìn)一步的驗(yàn)證,而TCS由于基因毒性數(shù)據(jù)較少,還未有相關(guān)方面的研究。

        此外,污染物質(zhì)對生物的毒性作用常常存在著Hormesis效應(yīng)(即低劑量促進(jìn),高劑量抑制效應(yīng)),且Hormesis的效應(yīng)濃度通常比NOEC低10倍左右(Stebbing et al.,1998)。也就是說,Hormesis效應(yīng)濃度可能是更嚴(yán)格意義上的無作用濃度,這有助于更準(zhǔn)確地劃定安全濃度,對生態(tài)風(fēng)險(xiǎn)評估有著重要意義(Chapman,2002)。在水質(zhì)基準(zhǔn)研究方面,將Hormesis效應(yīng)濃度作為毒性作用終點(diǎn),同時(shí)結(jié)合分子水平的毒性效應(yīng)來進(jìn)行水質(zhì)基準(zhǔn)的研究,可能會得出比現(xiàn)有的慢性基準(zhǔn)更為嚴(yán)格的水質(zhì)基準(zhǔn)值,但還未有相關(guān)方面的研究,其科學(xué)性和有效性有待于驗(yàn)證。

        8 總結(jié)與展望

        綜上,TCS可在分子和細(xì)胞水平上對生物造成影響,產(chǎn)生酶和基因毒性,導(dǎo)致生物體組織器官的突變和癌變。此外,TCS對生物體具有顯著的內(nèi)分泌干擾性,可通過對生殖發(fā)育系統(tǒng)、甲狀腺系統(tǒng)和神經(jīng)系統(tǒng)產(chǎn)生影響,造成生物內(nèi)穩(wěn)態(tài)的破壞,但相關(guān)的分子機(jī)制還需要加強(qiáng)研究。雖然TCS可對哺乳動物產(chǎn)生毒性效應(yīng),但現(xiàn)有研究還不能證明TCS可對人體產(chǎn)生類似的毒性效應(yīng),日常攝入的TCS不會對人體產(chǎn)生內(nèi)分泌干擾,但其清除機(jī)理有待于進(jìn)一步研究。此外,鑒于我國水體中TCS的暴露風(fēng)險(xiǎn)不斷上升,應(yīng)盡快擴(kuò)充TCS的本土毒性數(shù)據(jù),為進(jìn)一步完善其水質(zhì)基準(zhǔn)提供數(shù)據(jù)支持。另外,開展以TCS為目標(biāo)污染物的基因組學(xué)研究,利用高通量技術(shù)篩選對TCS最敏感的響應(yīng)基因,有利于進(jìn)一步探索基因毒性數(shù)據(jù)應(yīng)用于水質(zhì)基準(zhǔn)研究的可能性。同時(shí),開展TCS在基因水平的Hormesis效應(yīng)研究,以期從不同的視角探索水質(zhì)基準(zhǔn)研究的可能性,有利于更科學(xué)合理地制定水質(zhì)基準(zhǔn)標(biāo)準(zhǔn)。

        參考文獻(xiàn):

        AHN K C, ZHAO B, CHEN J G, et al. 2008. In vitro biologic activities of the antimicrobials triclocarban, ttsanalogs, and triclosan in bioassay screens: receptor-based bioassay screens [J]. Environmental Health Perspectives, 116(9): 1203-1210.

        ALLMYR M, PANAGIOTIDIS G, SPARVE E, et al. 2009. Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones [J]. Basic & Clinical Pharmacology & Toxicology, 105(5): 339-344.

        AXELSTAD M, BOBERG J, VINGGAARD A M, et al. 2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed off spring [J]. Food and Chemical Toxicology,59: 534-540.

        BINELLIA, COGNI D, PAROLINIM, et al. 2009. Cytotoxic and genotoxic effects of in vitro exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes [J]. Comparative Biochemistry and Physiology C: Pharmacology Toxicology and Endocrinology, 150(1): 50-56.

        BRUSSELMANS K, SWINNEN J. 2009. The Lipogenic Switch in Cancer [M]. Mitochondria and Cancer: Springer New York): 39-59.

        BYFORD J R, SHAW L E, DREW M G B, et al. 2002. Oestrogenic activity of parabens in MCF7 human breast cancer cells [J]. Journal of Steroid Biochemistry, 80(1): 49-60.

        CAPDEVIELLE M, EGMOND R V, WHELAN M, et al. 2007. Consideration of exposure and species sensitivity of triclosan in the freshwater environment [J]. Integrated Environmental Assessment and Management, 4(1): 15-23.

        CHALEW T E A, HALDEN R U. 2009. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban [J]. Journal of the American Water Resources Association, 45(1): 4-13.

        CHAPMAN P M. 2002. Ecological risk assessmen (ERA) and hormesis [J]. The Science of the Total Environment, 288(1-2): 131-140.

        CHEN Z F, YING G G, LIU Y S, et al. 2014. Triclosan as a surrogate for household biocides: An investigation into biocides in aquatic environments of a highly urbanized region [J]. Water Research, 58: 269-279.

        CHEREDNICHENKOA G, ZHANGA R, BANNISTERB R A, et al. 2012. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle[J]. PNAS, 109(40): 1-6.

        CHRISTEN V, CRETTAZ P, OBERLI-SCHRAMMLI O, et al. 2010. Some flame retardants and the antimicrobials triclosan and triclocarban enhance the androgenic activity in vitro [J]. Chemosphere, 81(10): 1245-1252.

        CHU S, METCALFE C D. 2007. Simultaneous determination of triclocarbon and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 1164(1-2): 211-218.

        CHUNG E, GENCO M C, MEGRELIS L, et al. 2011. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase inearly zebrafish embryos [J]. PNAS, 108(43): 17732-17737.

        CROFTON K, PAUL K B, DE VITO M J, et al. 2007. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine [J]. Environmental Toxicology and Pharmacology, 24(2): 194-197.

        DANN A B, HONTELA A. 2011. Triclosan: environmental exposure,toxicity and mechanisms of action [J]. Journal of Applied Toxicology,31(4): 285-311.

        DARBRE P D, BYFORDJ R, SHAW L E, et al. 2002. Oestrogenic activity of isobutylparaben in vitro and in vivo [J]. Journal of Applied Toxicology, 22(4): 219-226.

        DAUGHTON C G, TEMES T A. 1999. Pharmaceuticals and personal care products in the environment: agent s of subtle change [J]. Environmental Health Perspectives, 107(6): 907-938.

        DAYAN A D. 2007. Risk assessment of triclosan [Irgasan (R)] in human breast milk [J]. Food and Chemical Toxicology, 45(1): 125-129.

        DAYAN J, YOSHIDA K. 2007. Psychological and pharmacological treatments of mood and anxiety disorders during pregnancy and postpartum. Review and synthesis [J]. Uropean journal of obstetrics,gynecology, and reproductive biology (Paris), 36(6): 530-548.

        DEEPA P R, VANDHANA S, JAYANTHI U, et al. 2012. Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells [J]. Basic & Clinical Pharmacology & Toxicology, 110(6): 494-503.

        USEPA. ECOTOX Database [EB/OL]. [2015-07-10]. http://cfpub.epa.gov/ecotox/.

        FEDORENKOVA A, VONK J A, LENDERS H J R, et al. 2010. Ecotoxicogenomics: Bridging the gap between genes and populations [J]. Environmental Science & Technology, 44(11): 4328-4333.

        FORAN C M, BENNETT E R, BENSON W H. 2000. Developmental evaluation of a potential non-steroidal estrogen: triclosan [J]. Marine Environmental Research, 50(1-5): 153-156.

        FORGACS A L, DING Q, JAREMBA R G, et al. 2012. BLTK1 murine Leydig cells: a novel steroidogenic model for evaluating the effects of reproductive and developmental toxicants [J]. Toxicological Sciences,127(2): 391-402.

        GUO L W, WU Q G, GREEN B, et al. 2012. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells [J]. Toxicology and Applied Pharmacology, 262(2): 117-123.

        HALDEN R U. 2014. On the need and speed of regulating triclosan and triclocarban in the United States [J]. Environmental Science & Technology, 48: 3603-3611.

        HENRY N D, FAIR P A. 2013. Comparison of in vitro cytotoxicity,estrogenicity andanti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid [J]. Journal of Applied Toxicology,33(4): 265-272.

        HONKISZ E, ZIEBA-PRZYBYLSKA D, WOJTOWICZ A K. 2012. The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells [J]. Reproductive Toxicology, 34(3): 385-392.

        ISHIBASHIH, MATSUMURA N, HIRANO M, et al. 2004. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin [J]. Aquatic Toxicology,67(2): 167-179.

        JAMES M O, LI W, SUMMERLOT D P, et al. 2009. Triclosanis a potent inhibitor of estradiol and estrone sulfonation in sheep placenta [J]. Environment International, 36(8): 942-949.

        KIM J Y, YI B R, GO R E, et al. 2014. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle-andapoptosis-related genes via an estrogen receptor-dependent pathway [J]. Environmental Toxicology and Pharmacology, 37(3): 1264-1274.

        KIM S H, HWANG K A, SHIM S M, et al. 2015. Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway [J]. Environmental Toxicology and Pharmacology, http://dx.doi.org/ 10.1016/ j.etap.2015.01.003

        KUMARA V, CHAKRABORTY A, KURAL M R, et al. 2009. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan [J]. Reproductive Toxicology, 27(2): 177-185.

        LAN Z, KIM T K, BI K S, et al. 2015. Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male sprague-dawley rats [J]. Environmental Toxicology, 30(1): 83-91.

        LIANG X M, NIE X P, YING G G, et al. 2013. Assessment of toxic effects of triclosan on the swordtail fish (Xiphophoru shelleri) by a multi-biomarker approach [J]. Chemosphere, 90(3): 1281-1288.

        LIN D S, LI Y, ZHOU Q X, et al. 2014. Effect of triclosan on reproduction,DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida [J]. Ecotoxicology, 23(10): 1826-1832.

        LIN D, ZHOU Q, XIE X, et al. 2010. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida) [J]. Chemosphere, 81(10): 1328-1333.

        LIU B, WANG Y, FILLGROVE K L, et al. 2002. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to mcf-7 and skbr-3 breast cancer cells [J]. Cancer Chemotherapy and Pharmacology, 49(3): 187-193.

        MA H M, ZHENG L J, LI Y H, et al. 2013. Triclosan reduces the levels of global DNA methylation in HepG2 cells [J]. Chemosphere, 90(3): 1023-1029.

        MATSUMURA N, ISHIBASHI H, HIRANO M, et al. 2005. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis) [J]. Biological & Pharmaceutical Bulletin, 28(9): 1748-1751.

        MENZEL R, SWAINS C, HOESS S, et al. 2009. Gene expression profiling to characterize sediment toxicity--A pilot study using Caenorhabditis elegans whole genome microarrays [J]. BMC Genomics, 10: 160-174.

        ONODERA S, TAKAHASHI M, OGAWA M, et al. 1995. Mutagenicity of polychlorophenoxyphenols (predioxins) and their photodegradation products in aqueous solution [J]. Japanese Journal of Pharmacology,41(3): 212-219.

        PAUL K B, HEDGE J M, BANSAL R R, et al. 2012. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic valuation of a putative mode-of-action [J]. Toxicology, 300(1-2): 31-45.

        PAUL K B, HEDGE J, DEVITO M, et al. 2010. Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans rats [J]. Toxicological Sciences,113(2): 367-379.

        PAUL K B, THOMPSON J T, SIMMONS S O, et al. 2013. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors [J]. Toxicology in Vitro, 27(7): 2049-2060.

        PEDRIALI A. 2012. Cyto-genotoxic effects and protein alterations induced by some pharmaceutical compounds and illicit drugs on non-target organisms [D]. Milan: University of Milan: 1-166.

        PENG Y, LUO Y, NIE X P, et al. 2013. Toxic effects of Triclosan on the detoxification system and breeding of Daphnia magna [J]. Ecotoxicology, 22(9): 1384-1394.

        PINTO P I S, GUERREIRO E M, POWER D M. 2013. Triclosan interferes with the thyroid axis in the zebra fish (Danio rerio) [J]. Toxicology Research, 2(1): 60-69.

        PRUDEN A. 2014. Balancing water sustainability adn public health goals in the face of growing concerns about antibiotic resistance [J]. Environmental Science & Technology, 48(1): 5-14.

        RAUT S A, ANGUS R A. 2010. Triclosan has endocrine-disrupting effects inmale Western mosquitofish, Gambusia affinis [J]. Environmental Toxicology and Chemistry, 29(6): 1287-1291.

        RODRICKS J V, SWENBERG J A, BOZELLECA J F, et al. 2010. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products [J]. Critical Reviews in Toxicology,40(5): 422-484.

        ROS-LLOR I, LOPEZ-JORNET P. 2014. Cytogenetic analysis of oral mucosa cells, induced by chlorhexidine, essential oils in ethanolic solution and triclosan mouthwashes [J]. Environmental Research, 132: 140-145.

        SADOWSKI M C, POUWER R H, GUNTER J H, et al. 2014. The fattyacid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer [J]. Oncotarget, 5(19): 9362-9381.

        SANDBORGH-ENGLUND G, ADOLFSSON-ERICI M, ODHAM G, et al. 2006. Pharmacokinetics of triclosan following oral ingestion in humans [J]. Journal of Toxicology and Environmental Health, Part A: Current Issues, 69(20): 1861-1873.

        SCHMID B, RIPPMANN J F, TADAYYONM, et al. 2005. Inhibition of fatty acid synthase prevents preadipocyte differentiation [J]. Biochemical and Biophysical Research Community, 328(4): 1073-1082.

        SCHUUR A G, LEGGER F F, VAN MEETEREN M E, et al. 1998. In Vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons [J]. Chemical Research in Toxicology, 11(9): 1075-1081.

        STEBBING A R D. 1998. A theory for growth hormesis [J]. Mutation Research, 403(1-2): 249-258.

        STOKER T E, GIBSON E K, ZORRILLA L M. 2010. Triclosan exposure modulates estrogen-dependent responses in the female wistar rat [J]. Toxicological Sciences, 117(1): 45-53.

        SZYCHOWSKI K A, SITARZA M, WOJTOWICA A K. 2015. Triclosan induces fas receptor-dependent apoptosis in mouse neocortical neurons in vitro [J]. Neuroscience, 284: 192-201.

        TAMURA I, KANBARA Y, SAITO M, et al. 2012. Triclosan, an antibacterial agent, increases intracellular Zn [J]. Chemosphere, 86(1): 70-75.

        VELDHOEN N, SKIRROW R C, OSACHOFF H, et al. 2006. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development [J]. Aquatic Toxicology, 80(3): 217-227.

        WANG X N, LIU Z T, YAN Z G, et al. 2013. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species [J]. Journal of Hazardous Materials, 260: 1017-1022.

        WITORSCH R J. 2014. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products [J]. Critical Reviews in Toxicology, 44(6): 535-555.

        YAN Z G, YANG N Y, WANG X N, et al. 2012. Preliminary analysis of species sensitivity distribution based on gene expression effect [J]. Science China Earth Sciences, 55(6): 907-913.

        YUEH M F, TANIGUCHI K, CHEN S J, et al. 2014. The commonly used antimicrobial additive triclosan is a liver tumor promoter [J]. PNAS,111(48): 17200-17205.

        ZHAO J L, ZHANG Q Q, CHEN F, et al. 2013. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge [J]. Water Research, 47(1): 395-405.

        ZORRILLA L M, GIBSON E K, JEFFAY S C, et al. 2009. The effects of triclosan on puberty and thyroid hormones in male wistar rats [J]. Toxicological Sciences, 107(1): 56-64.

        高海萍, 周雪飛, 張亞雷, 等. 2012. 三氯生對水生生物的毒性效應(yīng)研究進(jìn)展[J]. 環(huán)境化學(xué), 31(8): 1145-1149.

        王曉南. 2014. 典型污染物水生生物基準(zhǔn)關(guān)鍵技術(shù)研究[D]. 北京: 北京師范大學(xué): 1-157.

        武小燕. 2013. 布洛芬、三氯生對黃顙魚P450酶及抗氧化酶系的毒性效應(yīng)[D]. 廣州: 暨南大學(xué): 1-102.

        周世兵, 周雪飛, 張亞雷, 等. 2008. 二氯生在水環(huán)境中的存在行為及遷移轉(zhuǎn)化規(guī)律研究進(jìn)展[J]. 環(huán)境污染與防治, 30(10): 71-74, 101.

        Research Progress on the Toxic Effects and Water Quality Criteria of Triclosan

        ZHENG Xin, LIU Tingting, WANG Yizhe, WANG Xiaonan, LIU Zhengtao, ZHANG Yahui,YANG Niyun, YAN Zhenguang*
        State Key Laboratory for Environmental Criteria and Risk Assessment, State Environment Protection Key Laboratory of Ecological Effects and Risk Assessment of Chinese, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

        Abstract:Triclosan (TCS), an effective broad antibacterial agent, has long been used in personal care products and industrial products. With inceasing high detection rates in aquatic environment, terrestrial environment and organisms, TCS poses potential ecological risks. This paper summarizes recent advances about the toxic effect of TCS to organisms at levels of molecular, cell, tissue and organ, and indivdual, respectivelly. It aslo analyzes the reseach status of water quality criteria related to triclosan, and discusses some possible research directions on this field. Researches show that TCS is acutely toxic to aquatic organisms, especially algae. At microscopic level, TCS presents molecular and cellular toxicity, disrupting the expression and physiological function of enzyme and gene, leading to the mutation and canceration in tissues and organs of organisms. Additionally, TCS could cause adverse effects on the reproductive system, thyroid system and nervous system of organisms, showing evident endocrine disruption. However currently,there is no strong evidence that TCS intake through personal care products could pose a threat to human health. Given the high exposure risk in aquatic environment, researches on water quality standards and criteria are relatively less. Future research on this field should be strengthened. We should make more researches on the toxic effect of TCS on aquatic organisms to enrich the toxicity database and a further exploration on the water quality criteria at molecular level.

        Key words:triclosan; acute toxicity; molecular and cellular toxicity; mutagenic and carcinogenic; endocrine disruption; water quality criteria

        DOI:10.16258/j.cnki.1674-5906.2016.03.025

        中圖分類號:X171.5; X824

        文獻(xiàn)標(biāo)志碼:A

        文章編號:1674-5906(2016)03-0539-08

        基金項(xiàng)目:國家水體污染控制與治理科技重大專項(xiàng)(2012ZX07501-003-06);科技部科技基礎(chǔ)性工作專項(xiàng)(2014FY120600)

        作者簡介:鄭欣(1981年生),女,助理研究員,博士,從事水質(zhì)基準(zhǔn)研究。E-mail: Zhengxin@craes.org.cn

        *通信作者

        收稿日期:2015-08-18

        猜你喜歡
        急性毒性
        聚維酮碘對中華絨鰲蟹蟹種急性毒性實(shí)驗(yàn)和概率回歸分析
        大鼠口服五氯柳胺混懸劑的急性毒性研究
        海南檳榔提取物急性毒性研究及保健飲料開發(fā)
        蛹蟲草基質(zhì)多糖的急性毒性及亞慢性毒性研究
        壯藥香花護(hù)乳凝膠劑的薄層色譜鑒別及急性毒性實(shí)驗(yàn)研究
        重金屬Cu2+對四角蛤蜊的急性毒性及肝臟組織結(jié)構(gòu)的影響
        重金屬Hg2+、Cu2+、Cd2+對渤海灣鹵蟲無節(jié)幼體的急性毒性
        六味葛藍(lán)降脂片對小鼠急性經(jīng)口毒性及遺傳毒性的試驗(yàn)研究
        對元腎顆粒急性毒性試驗(yàn)的研究
        中國市場(2016年25期)2016-07-05 04:53:21
        天津港口疏浚淤泥懸浮物對海洋動物的急性毒性效應(yīng)
        亚洲一区二区日韩专区| 国产无遮挡又黄又爽高潮| 欧美高清视频手机在在线| 久久99亚洲精品久久久久 | 久久99热精品免费观看麻豆| 亚洲精品中文字幕乱码人妻| 久久麻传媒亚洲av国产| 亚洲天堂av在线网站| 91成人自拍国语对白| 婷婷色综合视频在线观看| 97夜夜澡人人双人人人喊| 六月丁香婷婷色狠狠久久| 本道无码一区二区久久激情| 超高清丝袜美腿视频在线| 国产一区二区三区四区在线视频| 国产在线观看午夜视频| 98色婷婷在线| 亚洲av无码成人网站在线观看| 老熟妇仑乱视频一区二区| 久久发布国产伦子伦精品| 亚洲AV秘 无码二区在线| 亚洲Av无码专区尤物| 日本午夜理伦三级好看| 日韩精品自拍一区二区| 亚洲av在线观看播放| 国产69精品久久久久9999apgf| 性欧美牲交xxxxx视频欧美| 亚洲午夜成人片| 亚洲国产成人久久综合三区 | 精品中文字幕久久久人妻| 国产高潮迭起久久av| 免费人成小说在线观看网站| 毛多水多www偷窥小便| 久久久久国产亚洲AV麻豆| 国产精品一区二区三区女同| 激情视频在线观看好大| 在线日本看片免费人成视久网| 免费va国产高清大片在线| 欧美成人形色生活片| 国产亚洲欧美另类第一页| 国产在线精彩自拍视频|