馬喜軍,龔艷榮,高 濤,2,楊明理(.四川大學原子與分子物理研究所,四川 成都 60065;2.四川大學高能密度物理及技術(shù)教育部重點實驗室,四川 成都 60064)
Ca9Fe(PO4)6(OH)2的電子結(jié)構(gòu)與形成能的第一性原理計算
馬喜軍1,龔艷榮1,高 濤1,2,楊明理1
(1.四川大學原子與分子物理研究所,四川 成都 610065;2.四川大學高能密度物理及技術(shù)教育部重點實驗室,四川 成都 610064)
摘 要:基于第一性原理和熱力學統(tǒng)計原理計算了單個Fe2+替代羥基磷灰石晶胞中Ca2+后晶體(Ca9Fe(PO4)6(OH)2)的電子結(jié)構(gòu)和能夠說明替代后結(jié)構(gòu)穩(wěn)定性的替位缺陷形成能.電子結(jié)構(gòu)計算得出(Ca9Fe(PO4)6(OH)2)的帶隙值是1.85eV,而沒有摻雜的是4.93eV,兩者態(tài)密度特征相似,只是前者峰值變小了.理論形成能和溶液環(huán)境中的形成能的計算結(jié)果都表明Ca(B)更易被取代,但是兩種形成能的值都大于0eV,具體是理論缺陷形成能的值都在7eV到8eV之間,溶液環(huán)境中的缺陷形成能主要和替代的位置、溶液的pH值以及Fe2+在溶液中的濃度有關(guān),且其值大于0eV,說明它們需要吸熱才能發(fā)生替代,所以在羥基磷灰石中Fe2+替代Ca2+不容易發(fā)生.
關(guān)鍵詞:替代;形成能;電子結(jié)構(gòu);熱穩(wěn)定性
人的骨頭、牙齒以及許多病理性鈣化的主要無機成分是羥基磷灰石(HA)[Ca10(PO4)6(OH)2],它主要應(yīng)用于醫(yī)學領(lǐng)域.牙釉質(zhì)是人體最堅硬的部分,有研究得出羥基磷灰石的質(zhì)量比重達到97%,體積比達到92%[1],羥基磷灰石陶瓷似乎是最適合替代硬組織修復(fù)的材料,它具有與硬組織、皮膚和肌肉組織非常好的生物相容性[2-3].
很多實驗表明羥基磷灰石的生物特性和其中的雜質(zhì)離子有關(guān),事實上,天然的羥基磷灰石里包含有很多微量雜質(zhì)元素.在羥基磷灰石結(jié)構(gòu)里,鈣離子可以被Na+、K+、Zn+、Mg+、Fe2+、Ba2+、Cu2+、Ba2+、Pb2+、Mn2+等替代.我們知道很多人,如果他們遭受嚴重的骨折,大多數(shù)都會植入鋼針進行固定,毫無疑問,在恢復(fù)期,鐵元素必然會滲入到骨頭里,必定會分布到自然的羥基磷灰石里,但是鐵元素具體到哪里我們并不清楚.有報道稱人造鐵元素羥基磷灰石能刺激骨再生,可以用于標記細胞,能幫助有絲分裂,還可以用于免疫測定的成分等功能[4-8],所以闡述清楚替代的機理非常重要.
盡管有很多關(guān)于Fe摻雜羥基磷灰石的實驗研究,但是我們并不知道Fe替代Ca的具體位置以及具體替代的過程.就我們所知,F(xiàn)e替代羥基磷灰石的理論研究非常少,Ming Jiang用團簇模型研究了Fe替代羥基磷灰石的Ca位[9],已經(jīng)有很多科研工作者對陽離子替代磷灰石中的Ca做了研究.在這些實驗中人造鐵摻雜羥基磷灰石大多數(shù)制備都是由水溶液中化學反應(yīng)制備的,這些反應(yīng)很有力的支持了我們的計算.
第一性原理計算已經(jīng)成功的應(yīng)用在點缺陷的電子結(jié)構(gòu)的研究中.在這篇文章里,我們用第一性原理計算了HA晶胞的電子結(jié)構(gòu),以及一個Fe2+逐一替代羥基磷灰石晶胞中的10個不同位置Ca2+(為了方便,我們用Ca9Fe(PO4)6(OH)2表示一個Fe2+替代HA中的一個Ca2+的晶體結(jié)構(gòu))后晶體的電子結(jié)構(gòu),之后我們又根據(jù)第一性原理和熱力學統(tǒng)計原理計算了替位缺陷形成能.
1.1 密度泛函理論
我們計算用的科學軟件是基于密度泛函理論編寫的VASP軟件[10-11].Ca,P,O,H和Fe的價電子軌道分別是4s2,3s23p3,2s22p4,1s1和3d64s2.計算用的交換關(guān)聯(lián)函數(shù)為PW91[12]的GGA廣義梯度近似,用PAW贗勢[13]描述電子和離子間的作用,電子波函數(shù)的展開的平面波截斷動能是420eV,布里淵區(qū)的積分用3×3×4 Monkhorst-Pack[14]的k網(wǎng)格,我們用Bl?chl四面體修正計算原子弛豫和總能,用部分占用計算電子結(jié)構(gòu).優(yōu)化出的結(jié)構(gòu)用于計算羥基磷灰石晶胞的原子結(jié)構(gòu)、電子結(jié)構(gòu)以及替位缺陷形成能.
1.2 替位形成能計算
1.2.1 理論形成能電荷為q的一個X的缺陷形成能公式[15-16],
Etot[Xq]和Etot[bulk]分別是晶胞里有一個X缺陷的總能和和沒有缺陷的總能.ni是原子的數(shù)目,i為宿主原子或者雜質(zhì)原子,如果ni為正數(shù),表明有外來的雜質(zhì)原子進入到了晶胞形成了缺陷,如果為負數(shù)則意思表示相反.μi為對應(yīng)種類的化學勢.如果形成缺陷的晶胞是中性,那么q就為0.
所以一個Fe2+替代羥基磷灰石晶胞中Ca2+后的缺陷形成能公式,
EFeHA和EHA分別是一個Fe2+替換Ca2+后羥基磷灰石晶胞的總能和羥基磷灰石完美晶胞的總能.μ是Ca和Fe化學勢,當然,形成能的值依靠于化學勢的儲能.首先我們考慮一種簡單的化學勢,μCa和μFe分別是用第一性原理計算的一個金屬Ca原子和一個金屬Fe原子的總能,近似等于在0K下的總能.
1.2.2 溶液中的形成能
這些缺陷形成能由下列公式[17]計算的
EFeHA和EHA的含義與(2)式中的一樣,μ是Ca2+和Fe2+的電化學勢,特別注意到和(2)式中有很大的區(qū)別.這兩個化學勢由溶液中的化學平衡決定的,由下列兩個公式得到
其中κB是玻爾茲曼常量,T是室溫298K,用于整個計算,μ°是Ca2+和Fe2+的標準化學勢,a是Ca2+和Fe2+的活度,φaq是溶液的內(nèi)勢.由(3),(4),(5)我們可以得到(6)由下列的反應(yīng)式得到
γCa2+和γFe2+是活度系數(shù),簡單的我們把它設(shè)為1[19],[Ca2+]和[Fe2+]是Ca2+和Fe2+在溶液中的濃度.
正如在很多實驗里見到,F(xiàn)e2+來自于FeA2溶液,溶液的pH由酸(HX)和堿(BOH)控制[9,20].
在酸性環(huán)境中,溶液的電中性條件為
其中,2[Fe2+] = [A-]和[H+] = [A-] .
在堿性環(huán)境中,溶液的電中性條件為
其中,2[Fe2+] = [A-]和[B+] = [OH-] .
為了計算出Ca離子在溶液中的濃度還需要下列方程[30]以及上邊的兩個電中性條件,
最后,我們根據(jù)以上條件得出方程,
x是水溶液的pH,y是Ca2+在溶液中的濃度,同時,我們得到下列方程,
根據(jù)方程(19)和(20),我們畫出Ca2+在溶液中的濃度隨pH值得變化而變化的圖1,很清楚的看到Ca2+在溶液中的濃度隨pH值得增大而減小,這和Chander and D.W.Fuerstenau[20]的研究結(jié)果一致.我們把Fe2+的濃度設(shè)為體液中的濃度1.0×10-3mol/ l .
理論形成能與溶液中的形成能最大的差別在于使用的化學勢不同.很明顯,溶液中的形成能是建立在理論形成能與實驗數(shù)據(jù)之上的.
圖1 Ca2+濃度隨pH值變化圖.Fig.1 Ca2+concentration(mol/ L)in the aqueous solution saturated with respect to HA varies with pH.
2.1 晶體結(jié)構(gòu)
圖2 (a) 羥基磷灰石晶體結(jié)構(gòu).(b)從Z軸看羥基磷灰石的結(jié)構(gòu)圖.Fig.2(a) The crystal structure of HA.(b)The crystal structure of HA viewed along the Z axis.
圖2是羥基磷灰石的晶胞結(jié)構(gòu),圖2(b)是在Z軸看的的俯視圖.在表1中計算的晶胞參數(shù)與實驗中測量的晶胞參數(shù)[24]的誤差在0.047%以內(nèi).難以確定陽離子替代位置的問題主要是因為Ca位置的復(fù)雜性.接下來,我們就詳細說明Ca的位置.對于空間群為P63/ m的羥基磷灰石,有四個Ca(A)(1-4)位置,其中1和2的連線與3和4的連線相互平行,1和4的位置幾乎在晶胞Z軸的1/2處,2和3在Z軸的0處,有六個Ca (B)(5-10)位置,5,6,7組成的正三角形位于Z軸的1/ 4處,8,9,10組成的正三角形位于3/4處,并且這兩個三角形都與Z軸垂直,Ca(A)對O的配位是9,但Ca (B)是7.但對于空間群為P6/3的羥基磷灰石,至于為什么構(gòu)建P6/3的晶體結(jié)構(gòu)而不是P63/ m,詳細原因請參考[21-23],我們注意到六個Ca(B)位置在晶胞里仍然是對稱的,而四個Ca(A)的位置卻分成了兩類[22],也就是說對稱性降低了.我們分別標記為Ca(AI)(1,3) 和Ca(AП))(2,4),如圖1所示.它們的不同之處在于Ca和O之間的距離,都列在了表2.
表1 羥基磷灰石晶胞的實驗與計算參數(shù).Table 1 Experiment and calculated parameters of pure HA.
2.2 電子結(jié)構(gòu)
圖3 (a)和(b)分別是HA的總電子態(tài)密度和分波態(tài)電子態(tài)密度.(c)和(d)分別是Fe2+替代HA中標號為9的Ca2+的總電子態(tài)密度和分波態(tài)電子態(tài)密度.(e)Fe2+替代HA晶胞中標號為9的Ca2+中Fe和鄰近六個O的分波態(tài)電子態(tài)密度.Fig.3 (a)The otal density of states curves for perfect HA.(b)The partial density of states curves for HA.(c)The total density of states of substitutional Fe2+(at Ca-9).(d)The partial density of states of substitutional Fe2+(at Ca-9).(e)The partial density of states curves for substitutional Fe2+(at Ca-9)and its six surrounding oxygen atoms in HA.
HA的總態(tài)密度各峰值的貢獻已標注在圖3(a)中,HA的帶隙值是4.93eV,它和先前用LDA算的5.40eV[25]以及第一性原理計算的5.23eV[26]相近.HA的實驗帶隙值是3.95eV[27]到6eV[28].Ca9Fe (PO4)6(OH)2帶隙值是1.85eV,如圖3(c),(d)和(e)顯示,它小于HA的帶隙,很明顯,這主要是由Fe2+引起的.Ca9Fe(PO4)6(OH)2的電子態(tài)密度特點與HA的電子態(tài)密度特點在0eV下很相似,不同的是峰值變小了,在1.85eV到4eV的峰值貢獻主要是Fe (d)和少部分O(p),F(xiàn)e(s)幾乎沒有貢獻.Fe和O之間表現(xiàn)出的是典型的離子型特點,如圖3(e)所示.其它替代的總電子態(tài)密度與分波態(tài)密度的特點與Fe2+替代HA晶胞中的Ca(9)的總電子態(tài)密度與分波態(tài)密度一樣.表2可以看出被替代位置周圍的氧原子向里弛豫了,因為Fe2+(0.078nm)的半徑小于Ca2+(0.1nm)的半徑,當Fe2+替代了Ca2+后.
表2 HA晶胞中Ca與鄰近O的距離以及配位數(shù);Fe2+替代HA晶胞中標號為1,2和9的Ca2+后,F(xiàn)e2+與鄰近O的距離與配位數(shù).Table 2 The calculated interatomic distances between Ca and O in bulk HA and coordination numbers;The nearest coordination of distance and numbers between Ca and O when a Fe2+substitutes Ca(1),Ca(2)and Ca(9)in the unit cell HA,respectively.
2.3 Ca9Fe(PO4)6(OH)2的熱穩(wěn)定性
2.3.1 理論形成能
通過我們的計算,得出了表3形成能的數(shù)據(jù),我們可以把它們分為三部分,1 ( 7.357eV)和3 (7.353eV),2(7.584eV)和4(7.589eV)以及剩下的部分(5,6,7,8,9).在圖4中,我們可以很清楚的看到按照形成能大小的分類與Ca位置的種類對應(yīng),也就是說形成能主要依賴于Fe2+替代Ca2+的位置.在這10種替代情況下,所有的Ca(B)位置的形成能都低于Ca(A)位置的形成能,所以根據(jù)形成能越小晶體的結(jié)構(gòu)越穩(wěn)定理論,Ca(B)位置越容易被替代,但是所有的替代都不容易發(fā)生,因為它們需要吸熱才能發(fā)生替代.
表3 理論替位缺陷形成能Table 3 Ideal defect formation energy Ef(eV)of a Fe2+substitution in HA
圖4 理論替位缺陷形成能與取代難易程度圖.Fig.4 Ideal defect formation energy Ef(eV)of a Fe2+substitution in HA varies with substitution position.
2.3.2 溶液中的形成能
圖5 溶液中替位缺陷形成能與pH的關(guān)系.(a)Fe2+濃度為1.0×10-3mol/ l,(b)Fe2+濃度為1.0×10-4mol/ l.Fig.5 Defect formation energy of the single Fe substitution in the unit cell hydroxyapatite as a function of pH.(a)Fe2+concentration is set at 1.0×10-3mol/ l,(b)Fe2+concentration is set at 1.0×10-4mol/ l.
根據(jù)圖5,我們可以看出形成能與替代Ca的位置、溶液的pH和Fe2+的濃度有關(guān).當然形成能依賴于Fe2+的濃度,為了看的更直觀,我們也畫出了Fe2+濃度為1.0×10-4mol/ l的形成能與pH關(guān)系的曲線圖5 (b).圖5表明形成能隨著pH值的減小而增大,這是因為Ca2+的濃度隨pH值而變化.在低pH值下,我們不難推測替代會變得比較困難.我們還看到Fe2+濃度為1.0×10-3mol/ l形成能的值小于濃度為1.0×10-4mol/ l的值,也說明Fe2+濃度越小越不容易被替代.
很明顯,F(xiàn)e2+更容易替代Ca(B)位置,與理論形成能的結(jié)論一致.我們看到Ca(A)分成了兩類,這也與我們之前討論Ca的位置分類一樣.有研究表明,如果電荷上沒有差異,摻雜陽離子的半徑就可以判定替代位置的難易程度[29-31].我們也得出小半徑的Fe2+更易替代Ca(B)位置,這和Ming Jiang先前用團簇模型與M?ssbauer光譜儀研究的結(jié)果一致.Katsuyuki Matsunaga做了很多陽離子替代羥基磷灰石晶胞的Ca位[32-33],他總結(jié)出半徑小的陽離子更易替代Ca (B),大的則相反,但是我們發(fā)現(xiàn)他在構(gòu)建模型時沒有詳細討論晶胞對稱性降低以及Ca位置的分類.
我們用公式c = NsiteNconfigexp( - Ef/κBT)[16]計算缺陷數(shù),Ef是形成能,T是室溫298K,κB是玻爾茲曼常量,N是單位體積能替代位置的數(shù)目.在這里,Nconfig的值是3[27].對于溶液中濃度為1.0×10-3mol/ l的Fe2+,形成能最大值2.783eV處和最小值形成能1.919eV處的缺陷數(shù)目分別是5.664×10-19和2.211 ×10-4,已經(jīng)在圖5(a)標記,而對于溶液中濃度為1.0 ×10-4mol/ l的Fe2+,形成能最大值2.845eV處和最小值形成能1.976eV處的缺陷數(shù)目分別是5.494× 10-20和2.410×10-5,已經(jīng)在圖5(b)標記.兩個最大值形成能的差值為0.062eV,但缺陷數(shù)目一個是另一個的約10倍,對最小值情況也是.
對于溶液中濃度為1.0×10-3mol/ l的Fe2+,形成能最小值的缺陷數(shù)目是形成能最大值缺陷數(shù)目的4.387×1015倍.根據(jù)以上分析,我們得出缺陷數(shù)對形成能的數(shù)值大小非常敏感.通過控制適當?shù)臈l件,我們可以獲得我們想要的缺陷數(shù)目.
本文基于第一性原理和熱力學統(tǒng)計原理計算了Ca9Fe(PO4)6(OH)2)的電子結(jié)構(gòu)、理論形成能和溶液環(huán)境中的形成能,得到以下結(jié)論:
1)通過對電子結(jié)構(gòu)的計算,我們得到Ca9Fe (PO4)6(OH)2的帶隙值為1.85eV,而HA的帶隙值為4.93eV,兩者的電子態(tài)密度特征很相似,只是前者的峰值變小了.計算的Ca9Fe(PO4)6(OH)2中Fe-O的鍵長比HA中Ca-O的鍵長小,表明被替代位置周圍的氧原子向里弛豫了.
2)計算得到的兩種形成能的值中Ca(A)的值都大于Ca(B)的值,說明Fe2+替代HA中Ca(B)后的結(jié)構(gòu)(Ca9Fe(PO4)6(OH)2)比替代Ca(A)后的熱穩(wěn)定性好,也就是說Fe2+更易替代HA中的Ca(B).10個理論缺陷形成能的值都在7eV到8eV之間,溶液環(huán)境中的缺陷形成能主要和替代的位置、溶液的pH值以及Fe2+在溶液中的濃度有關(guān),且其值大于0eV,說明它們需要吸熱才能發(fā)生替代,所以在HA中Fe2+替代Ca2+不容易發(fā)生.
3)Ca9Fe(PO4)6(OH)2的研究對于骨植入生物醫(yī)用材料來說有很重要的研究意義,據(jù)我們調(diào)研,目前它的相關(guān)研究還不是很多,未來我們會研究Ca9Fe (PO4)6(OH)2的力學性質(zhì),光學性質(zhì)、電學性質(zhì)、表面性質(zhì),磁性性質(zhì)等.
參考文獻
[1] LEE S M.International Encyclopedia of composite[M].New York: VCH publishers,1991.
[2]HENCH L L.Bioceramics:from concept to clinic[J].Journal of the A-merican Ceramic Society,1991,74:1487.
[3]AOKI H.Science and Medical Applications of Hydroxyapatite[M].Tokyo:JAAS,1991.
[4]LEVENTOURI T,KIS A C,THOMPSON J R,et al.Structure,microstructure,and magnetism in ferrimagnetic bioceramics [J].Biomaterials,2005,26:4924-4931.
[5]OLSVIK O,POPVIC T,SKJERVE E,et al.Magnetic separation techniques indiagnostic microbiology[J].Clinical Microbiology Reviews,1994 7:1.
[6]HANDGRETINGER R,LANG P,SCHUMM M.Isolation and transplantation of autologous peripheral CD34z progenitor cellshighly purified by magnetic-activated cell sorting[J].Bone Marrow Transplant,1998,21: 987-993.
[7]SCHOEPF U,MARECOS M E,MELDER R J,et al.Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies [J].Biotechnology,1998,24:642-648.
[8]WEISSLEDER R,CHENG H C,BOGDANOV A.Magnetically labeled cells can be detected by MR imaging [J].Journal of Magnetic Resonance Imaging Jmri,1997,7:258-263.
[9]MING JIANG,TERRA J,ROSSI A M,et al.Fe2+/ Fe3+substitution in hydroxyapatite:Theory and experiment [J].Physical Review B,2002,66:224107.
[10]KRESSE G,HAFNER J.Ab initio molecular dynamics for liquid metals[J].Physical Review B,1993,47:558.
[11]KRESSE G,HAFNER J.Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J].Journal of Physics:Condensed Matter,1994,6:8245-8257.
[12]KRESSE G,F(xiàn)URTHMüLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B,1996,54:11169.
[13] KRESSE G,JOUBERT D.Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory [J].Physical Review B,1999,59:1758.
[14]MONKHORST H J,PACK J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13:5188.
[15]ZHANG S B,NORTHRUP J E.Chemical potential dependence of defect formation energies in GaAs:Application to Ga self-diffusion [J].Physical Review Letters,1991,67:2339.
[16]CHRIS G,VAN DE WALLE.J?RG NEUGEBAUER.First-principles calculations for defects and impurities:Applications to III-nitrides[J].Journal of Applied Physics,2004,95:3851.
[17] KATSUYUKI MATSUNAGA.First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate [J].Journal of Chemical Physics,2008,128:245101.
[18]WAGMAN D D,EVANS W H,PARKERV B,et al.The NBS Tables of Chemical Thermodynamic Properties [J].Journal of Physical Chemistry of Reference Data,1982,11:1.
[19] MATSUNAGA K.Theoretical investigation of the defect formation mechanism relevant to nonstoichiometry in hydroxyapatite [J].Physical Review B,2008,77:104106.
[20]CHANDER S,F(xiàn)UERSTENAU D W.Interfacial properties and equilibria in the apatite-aqueous solution system[J].Journal of Colloid Interface Science,1979,70:506.
[21]DE LEEUW N H.Local ordering of hydroxy groups in hydroxyapatite [J].Chemcomm Communication,2001,1646-1647.
[22]ELLIS D E,JOICE TERRA,WARSCHKOW O,et al.A theoretical and experimental study of lead substitution in calcium hydroxyapatite [J].Physical Chemistry Chemical Physics,2006,8:967-976.
[23]NASSER Y MOSTAFAA,PAUL W BROWNB.Computer simulation of stoichiometric hydroxyapatite:structure and substitutions [J].Journal of Physics and Chemistry of Solids,2007,68:431-437.
[24] JOHN M HUGHES,MARYELLEN CAMERON,KEVIN D.CROWLEY.Structural variations in natural F,OH,and Cl apatites [J].American Mineralogist,1989,74:870-876.
[25]CALDERIN L,STOTT M J,RUBIO A.Electronic and crystallographic structure of apatites [J].Physical Review B,2003,67:134106.
[26]ALEXANDER SLEPKO,ALEXANDER A.DEMKOV.First-principles study of the biomineral hydroxyapatite [J].Physical Review B,2011,84:134108.
[27]ROSENMAN G,ARONOV D,OSTER L.Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-Bio-ceramics.[J].Journal of Luminescence,2007,122-123.
[28]TSUKADA M,WAKAMURA M.Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: Comparison with anatase-TiO2 [J].Journal of Molecular Catalysis A,2011,338:18.
[29]ELLIOT J C.Structure and Chemistry of the Apatites and Other Calcium Orthophosphates[M].Elsevier,Amsterdam,1994.
[30]MATHEW M,BROWN W E.Lead alkali apatites without hexad anion:The crystal structure of Pb8K2(PO4)6[J].Journal of Solid State Chemistry,1980,35:69-76.
[31] SCHROESDER L W,MATHEW M.Cation ordering in Ca2La8
(SiO4)6O2[J].Journal of Solid State Chemistry,1978,26:383-387.[32] MATSUNAGA K,HIROKI INAMORI.Theoretical trend of ion ex
change ability with divalent cations in hydroxyapatite[J].Physical Review B,2008,78:094101.
[33] MATSUNAGA K,HIDENOBU MURATA.Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment[J].Journal of Physics:Condensed Matter,2010,22:384210.
(責任編輯:張陽,付強,李建忠,羅敏;英文編輯:周序林)
First-principles study of electronic structure and defect formation energy of Ca9Fe(PO4)6(OH)2
MA Xi-jun1,GONG Yan-rong1,GAO Tao1,2,YANG Ming-li1
(1.Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.C.;2.Key Laboratory of High Energy Density Physics and Technology of Ministry of Education,Sichuan University,Chengdu 610064,P.R.C.)
Abstract:The electronic structure and substitutional defect formation energy that elucidate thermodynamic stability of Ca9Fe (PO4)6(OH)2which a divalent iron substitutes for calcium site in the unit cell of hydroxyapatite are calculated by first-principles and statistical theory of thermodynamics.The calculated band gap of the Ca9Fe(PO4)6(OH)2is about 1.85eV,which is smaller than the 4.93eV(hydroxyapatite).And the feature of the total density of states of Ca9Fe(PO4)6(OH)2is similar to that for hydroxyapatite,but the former peaks are lower than the latter.Computational results of theoretical defect formation energy and defect formation energy of solution show that the Fe2+ions prefer to substitute for Ca(B)sites,which is in agreement with the previous studies by Ming Jiang and Katsuyuki Matsunaga,but the value of the two kind of formation energy is bigger than zero,especially,theoretical formation energy is between 7eV and 8eV and defect formation energy of solution varies with the substitutional Ca sites,solution pH and the Fe2+concentration,so all substitutions are energetically unfavorable because these substitutions are endothermic.
Key words:substitution;defect formation energy;electronic structure;thermodynamic stability
中圖分類號:O641
文獻標志碼:A
文章編號:2095-4271(2016)02-0207-08
doi:10.11920/ xnmdzk.2016.02.014
收稿日期:2015-11-20
作者簡介:馬喜軍(1988-),男,漢族,陜西延安人,碩士研究生,研究方向:凝聚態(tài)物理學的研究.E-mail:ma6xiao@126.com.
通信作者:高濤(1969-),男,漢族,四川成都人,教授,研究員,研究方向:凝聚態(tài)物理學的研究和原子與分子物理研究,E-mail:gaotao@ scu.edu.cn.
基金項目:國家高技術(shù)研究發(fā)展計劃(2015AA034202)