徐?!m彥龍 夏原野 杜志敏 閆志強(qiáng) 王華杰 陳溫?!⌒煺M(jìn)
(沈陽農(nóng)業(yè)大學(xué)水稻研究所/農(nóng)業(yè)部東北水稻生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室/北方超級粳稻育種教育部重點(diǎn)實(shí)驗(yàn)室/遼寧省北方粳稻遺傳育種重點(diǎn)實(shí)驗(yàn)室,沈陽 110866; *通訊聯(lián)系人, E-mail:xuzhengjin@126.com)
中日水稻品種雜交后代的株型性狀與產(chǎn)量和品質(zhì)的關(guān)系
徐海宮彥龍夏原野杜志敏閆志強(qiáng)王華杰陳溫福徐正進(jìn)*
(沈陽農(nóng)業(yè)大學(xué)水稻研究所/農(nóng)業(yè)部東北水稻生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室/北方超級粳稻育種教育部重點(diǎn)實(shí)驗(yàn)室/遼寧省北方粳稻遺傳育種重點(diǎn)實(shí)驗(yàn)室,沈陽 110866;*通訊聯(lián)系人, E-mail:xuzhengjin@126.com)
徐海, 宮彥龍, 夏原野, 等. 中日水稻品種雜交后代的株型性狀與產(chǎn)量和品質(zhì)的關(guān)系. 中國水稻科學(xué), 2016, 30(3): 283-290.
摘要:以東北地區(qū)最具代表性的水稻品種遼粳5號(hào)(直立穗型)與日本著名的優(yōu)質(zhì)米品種秋田小町(彎曲穗型)雜交后采用單粒傳法構(gòu)建的F9重組自交系群體(以下簡稱RIL群體)為試材,研究中日水稻品種雜交后代株型性狀的變化規(guī)律及其與稻米產(chǎn)量和品質(zhì)的關(guān)系,結(jié)果表明,來自中日水稻雜交的RIL群體的株型性狀、產(chǎn)量和米質(zhì)性狀均發(fā)生了分離和重組。株高、倒3、4節(jié)長和劍葉基角與產(chǎn)量呈顯著正相關(guān)。植株越高、頸穗彎曲程度越大、倒3葉越窄長的株系,稻米的加工品質(zhì)和外觀品質(zhì)越好。食味值與絕大多數(shù)株型性狀的相關(guān)性未達(dá)顯著水平,僅與倒3片葉的寬、二次枝梗數(shù)、著粒密度呈極顯著負(fù)相關(guān)。產(chǎn)量與米質(zhì)的相關(guān)分析表明,產(chǎn)量越高,整精米率就越高,但食味越差。中日水稻品種雜交后代的株型性狀與產(chǎn)量和米質(zhì)性狀密切相關(guān)。盡管產(chǎn)量與食味很難統(tǒng)一,但RIL群體中仍然有極小部分產(chǎn)量高食味也好的株系,它們的主要株型特征是具有較長的穗長和較長的倒1節(jié)間長。
關(guān)鍵詞:水稻; 株型; 產(chǎn)量; 品質(zhì)
隨著人民生活水平的提高,優(yōu)質(zhì)稻米的市場需求逐年擴(kuò)大,培育既高產(chǎn)又優(yōu)質(zhì)的水稻新品種是育種者追求的目標(biāo)。株型育種在水稻新品種選育中具有重要地位,理想株型與雜種優(yōu)勢利用相結(jié)合是水稻超高產(chǎn)育種的必由之路[1-4]。株型與稻米產(chǎn)量和品質(zhì)具有密切關(guān)系。前人在株型與光能利用[5-6]、株型與產(chǎn)量和米質(zhì)[7-10]、株型與生態(tài)環(huán)境的關(guān)系等[11-15]方面有系統(tǒng)、深入的研究。近年來,隨著分子生物學(xué)的迅速發(fā)展,在株型、產(chǎn)量和米質(zhì)等性狀的基因定位與克隆[16-21]方面也取得了重要進(jìn)展。在遼寧稻區(qū)的育種實(shí)踐中,高產(chǎn)品種的株型特征是以遼粳5號(hào)、沈農(nóng)265等為代表的直立穗型品種,主要特點(diǎn)是株型緊湊、穗型直立、葉片較寬且挺直、耐肥抗倒,產(chǎn)量潛力高但稻米品質(zhì)相對較差;優(yōu)質(zhì)稻米品種的株型特征是以引進(jìn)的日本品種秋田小町、豐錦等為代表的彎曲穗型品種,主要特點(diǎn)是株型披散、穗型彎垂、葉片狹長、不耐肥抗倒,產(chǎn)量水平偏低,但稻米品質(zhì)極好。由此,眾多的育種者都考慮并嘗試過以東北稻區(qū)主栽的直立穗型粳稻品種與日本的彎曲穗型優(yōu)質(zhì)米品種雜交,從后代中選育高產(chǎn)優(yōu)質(zhì)相結(jié)合的粳稻新品種。但迄今,對這兩種株型迥異的品種雜交后代的株型性狀與產(chǎn)量和稻米品質(zhì)間的關(guān)系尚缺乏系統(tǒng)的研究。筆者在前文曾以這兩類株型的代表性品種遼粳5號(hào)與秋田小町雜交后代構(gòu)建的重組自交系群體為試材,對中日水稻品種雜交后代株型性狀的變化及其相互關(guān)系作了初步研究[22]。本研究在此基礎(chǔ)上進(jìn)一步調(diào)查了產(chǎn)量性狀和米質(zhì)性狀,結(jié)合株型性狀,分析后代中株型性狀與稻米產(chǎn)量和品質(zhì)性狀的關(guān)系,希望為北方粳稻株型改良和高產(chǎn)優(yōu)質(zhì)相結(jié)合的粳稻新品種選育提供一定的理論依據(jù)。
1材料與方法
1.1材料處理
以遼粳5號(hào)與秋田小町雜交后代單粒傳法構(gòu)建的F9代RIL群體為試材,共192個(gè)株系,于2013年種植于沈陽農(nóng)業(yè)大學(xué)水稻研究所試驗(yàn)田。4月18日播種,5月24日移栽。每個(gè)株系種植3行,每行10株,株距13.3 cm,行距30 cm?;适┠蛩?0 kg/667m2,磷酸二銨10 kg/667m2,氯化鉀5 kg/667m2,返青后追施尿素10 kg/667m2。其他田間管理措施同當(dāng)?shù)厣a(chǎn)田一致。
1.2測定項(xiàng)目與方法
齊穗后15 d調(diào)查RIL群體各株系的株型性狀。每個(gè)株系取5株長勢中等的植株,每株剪取2個(gè)長勢中等的單莖,按徐正進(jìn)等[5]的方法測量頸穗彎曲度(劍葉葉枕到穗尖的連線與莖稈的夾角)和劍葉、倒2葉、倒3葉的葉基角、葉長、葉寬。成熟后每個(gè)株系取長勢中等的5株,風(fēng)干后考種,余下的25株全部收割脫粒后測產(chǎn)并留測米質(zhì)??挤N方法如下:首先調(diào)查5株樣本的株高、節(jié)間長、穗重、生物產(chǎn)量、經(jīng)濟(jì)系數(shù),再調(diào)查5株的所有穗的一次枝梗數(shù),按一次枝梗數(shù)的眾數(shù)取其中10穗分別考查穗長、一次和二次枝梗數(shù)、一次和二次枝梗實(shí)粒數(shù)、秕粒數(shù),分別計(jì)算一次和二次枝梗結(jié)實(shí)率、總結(jié)實(shí)率、千粒重、著粒密度、穗型指數(shù)(二次枝梗粒數(shù)最多的一次枝梗所在穗軸節(jié)位與一次枝梗數(shù)之比)[7,15]等。
稻米品質(zhì)的測定依照國家標(biāo)準(zhǔn)《GB/T17891-1999優(yōu)質(zhì)稻谷》進(jìn)行。利用日本YAMAMOTO公司生產(chǎn)的FC2K型糙米機(jī)和VP-32型精米機(jī)碾磨測定加工品質(zhì), SHIZUOKA公司生產(chǎn)的ES-1000大米外觀品質(zhì)判別儀測定外觀品質(zhì),靜岡制機(jī)株式會(huì)社生產(chǎn)的QS-4000型高精度近紅外線食味分析儀測定營養(yǎng)品質(zhì)和食味品質(zhì)。
數(shù)據(jù)采用Excel 2007軟件進(jìn)行統(tǒng)計(jì),分析株型性狀、產(chǎn)量性狀、米質(zhì)性狀的變化規(guī)律及其相互關(guān)系。
2結(jié)果與分析
2.1中日水稻品種雜交后代產(chǎn)量與品質(zhì)性狀的變化
無論產(chǎn)量性狀,還是米質(zhì)性狀,在中日水稻品種雜交后的RIL群體中均發(fā)生了明顯的分離和重組,符合多基因控制的數(shù)量性狀的遺傳特點(diǎn),并且出現(xiàn)了許多具有超親性狀的株系(表1、表2)。
2.2中日水稻品種雜交后代株型性狀與產(chǎn)量性狀間的關(guān)系
穗數(shù)與株高、倒3節(jié)長、倒4節(jié)長呈極顯著正相關(guān),即株高越高,倒3、4節(jié)間越長,穗數(shù)越多(表3)。穗數(shù)與劍葉基角和倒2葉基角呈極顯著或顯著正相關(guān),與劍葉寬、倒2葉寬、倒3葉寬呈顯著負(fù)相關(guān),即葉基角越大,葉片越窄的株系,穗數(shù)越多。每穗粒數(shù)與株高、倒1節(jié)長、倒2節(jié)長呈極顯著或顯著負(fù)相關(guān),與頸穗彎曲度、劍葉基角、倒3葉的葉長呈極顯著負(fù)相關(guān),與倒3片葉葉寬呈極顯著正相關(guān),即植株偏矮、穗和劍葉偏直立、葉片偏短寬的株系,穗粒數(shù)較多。結(jié)實(shí)率、千粒重、生物產(chǎn)量與株高、節(jié)間長、倒3片葉長呈顯著至極顯著的正相關(guān),經(jīng)濟(jì)系數(shù)與株高、節(jié)間長、倒3片葉長呈顯著或極顯著負(fù)相關(guān),即株高越高、葉片越偏長的株系有較高的結(jié)實(shí)率、較高的千粒重、較高的生物產(chǎn)量和較低的經(jīng)濟(jì)系數(shù)。產(chǎn)量與株高和倒3、4節(jié)間長、劍葉基角呈極顯著至顯著的正相關(guān),即株高越高,劍葉基角越大,產(chǎn)量相對越高。
表1中日水稻品種雜交后代產(chǎn)量性狀的變化
Table 1. Difference in yield traits for the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait最大值MAX最小值MIN平均值Mean標(biāo)準(zhǔn)差SD變異系數(shù)CV/%遼粳5號(hào)Liaojing5秋田小町AkitaKomachi穗數(shù)PN19.006.0010.512.0919.8712.409.00每穗粒數(shù)GPP200.0084.80133.2019.9014.94131.60113.40結(jié)實(shí)率SSR/%98.7762.0392.555.465.9080.4393.02千粒重TGW/g28.9021.5624.651.365.5123.4623.76經(jīng)濟(jì)系數(shù)HI0.630.350.530.048.040.570.52單株生物產(chǎn)量BM/g91.8533.7457.2611.2019.5566.2341.93理論產(chǎn)量Y/(kg·667m-2)789.96300.25512.8097.2318.96560.20370.67
PN, Panicle number; GPP, Grain number per panicle; SSR, Seed-setting rate; TGW, Thousand-grain weight; HI, Harvest index; BM, Biomass per plant; Y, Theoretical yield. The same as below.
表2中日水稻品種雜交后代品質(zhì)性狀的變化
Table 2. Difference in quality traits for the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait最大值MAX最小值MIN平均值Mean標(biāo)準(zhǔn)差SD變異系數(shù)CV/%遼粳5號(hào)Liaojing5秋田小町AkitaKomachi糙米率BR/%86.0758.4577.562.873.7076.4079.69精米率MR/%76.6251.2369.453.424.9368.2372.01整精米率HR/%71.0845.9162.224.597.3858.6867.40蛋白質(zhì)含量PC/%9.106.208.040.465.697.908.00直鏈淀粉含量AC/%18.6015.3017.670.673.7718.2016.80白度值WD44.1032.6039.172.195.6037.9038.50堊白粒率CR/%49.300.908.587.8291.1210.302.20堊白度CD28.500.404.754.4794.105.401.30食味EQ90.3050.1467.057.1710.6960.7383.55
BR, Brown rice rate; MR, Milled rice rate; HR, Head milled rice rate; PC, Protein content; AC, Amylose content; WD, Whiteness degree; CR, Chalk rice rate; CD, Chalkiness degree; EQ, Eating quality.
表3中日水稻品種雜交后代株型性狀與產(chǎn)量性狀間的關(guān)系
Table 3. Relation between plant type and yield traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait穗數(shù)PN穗粒數(shù)GPP結(jié)實(shí)率SSR千粒重TGW經(jīng)濟(jì)系數(shù)HI單株生物產(chǎn)量BM理論產(chǎn)量Y株高PH0.189**-0.196**0.214**0.354**-0.587**0.470**0.243**倒1節(jié)間長TNL1-0.020-0.237**0.283**0.307**-0.408**0.242**0.080倒2節(jié)間長TNL2-0.069-0.155*0.246**0.398**-0.460**0.251**0.068倒3節(jié)間長TNL30.314**-0.0990.0450.168*-0.363**0.403**0.270**倒4節(jié)間長TNL40.271**-0.067-0.032-0.006-0.182*0.237**0.170*頸穗彎曲度PC0.094-0.232**0.1390.171*-0.1210.1100.059劍葉基角FLA0.292**-0.161*0.142*0.0890.0110.183*0.187**倒2葉基角TLA20.158*-0.1170.1380.0870.167*0.0290.093倒3葉基角TLA30.033-0.0630.216**0.0950.072-0.0090.012劍葉長FLL0.021-0.196**0.1360.323**-0.438**0.257**0.084倒2葉長TLL20.008-0.197**0.1090.265**-0.505**0.232**0.028倒3葉長TLL30.071-0.182*0.158*0.208**-0.440**0.232**0.057劍葉寬TLW-0.173*0.348**-0.133-0.0940.182*-0.0470.035倒2葉寬TLW2-0.142*0.323**-0.096-0.1410.137-0.0310.029倒3葉寬TLW3-0.168*0.350**-0.125-0.1100.0880.0050.042
* 和**分別表示0.05 和0.01水平上顯著相關(guān).
* and**significant correlation at the 0.05 and 0.01 levels, respectively. PH, Plant height; TNL1, Top internode length; TNL2, Top second internode length; TNL3, Top third internode length; PC, Panicle curvature; FLA, Flag leaf angle; TLA2, Top second leaf angle; TLA3, Top third leaf angle; FLL, Flag leaf length; TLL2, Top second leaf length; TLL3, Top third leaf length; FLW, Flag leaf width; TLW2, Top second leaf width; TLW3, Top third leaf width. The same as below.
2.4中日水稻品種雜交后代穗部性狀與稻米品質(zhì)的關(guān)系
加工品質(zhì)(糙米率、精米率、整精米率)和外觀品質(zhì)(白度值、堊白粒率、堊白度)與穗部性狀關(guān)系密切,營養(yǎng)和食味品質(zhì)(蛋白質(zhì)含量、直鏈淀粉含量、食味)與穗部性狀相關(guān)大多不顯著(表4)。具體來說,穗子偏長的株系,加工品質(zhì)和外觀品質(zhì)好,直鏈淀粉含量相對高;一次枝梗和二次枝梗數(shù)越多的株系,糙米率越低,外觀品質(zhì)越差;一次和二次枝梗結(jié)實(shí)率越高的株系,糙米率和精米率越高,外觀品質(zhì)越好;著粒密度越大,出米率越低,外觀品質(zhì)越差;穗型指數(shù)越大(二次枝梗粒數(shù)越偏向穗軸上部分布)的株系,外觀品質(zhì)越好;食味值僅與二次枝梗數(shù)和著粒密度呈極顯著負(fù)相關(guān),即二次枝梗數(shù)越多,著粒越密的株系,食味越差。
2.5中日水稻品種雜交后代株型性狀與稻米品質(zhì)性狀間的關(guān)系
株高和節(jié)間長與加工品質(zhì)呈顯著或極顯著正相關(guān),與外觀品質(zhì)呈顯著或極顯著負(fù)相關(guān),與營養(yǎng)食味品質(zhì)大多相關(guān)未達(dá)顯著水平,即株高偏高的株系,加工品質(zhì)和外觀品質(zhì)較好。頸穗彎曲度與精米率呈極顯著正相關(guān),與堊白粒率和堊白度呈極顯著負(fù)相關(guān),與營養(yǎng)食味品質(zhì)相關(guān)不顯著,即穗彎曲程度越大,加工品質(zhì)和外觀品質(zhì)越好(表5)。倒3片葉的長度與精米率、整精米率呈極顯著正相關(guān),與外觀品質(zhì)呈顯著或極顯著負(fù)相關(guān),與直鏈淀粉含量呈極顯著正相關(guān),與蛋白質(zhì)含量和食味值相關(guān)未達(dá)顯著水平,即倒3葉越長的株系,加工品質(zhì)和外觀品質(zhì)越好,直鏈淀粉含量越高,食味值不一定高。倒3片葉寬與食味值呈顯著或極顯著負(fù)相關(guān),與堊白率和堊白度呈顯著或極顯著正相關(guān),與加工品質(zhì)相關(guān)大多不顯著,即葉片越寬,外觀品質(zhì)越差,食味越差。
2.6中日水稻品種雜交后代產(chǎn)量性狀與稻米品質(zhì)的關(guān)系
穗數(shù)與整精米率呈顯著正相關(guān),與直鏈淀粉含量和白度值呈極顯著或顯著負(fù)相關(guān),與食味值呈極顯著負(fù)相關(guān),即穗數(shù)越多的株系,整精米率越高,直鏈淀粉含量和白度值越低,食味越差(表6)。每穗粒數(shù)與糙米率、精米率、食味值呈顯著或極顯著負(fù)相關(guān),與堊白粒率和堊白度呈極顯著正相關(guān),即每穗粒數(shù)越多的株系,外觀品質(zhì)越差,出米率越低,食味越差。結(jié)實(shí)率和千粒重與糙米率和精米率呈顯著或極顯著正相關(guān),與堊白粒率、堊白度呈顯著或極顯著負(fù)相關(guān),千粒重與食味值呈極顯著正相關(guān),結(jié)實(shí)率與食味值的相關(guān)未達(dá)顯著水平,即結(jié)實(shí)率和千粒重較高的株系,出米率高,外觀品質(zhì)好,特別是千粒重大的株系,食味值高。白度值與結(jié)實(shí)率呈顯著負(fù)相關(guān),與千粒重呈極顯著正相關(guān)。生物產(chǎn)量與整精米率呈極顯著正相關(guān),與外觀品質(zhì)呈顯著或極顯著負(fù)相關(guān),與食味值呈極顯著負(fù)相關(guān),即生物產(chǎn)量越高的株系,整精米率越高,外觀品質(zhì)越好,但食味值越差。經(jīng)濟(jì)系數(shù)僅與外觀品質(zhì)呈極顯著正相關(guān)。產(chǎn)量與整精米率呈極顯著正相關(guān),與白度值呈顯著負(fù)相關(guān),與食味值呈極顯著負(fù)相關(guān),即越是高產(chǎn)的株系,整精米率越高,白度越差,食味越差。
表4中日水稻品種雜交后代穗部性狀與稻米品質(zhì)的關(guān)系
Table 4. Relation between panicle traits and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait糙米率BR精米率MR整精米率HR蛋白質(zhì)含量PC直鏈淀粉含量AC白度值WD堊白粒率CR堊白度CD食味EQ穗長PL0.179*0.228**0.263**-0.0460.174*-0.147*-0.420**-0.422**0.121一次枝梗數(shù)NPB-0.163*-0.0790.0780.0690.059-0.0820.198**0.208**-0.110二次枝梗數(shù)NSB-0.123-0.217**0.0070.120-0.017-0.0580.259**0.275**-0.193**一次枝梗結(jié)實(shí)率PBSSR0.148*0.145*0.084-0.045-0.005-0.026-0.014-0.029-0.016二次枝梗結(jié)實(shí)率SBSSR0.168*0.249**0.109-0.168*0.140-0.160*-0.400**-0.422**0.120著粒密度GD-0.213**-0.287**-0.1410.121-0.1210.0580.491**0.503**-0.219**穗型指數(shù)PTI-0.0300.0860.025-0.0390.157*-0.255**-0.372**-0.371**0.032
*和**分別表示0.05 和0.01水平上顯著相關(guān).
*and**significant correlation at the 0.05 and 0.01 levels, respectively. PL, Panicle length; NPB, Number of primary rachis branch; NSB, Number of secondary rachis branch; PBSSR, Seed setting rate of primary rachis branch, SBSSR, Seed setting rate of secondary rachis branch; GD, Grain density; PTI, Panicle type index. The same as below.
表5中日水稻品種雜交后代株型性狀與稻米品質(zhì)性狀間的關(guān)系
Table 5. Relation between plant type and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait糙米率BR精米率MR整精米率HR蛋白質(zhì)含量PC直鏈淀粉含量AC白度值WD堊白粒率CR堊白度CD食味EQ株高PH0.184*0.284**0.311**-0.0450.164-0.259**-0.448**-0.444**0.035倒1節(jié)間長TNL10.197**0.282**0.243**-0.1350.219**-0.150*-0.459**-0.464**0.135倒2節(jié)間長TNL20.0250.161*0.094-0.0470.133-0.133-0.364**-0.366**0.055倒3節(jié)間長TNL30.1410.216**0.249**-0.0020.046-0.208**-0.207**-0.199**-0.116倒4節(jié)間長TNL40.1020.0990.118-0.0200.039-0.138-0.038-0.030-0.071頸穗彎曲度PC0.0940.193**0.1400.0090.064-0.045-0.219**-0.230**0.115劍葉基角FLA0.1180.154*0.1170.042-0.147*-0.063-0.113-0.117-0.093倒2葉基角TLA20.153*0.160*0.0940.135-0.154*0.075-0.042-0.0450.009倒3葉基角TLA30.0300.065-0.001-0.0890.0850.029-0.051-0.0570.067劍葉長FLL0.1320.236**0.262**-0.0090.265**-0.126-0.402**-0.405**0.112倒2葉長TLL20.0670.189**0.206**-0.0400.237**-0.184*-0.437**-0.439**0.096倒3葉長TLL30.0810.160*0.180*-0.1150.260**-0.193**-0.390**-0.391**0.123劍葉寬TLW-0.126-0.087-0.1050.157*-0.024-0.0330.172*0.173*-0.208**倒2葉寬TLW2-0.113-0.123-0.1160.0400.072-0.0340.209**0.218**-0.191**倒3葉寬TLW3-0.146*-0.137-0.0930.0040.149*-0.0620.1400.148*-0.147*
表6中日水稻品種雜交后代產(chǎn)量性狀與稻米品質(zhì)的關(guān)系
Table 6. Relation between yield traits and grain quality traits in the RIL population of cross between Chinese rice variety and Japanese rice variety.
性狀Trait糙米率BR精米率MR整精米率HR蛋白質(zhì)含量PC直鏈淀粉含量AC白度值WD堊白粒率CR堊白度CD食味EQ穗數(shù)PN0.1080.0690.148*0.083-0.212**-0.148*0.0520.064-0.213**每穗粒數(shù)GPP-0.143*-0.196**0.0300.125-0.018-0.0610.292**0.306**-0.196**結(jié)實(shí)率SSR0.185**0.271**0.121-0.176*0.134-0.144*-0.371**-0.394**0.110千粒重TGW0.158*0.245**0.031-0.0620.171*0.187**-0.260**-0.284**0.208**經(jīng)濟(jì)系數(shù)HI0.086-0.035-0.0720.044-0.1550.384**0.457**0.449**0.003單株生物產(chǎn)量BM0.0710.1000.214**0.074-0.027-0.333**-0.189**-0.174*-0.257**理論產(chǎn)量Y0.1130.0880.192**0.093-0.097-0.180*-0.0050.007-0.265**
*和**分別表示0.05 和0.01水平上顯著相關(guān)。
*and**mean significant correlation at the 0.05 and 0.01 levels, respectively.
圖1中日水稻品種雜交后代產(chǎn)量和食味值的分布
Fig. 1. Frequency distribution of yield and eating quality(EQ) value in the RIL population of cross between Chinese rice variety and Japanese rice variety.
我們將食味值≥70劃分為高食味值類型,食味值<70劃分為低食味值類型;產(chǎn)量≥500 kg/667m2劃分為高產(chǎn)類型,產(chǎn)量<500 kg/667m2劃分為低產(chǎn)類型;以上述標(biāo)準(zhǔn)作為圖1中橫縱坐標(biāo)軸的交叉點(diǎn),繪制描述產(chǎn)量與食味值關(guān)系的散點(diǎn)圖。如圖1所示,絕大多數(shù)產(chǎn)量較高的株系,食味較差,僅有位于第I象限的極小部分株系產(chǎn)量高、食味值也高。這一小部分株系正是育種者尋找的高產(chǎn)與高食味值相結(jié)合的目標(biāo)株系。
2.7高產(chǎn)高食味值類型株系的株型特征
既高產(chǎn)又有高食味值類型的株系在株型性狀上是否具有明顯的特征?為此,我們將RIL群體中的株系依圖1中的標(biāo)準(zhǔn)劃分為高產(chǎn)-高食味值類型、高產(chǎn)-低食味值類型、低產(chǎn)-高食味值類型、低產(chǎn)-低食味值類型,對每一個(gè)株型性狀進(jìn)行組間的差異顯著性分析,比較這4類在株型性狀上是否有顯著差異。結(jié)果表明,高產(chǎn)高食味值類型的株系區(qū)別于其他3種類型的主要特征就是具有較長的穗長和較長的倒1節(jié)長,在其他株型性狀上的差異未達(dá)顯著水平(表7)。陳溫福等[23]研究指出,在北方一季粳稻區(qū)獲得11.5t/hm2以上籽粒產(chǎn)量的產(chǎn)量結(jié)構(gòu)參數(shù)中適宜株高為100~110 cm。本研究中高產(chǎn)高食味類型株系的平均株高為117.15 cm,株高明顯偏高,如氮肥施用過多或遇大雨強(qiáng)風(fēng)天氣這些高產(chǎn)高食味值類型的株系極易發(fā)生倒伏造成減產(chǎn),因此在生產(chǎn)實(shí)踐中對這一類型的株系必須適度稀植少肥。
表7不同產(chǎn)量與食味類型株系在株型性狀上的差異
Table 7. Differences in plant type traits for different type lines with different yield and eating quality.
類別Types高產(chǎn)高食味型HYGE高產(chǎn)低食味型HYWE低產(chǎn)高食味型LYGE低產(chǎn)低食味型LYWE穗長PL/cm20.05a18.95b18.87b18.72b一次枝梗數(shù)NPB11.79a11.71ab11.25ab11.15b二次枝梗數(shù)NSB23.04ab24.21a21.46b22.79ab著粒密度GD/(?!m-1)6.78ab7.41a6.73b6.78ab穗型指數(shù)PTI0.38a0.39a0.39a0.41a株高PH/cm117.15a115.54ab111.18bc109.51c倒1節(jié)間長TNL1/cm36.19a33.56b33.46b32.99b倒2節(jié)間長TNL2/cm22.26a21.36ab21.12ab21.03b倒3節(jié)間長TNL3/cm22.21a22.47a20.65b20.67b倒4節(jié)間長TNL4/cm13.29ab14.12a11.76b12.21b頸穗彎曲度PC/°60.95a56.81a58.79a56.16a劍葉基角FLA/°21.90a24.12a20.27a21.57a倒2葉基角TLA2/°18.55a20.70a18.32a18.30a倒3葉基角TLA3/°22.48a23.98a24.81a22.64a劍葉長FLL/cm31.93a29.99ab29.48ab29.05b倒2葉長TLL2/cm42.56a40.31ab40.22ab39.60b倒3葉長TLL3/cm44.97a46.12ab42.68ab42.13b劍葉寬FLW/cm1.42a1.50a1.43a1.48a倒2葉寬FLW2/cm1.23a1.30a1.23a1.29a倒3葉寬FLW3/cm1.09a1.13a1.09a1.12a
HYGE, High yield with good eating quality; HYWE, High yield with bad eating quality; LYGE, Low yield with good eating quality; LYWE, Low yield with bad eating quality.
3 討論
3.1中日水稻品種雜交后代株型性狀與產(chǎn)量性狀的關(guān)系
據(jù)不完全統(tǒng)計(jì),60年來因直接和間接利用國外引入水稻種質(zhì)而增產(chǎn)的稻谷超過773億kg,一大批國外引進(jìn)種質(zhì)已成為不同時(shí)期我國高產(chǎn)、優(yōu)質(zhì)和多抗水稻育種的骨干親本[24]。日本粳稻品質(zhì)優(yōu)良,是南北方粳稻在優(yōu)質(zhì)化育種上的首選親本[25,26]。從日本引進(jìn)的優(yōu)質(zhì)米品種秋田小町和我國東北地區(qū)曾經(jīng)的主栽品種遼粳5號(hào)具有迥然不同的株型,而且二者在產(chǎn)量和米質(zhì)性狀上具有互補(bǔ)性。本研究結(jié)果表明,中日水稻品種雜交后代的株型與產(chǎn)量性狀關(guān)系密切,株高、葉長、葉寬、穗長等與每穗粒數(shù)、結(jié)實(shí)率、千粒重等產(chǎn)量構(gòu)成因素具有不同顯著程度的相關(guān)性,但與最終產(chǎn)量的相關(guān)性大多未達(dá)顯著水平,株型性狀中僅有株高、倒3、4節(jié)長和劍葉基角與產(chǎn)量顯著或極顯著正相關(guān)。說明產(chǎn)量構(gòu)成因素多且復(fù)雜,相輔相成又互相制約,單純靠改良某一個(gè)株型性狀很難提高產(chǎn)量。株型育種的方向也不能一成不變,應(yīng)隨育種實(shí)踐的發(fā)展而相應(yīng)調(diào)整。例如矮化育種階段株高的降低使品種的耐肥抗倒性和適于密植性顯著增強(qiáng),水稻單產(chǎn)因此出現(xiàn)一次較大的飛躍,但在目前矮稈高產(chǎn)水稻品種的經(jīng)濟(jì)系數(shù)已達(dá)到0.5 ~ 0.6的情況下,進(jìn)一步提高產(chǎn)量潛力,必須依賴于生物產(chǎn)量的提高或生物產(chǎn)量與經(jīng)濟(jì)系數(shù)的進(jìn)一步優(yōu)化組配,適當(dāng)?shù)卦黾又旮遊3]。
3.2中日水稻品種雜交后代株型性狀與稻米品質(zhì)的關(guān)系
品質(zhì)的形成既是光合產(chǎn)物生產(chǎn)的過程,同時(shí)也是光合產(chǎn)物運(yùn)轉(zhuǎn)與分配的過程。株型性狀與稻米品質(zhì)同受水稻遺傳基因表達(dá)與調(diào)控,這兩大性狀體系間必然存在聯(lián)系[27]。Hao等[28]研究表明米質(zhì)較優(yōu)的北方雜交粳稻的株型特征為劍葉、倒2葉較寬,倒3葉較短且窄,株高偏矮,稈長較短,穗子較長,穗數(shù)較多且單穗重較輕。張子軍等[29]研究認(rèn)為寒地早粳稻的理想品質(zhì)株型模式特征為莖稈粗壯,穗下節(jié)間較長,倒2葉長寬比適宜,葉面積不能過大,劍葉長而窄,葉基角小,倒3葉寬較大,單穗重較小,著粒密度適中,二次枝梗結(jié)實(shí)率高。就本研究的RIL群體而言,大多數(shù)株型性狀與米質(zhì)性狀具有顯著的相關(guān)性,植株偏高、頸穗彎曲程度大、倒3葉偏窄長的株系,稻米的加工品質(zhì)和外觀品質(zhì)均較好。但食味值與絕大多數(shù)株型性狀的相關(guān)性未達(dá)顯著水平,僅與倒3葉葉寬呈極顯著負(fù)相關(guān),即葉片越寬,食味品質(zhì)越差。葉片的寬度在田間極容易鑒別,為改良食味,在中日水稻品種雜交后代中應(yīng)該盡量避免選擇葉片較寬的株系。
3.3中日水稻品種雜交后代稻米產(chǎn)量與品質(zhì)性狀的關(guān)系
稻米品質(zhì)主要受基因型(遺傳)與栽培環(huán)境的影響,其中,遺傳因素影響較大[30-32]。關(guān)于水稻品質(zhì)與產(chǎn)量的關(guān)系研究較多,大多數(shù)學(xué)者認(rèn)為,水稻品質(zhì)與產(chǎn)量存在著負(fù)相關(guān)性,在高產(chǎn)和超高產(chǎn)水平上,要實(shí)現(xiàn)產(chǎn)量與品質(zhì)同步提高難度較大[28,33]。本研究結(jié)果表明高產(chǎn)與某些優(yōu)質(zhì)性狀并不矛盾,例如產(chǎn)量與加工品質(zhì)中的整精米率呈極顯著正相關(guān),原因是產(chǎn)量較高的株系籽粒發(fā)育相對完善,充實(shí)度高,整精米率相應(yīng)提高。產(chǎn)量與外觀品質(zhì)中的堊白粒率和堊白度相關(guān)不顯著,僅與白度值呈顯著負(fù)相關(guān)。但產(chǎn)量與食味品質(zhì)卻很難統(tǒng)一,產(chǎn)量與食味值極顯著負(fù)相關(guān),即產(chǎn)量越高,食味越差。再具體分析,在產(chǎn)量構(gòu)成的四要素中無論穗數(shù)還是每穗粒數(shù)的提高,均顯著降低食味,只有千粒重的提高有利于改善食味,而結(jié)實(shí)率與食味相關(guān)不顯著。盡管產(chǎn)量與食味值很難統(tǒng)一,但中日水稻品種雜交RIL群體中仍然有極小部分高產(chǎn)高食味值的株系,高產(chǎn)高食味類型株系的主要株型特征就是具有較長的穗長和較長的倒1節(jié)長。只要育種者長期堅(jiān)持定向選擇,仍然可能選育出高產(chǎn)高食味值的品種。
3.4本研究的局限性與下一步研究方向
產(chǎn)量和米質(zhì)均屬多基因控制的數(shù)量性狀,易受外部環(huán)境的影響,尤其受施氮量的影響較大。一定范圍內(nèi),增加氮肥施用量,產(chǎn)量隨之增加,稻米品質(zhì)下降,反之,降低氮肥施用量,稻米品質(zhì)改善,產(chǎn)量相應(yīng)下降。遼粳5號(hào)和秋田小町兩品種在對氮肥的需求上有顯著不同,本研究是在統(tǒng)一的施氮水平下開展的研究,可能不利于充分發(fā)揮兩種株型模式的優(yōu)點(diǎn),下一步我們將就不同氮肥水平下中日水稻品種雜交后代株型與產(chǎn)量和米質(zhì)的關(guān)系進(jìn)行深入研究。
參考文獻(xiàn):
[1]楊守仁,張龍步,王進(jìn)民.水稻理想株形育種的理論和方法初論.中國農(nóng)業(yè)科學(xué),1984,(3):6-13.
Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding.SciAgricSin.1984,(3):6-13. (in Chinese with English abstract)
[2]袁隆平.雜交水稻超高產(chǎn)育種.雜交水稻,1997,12(6):1-3.
Yuan L P. Hybrid breeding for super high yield.HybridRice, 1997, 12(6): 1-3. (in Chinese with English abstract)
[3]陳溫福,徐正進(jìn).水稻超高產(chǎn)育種理論與方法.北京:科學(xué)出版社,2007:259-264.
Chen W F, Xu Z J. Theory and method of rice breeding for super high yield. Beijing: Science Press. 2007, 259-264.(in Chinese with English abstract)
[4]鄒江石,呂川根.水稻超高產(chǎn)育種的實(shí)踐與思考.作物學(xué)報(bào), 2005, 31(2): 254-258
Zou J S, Lv C G. Practice and thinking on rice breeding for high yield.ActaAgronSin, 2005, 31(2): 254-258.(in Chinese with English abstract)
[5]徐正進(jìn),陳溫福,張龍步,等.水稻不同穗型群體冠層光分布的比較研究.中國農(nóng)業(yè)科學(xué). 1990,23(4):10-16.
Xu Z J, Chen W F, Zhang L B, et al. Comparative study on light distribution in rice canopies with different panicle type.SciAgriSin. 1990,23(4):10-16. (in Chinese with English abstract)
[6]徐正進(jìn),陳溫福,周洪飛,等.直立穗型水稻群體生理生態(tài)特性及其利用前景.科學(xué)通報(bào),1996,41 (12): 1122-1126.
Xu Z J , Chen W F, Zhou H F, et al. The physiological and ecological characteristics of the erect panicle type rice population and their utilization prospect.SciBull. 1996, 41(12): 1122-1126. (in Chinese with English abstract)
[7]徐正進(jìn),陳溫福,張樹林,等.遼寧水稻穗型指數(shù)品種間差異及其與產(chǎn)量和品質(zhì)的關(guān)系.中國農(nóng)業(yè)科學(xué),2005,38(9): 1926-1930.
Xu Z J , Chen W F, Zhang S L, et al. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning.SciAgriSin,2005,38(9): 1926-1930. (in Chinese with English abstract)
[8]徐正進(jìn),邵國軍,韓勇,等.東北三省水稻產(chǎn)量和品質(zhì)及其與穗部性狀關(guān)系的初步研究.作物學(xué)報(bào), 2006,32 (12): 1878-1883.
Xu Z J, Shao G J, Han Y, et al. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China.ActaAgronSin.2006, 32(12): 1878-1883. (in Chinese with English abstract)
[9]杜永,王艷,王學(xué)紅,等.黃淮地區(qū)不同粳稻品種株型、產(chǎn)量與品質(zhì)的比較分析.作物學(xué)報(bào),2007,33(7): 1079-1085.
Du Y, Wang Y, Wang X H, et al. Comaprisons of plant type, grain yield, and quality of different japonica rice cultivars in Huanghe-Huaihe river area.ActaAgronSin,2007, 33(7): 1079-1085.(in Chinese with English abstract)
[10]馬均,馬文波,明東風(fēng), 等.重穗型水稻株型特性研究. 中國農(nóng)業(yè)科學(xué), 2006, 39(4): 679-685.
Ma J, Ma W B, Ming D F, et al. Studies on the characteristics of rice plant with heavy panicle.SciAgricSin, 2006, 39(4): 679-685.(in Chinese with English abstract)
[11]徐海,朱春杰,郭艷華,等.生態(tài)環(huán)境對秈粳稻雜交后代穗部性狀的影響及其與亞種特性的關(guān)系.中國農(nóng)業(yè)科學(xué),2009,42(5): 1540-1549.
Xu H, Zhu C J, Guo Y H, et al. Effect of ecological environments on panicle traits and its relationship with subspecies characteristics in filial generations of cross between indica and japonica.SciAgricSin, 2009,42(5): 1540-1549. (in Chinese with English abstract)
[12]金峰,王鶴潼,徐海,等.不同生態(tài)區(qū)秈粳稻雜交F2代亞種屬性與株型性狀的特點(diǎn).作物學(xué)報(bào),2013, 39(7): 1240-1247.
Jin F, Wang H T, Xu H, et al. Characteristics of plant type traits and subspecies characteristics in F2generations of cross between indica and japonica rice under different ecological regions.ActaAgronSin.2013, 39(7): 1240-1247. (in Chinese with English abstract)
[13]金峰,徐海,江奕君, 等. 生態(tài)環(huán)境對秈粳交后代株型特性和產(chǎn)量構(gòu)成的影響.中國水稻科學(xué), 2013, 27(1): 49-55.
Jin F, Xu H, Jiang Y J, et al. Effect of ecological environments on plant type traits and yield traits in F2of cross between indica and japonica.ChinJRiceSci, 2013, 27(1): 49-55. (in Chinese with English abstract)
[14]Feng J, Wang H, Xu H, et al. Comparisons of plant-type characteristics and yield components infilial generations of Indica×Japonica crosses grown in different regions in China.FieldCropsRes, 2013, (154): 110-118.
[15]徐正進(jìn),陳溫福,孫占惠,等.遼寧水稻籽粒在穗軸上分布特點(diǎn)及其與結(jié)實(shí)性的關(guān)系.中國農(nóng)業(yè)科學(xué),2004,37(7): 963-967
Xu Z J, Chen W F, Sun Z H,et al. Distribution of rice grain on panicle axis and its relationship with seed setting in liaoning.SciAgriSin,2004,37(7): 963-967.(in Chinese with English abstract)
[16]Li F, Liu W, Tang J, et al. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.CellRes, 2010, 20(7): 838-849.
[17]Wang W, Chu H, Zhang D, et al. Fine mapping and analysis of DWARF TILLER1 in controlling rice architecture.JGenetGenom, 2013, 40(9): 493-495.
[18]Yi X, Zhang Z, Zeng S, et al. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (OryzasativaL.).JGenetGenom, 2011, 38(5): 217-223.
[19]Wu X, Tang D, Li M, et al. Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.PlantPhysiol, 2013, 161(1): 317-329.
[20]Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice.NatGenet, 2009, 41: 494-497.
[21]高繼平,祁澎,林鴻宣.水稻產(chǎn)量數(shù)量性狀的遺傳調(diào)控機(jī)制研究進(jìn)展.中國科學(xué):生命科學(xué), 2013, 43(12): 1007-1015.
Gao J P, Qi P, Lin H X. Advances in regulatory mechanisms of quantitative traits related to rice yield.SciSinVitae, 2013, 43(12): 1007-1015.(in Chinese with English abstract)
[22]徐海,宮彥龍,夏原野,等.中日水稻品種雜交后代株型性狀的變化及其相互關(guān)系. 中國水稻科學(xué), 2015, 29(4):363-372.
Xu H, Gong Y L, Xia Y Y, et al. Variations in plant type traits and their relationship of progeny derived from the cross between Chinese rice variety and Japanese rice variety.ChinJRiceSci. 2015,29(4):363-372.(in Chinese with English abstract)
[23]陳溫福,徐正進(jìn),張龍步,等. 北方粳型稻超高產(chǎn)育種理論與實(shí)踐. 中國農(nóng)業(yè)科學(xué). 2007,40(5):869-874.
Chen W F, Xu Z J, Zhang L B, et al. Theories and practices of breeding japonica rice for super high yield.SciAgricSin. 2007,40(5):869-874. (in Chinese with English abstract)
[24]魏興華,湯圣祥,余漢勇,等. 中國水稻國外引種概況及效益分析.中國水稻科學(xué), 2010, 24(1): 5-11.
Wei X H, Tang S X, Yu H Y, et al. Beneficial analysis on introduced rice germplasm from abroad in China.ChinJRiceSci. 2010, 24(1): 5-11.(in Chinese with English abstract)
[25]張小明,石春海,鮑根良,等.浙江與日本粳稻直鏈淀粉含量的比較. 浙江農(nóng)業(yè)學(xué)報(bào), 2001,13(5):276-280.
Zhang X M, Shi C H, Bao G L, et al. Amylose content comparison of some japonica rice varieties in Zhejiang Province and in Japan.ActaAgricZhejiangensis. 2001,13(5):276- 280.(in Chinese with English abstract)
[26]葉勝海,富田桂,小林麻子,等.浙江粳稻與日本粳稻品種間遺傳差異的SSR分析.浙江農(nóng)業(yè)學(xué)報(bào), 2008,20(6):424-427.
Ye S H, Tomita K, Kobayashi A, et al. Polymorphism analysis of genetic diversity between Zhejiang japonica varieties and Japan japonica varieties by using SSR markers.ActaAgricZhejiangensis, 2008, 20(6):424-427.(in Chinese with English abstract)
[27]華澤田,袁興福,隋國民.北方雜交粳稻遺傳改良與生理基礎(chǔ).沈陽:遼寧科學(xué)技術(shù)出版社,2006:135-141.
Hua Z T, Yuan X F, Sui G M. Genetic improvement and physiological basis of northern japonica hybrid rice. Shenyang: Liaoning Science and Technology Press, 2006:135-141.(in Chinese with English abstract)
[28]Hao X B,Ma X F,He P S. Relationship between plant type and grain quality of Japonica hybrid rice.RiceSci,2010,17(1):43-50.
[29]張子軍,馮永祥,荊彥輝,等.水稻株型與品質(zhì)關(guān)系的研究. 江蘇農(nóng)業(yè)科學(xué),2009,(1): 62-64.
Zhang Z J, Feng Y X, Jing Y H, et al. Study on the relationship between rice plant type and quality.JiangsuAgricSci,2009,1: 62-64.(in Chinese with English abstract)
[30]李曉方,肖昕,劉彥卓,等.秈稻稻米品質(zhì)性狀遺傳特點(diǎn)新解析.分子植物育種,2009,7(6):1077-1083.
Li X F, Xiao X, Liu Y Z, et al. Novel analysis on genetic characters of quality traits in indica rice.MolPlantBreeding,2009,7(6):1077-1083.(in Chinese with English abstract)
[31]王忠,顧蘊(yùn)潔,陳剛,等.稻米的品質(zhì)和影響因素.分子植物育種,2003,1(2):231-241.
Wang Z, Gu Y J, Chen G, et al. Rice quality and its affecting factors.MolPlantBreeding, 2003,1(2):231-241(in Chinese with English abstract)
[32]朱昌蘭,翟虎渠,萬建民.稻米食味品質(zhì)的遺傳和分子生物學(xué)基礎(chǔ)研究.江西農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2002,24(4):454-459.
Zhu C L, Zhai H Q, Wang J M. Progresses in the studies of genetic and molecular bases of eating quality in rice.ActaAgricUnivJiangxiensis, 2002,24(4):454-459. (in Chinese with English abstract)
[33]蔣開鋒,鄭家奎,趙甘霖,等.四川省新育成的雜交水稻組合的品質(zhì)分析.中國水稻科學(xué),2004,18(1):80-82.
Jiang K F, Zheng J K, Zhao G L, et al. Analysis on grain quality of new hybrid rice combinations in sichuan province.ChinJRiceScience, 2004, 18(1): 80-82. (in Chinese with English abstract)
Relation of Plant Type Traits with Yield and Quality in the RIL Population Derived from Cross Between Chinese Rice Variety and Japanese Rice Variety
XU Hai, GONG Yan-long, XIA Yuan-ye, DU Zhi-min, YAN Zhi-qiang, WANG Hua-jie, CHEN Wen-fu,XU Zheng-jin*
(InstituteofRiceResearch,ShenyangAgriculturalUniversity/KeyLaboratoryofNortheastRiceBiologyandBreeding,MinistryofAgriculture/KeyLaboratoryofNorthernJaponicaSuperRiceBreeding,MinistryofEducation/KeyLaboratoryofNorthernJaponicaGeneticsandBreedingofLiaoningProvince,Shenyang110866,China;*Corresponding author,E-mail: xuzhengjin@126.com)
XU Hai, GONG Yanlong, XIA Yuanye, et al. Relation of plant type traits with yield and quality in the RIL population derived from cross between Chinese rice variety and japanese rice variety. Chin J Rice Sci, 2016, 30(3): 283-290.
Abstract:The F9 recombinant inbreed lines population (RIL population) derived from the cross between Liaojing 5, the most representative rice variety with erect panicle type in the northeast of China, and Akita Komachi, the famous rice varieties with curved panicle type and good quality in Japan, were constructed through single seed descent method to study the variation of plant type traits and their relation with rice yield and quality in the hybrid progenies of cross between typical Chinese rice variety and Japanese rice variety. The results showed that segregation and recombination occurred in plant-type, yield and quality traits in the RIL population. Plant height, the length of top third and fourth internodes and the leaf angle and yield were significantly positively correlated. The higher the plant height, the greater the degree of curve of the panicle, and the narrower the three top leaves, the better processing quality and appearance quality. The correlation between taste value and the vast majority of plant type traits was not significant, and only the width of top third leaf, the number of secondary rachis branches and grain density were negatively significantly correlated with taste value. Further analysis of the relation between grain yield and quality revealed that higher yield led to higher head milled rice rate, but worse taste. The plant type traits and yield and quality characters were closely related, despite the yield and taste value were difficult to unity, a tiny fraction of lines with high yield and good taste could be found in the RIL population. The lines with high yield and good taste mainly featured long panicle and top internode.
Key words:rice; plant-type; yield; quality
DOI:10.16819/j.1001-7216.2016.5174
收稿日期:2015-11-25; 修改稿收到日期: 2016-02-04。
基金項(xiàng)目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-01-01A);遼寧省科技廳北方粳稻育種與生產(chǎn)技術(shù)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(201404235);遼寧省教育廳科學(xué)研究一般項(xiàng)目(L2013257)。
中圖分類號(hào):S511.0351
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1001-7216(2016)03-0283-08
中國水稻科學(xué)(Chin J Rice Sci),2016,30(3):283-290
http://www.ricesci.cn