金洪國(guó),周敏,金美玉,寇雪蓮,何松彬,唐維國(guó)(溫州醫(yī)科大學(xué)附屬舟山醫(yī)院 神經(jīng)內(nèi)科,浙江 舟山 316021)
?
缺氧條件下RhoA/Rho激酶及eNOS在血管內(nèi)皮細(xì)胞表達(dá)的研究
金洪國(guó),周敏,金美玉,寇雪蓮,何松彬,唐維國(guó)
(溫州醫(yī)科大學(xué)附屬舟山醫(yī)院 神經(jīng)內(nèi)科,浙江 舟山 316021)
[摘 要]目的:建立穩(wěn)定的體外細(xì)胞缺氧模型,探討人體臍靜脈內(nèi)皮細(xì)胞(HUVEC)在缺氧條件下RhoA蛋白和Rho激酶對(duì)其內(nèi)皮細(xì)胞內(nèi)皮型一氧化氮合酶(eNOS)表達(dá)的影響。方法:利用jetPEI-HUVEC、siRNA分別轉(zhuǎn)染SH-SY5Y細(xì)胞、HEK293細(xì)胞和HUVEC后制備體外細(xì)胞缺氧模型,通過細(xì)胞裂解對(duì)相關(guān)蛋白進(jìn)行免疫印跡分析。結(jié)果:常氧條件下RhoA蛋白在HUVEC中表達(dá)水平較低,但在缺氧條件下培育5 h后表達(dá)增加,同時(shí)缺氧3 h后Rho激酶表達(dá)增加,5 h后達(dá)高峰,而eNOS的表達(dá)恰恰相反。缺氧條件下,活化型RhoA蛋白下調(diào)eNOS的表達(dá),而siRNA使RhoA蛋白表達(dá)減少?gòu)亩险{(diào)eNOS的表達(dá);Rho結(jié)合域抑制Rho激酶活性而上調(diào)eNOS的表達(dá)。結(jié)論:RhoA蛋白和Rho激酶的表達(dá)及活化抑制內(nèi)皮細(xì)胞中eNOS的表達(dá),因此可以通過某些藥物如他汀類或Rho激酶抑制劑,抑制RhoA蛋白和Rho激酶的活性,從而增加eNOS的表達(dá)水平,對(duì)心腦血管疾病產(chǎn)生保護(hù)作用。
[關(guān)鍵詞]Rho激酶;內(nèi)皮型一氧化氮合酶;內(nèi)皮細(xì)胞;RhoA;siRNA
近年的研究提示小G蛋白R(shí)hoA在血管的各種細(xì)胞功能調(diào)控中起著重要的作用。ROCK2是RhoA的下游效應(yīng)分子之一,是一種絲氨酸/蘇氨酸蛋白激酶,與RhoA-GTP結(jié)合時(shí)即可被激活[1]。Rho激酶調(diào)節(jié)應(yīng)力纖維形成,介導(dǎo)平滑肌細(xì)胞收縮、增殖和遷移[2]。最近有研究發(fā)現(xiàn)Rho激酶參與腦和冠狀動(dòng)脈痙攣[3-4]、高血壓?。?]、血管炎癥與重塑[6],以及動(dòng)脈粥樣硬化[7]的發(fā)生。在血管內(nèi)皮細(xì)胞,L-精氨酸在內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)氧化催化作用下生成一氧化氮(NO)。NO不僅可以維持血管的正常狀態(tài)和完整性,在調(diào)節(jié)血管張力和腦血流量方面也起著重要作用[8-9]。因此,提高eNOS表達(dá),提升NO水平對(duì)腦血管疾病產(chǎn)生有益的影響[8,10-11]。Rho激酶可以下調(diào)eNOS的表達(dá),影響NO的生成[12-13]。RhoA/Rho激酶調(diào)節(jié)eNOS表達(dá)的相關(guān)機(jī)制尚未見報(bào)道。本研究通過分子生物學(xué)方法,揭示缺氧條件下RhoA/Rho激酶調(diào)節(jié)eNOS在血管內(nèi)皮細(xì)胞表達(dá)的相關(guān)機(jī)制。
1.1材料 SH-SY5Y細(xì)胞和HEK293細(xì)胞[美國(guó)典型培養(yǎng)物細(xì)胞庫(kù)(American Type Culture)]培養(yǎng)在含有10%胎牛血清(FBS),100 U/mL青霉素和100 μg/mL鏈霉素的Dulbecco改良的Eagle氏培養(yǎng)基中。3種人體臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells,HUVEC)細(xì)胞系(Kurabo公司,日本大阪)培育在Hu-media EB2(Kurabo公司)媒介質(zhì)液中,內(nèi)添2% FBS、10 ng/mL的人表皮生長(zhǎng)因子、1 μg/mL氫化可的松、5 ng/mL人成纖維細(xì)胞生長(zhǎng)因子β、10 μg/mL肝素、50 μg/mL慶大霉素和50 ng/mL兩性霉素B。將細(xì)胞培育在37 ℃、5% CO2的培養(yǎng)箱中直到缺氧。
1.2試劑 Myc抗體、RhoA抗體、抗α-微管蛋白抗體、抗兔IgG-HRP(美國(guó)Santa Cruz公司);抗Rho/ ROCK2抗體、抗ROKβ/ROCK1抗體和抗eNOS抗體(美國(guó)Palo Alto公司);活化型RhoA的表達(dá)載體(pEFBOS-HA-RhoG14V)、完整的Rho激酶(pEF-BOS-Myc/Rho激酶)、活化型Rho激酶(CAT)、Rho結(jié)合域(RB)(日本名古屋大學(xué)Kozo Kaibuchi教授提供);轉(zhuǎn)染試劑jetPEI-HUVEC(法國(guó)伊爾基希大學(xué)提供)。
1.3方法
1.3.1細(xì)胞轉(zhuǎn)染:①DNA轉(zhuǎn)染:轉(zhuǎn)染前1 d,把計(jì)數(shù)1.5×105的HUVEC鋪板在35 mm的細(xì)胞培養(yǎng)基中;對(duì)于每孔細(xì)胞,使用100 μL的0.9%氯化鈉溶液稀釋6 μg DNA;對(duì)于每孔細(xì)胞,使用100 μL 0.9%氯化鈉溶液稀釋12 μL轉(zhuǎn)染試劑jetPEITM-HUVEC;混合稀釋的DNA和稀釋的jetPEITM-HUVEC充分混勻形成轉(zhuǎn)染復(fù)合物;直接將復(fù)合物加入到每孔中,搖動(dòng)培養(yǎng)板輕輕混勻;在37 ℃、5% CO2中保溫4 h后更換生長(zhǎng)培養(yǎng)基,再溫育24 h。②siRNA轉(zhuǎn)染:轉(zhuǎn)染前1 d,把計(jì)數(shù)3×105的HUVEC鋪板在35 mm的細(xì)胞培養(yǎng)基中;對(duì)于每孔細(xì)胞,使用175 μL的OptiMEM稀釋375 pmol siRNA;對(duì)于每孔細(xì)胞,使用17 μL的OptiMEM稀釋8 μL脂質(zhì)體;混合稀釋的siRNA和稀釋的脂質(zhì)體充分混勻形成轉(zhuǎn)染復(fù)合物;直接將復(fù)合物加入到每孔中,搖動(dòng)培養(yǎng)板輕輕混勻;在37 ℃、5% CO2中保溫4 h,然后在500 μL含2% FBS的培養(yǎng)基中再溫育24 h。
1.3.2建立缺氧模型[14]:缺氧誘導(dǎo)前24 h,將轉(zhuǎn)染后的細(xì)胞接種在37 ℃、5% CO2、35 mm的培養(yǎng)基中。24 h后培養(yǎng)基換成厭氧培養(yǎng)基,將細(xì)胞置于37 ℃,N295%、CO25%的可控厭氧室中,厭氧室中的O2濃度用氧傳感器監(jiān)測(cè)且維持在低于1%。
1.3.3免疫印跡:在規(guī)定的時(shí)間內(nèi)使細(xì)胞缺氧后,用冰冷的PBS洗滌細(xì)胞,轉(zhuǎn)移至冰冷的含蛋白酶抑制劑(1 mmol/L苯甲基磺酰氟,10 μg/mL抑肽酶,10 μg/mL亮抑蛋白肽酶)的細(xì)胞裂解液(1%乙基苯基聚乙二醇,50 mmol/L三羥甲基氨基甲烷,pH=7.4,10%甘油,150 mmol/L 0.9%氯化鈉溶液,1 mmol/L的EDTA,pH=8.0)中,進(jìn)行免疫印跡[15]。用蛋白質(zhì)測(cè)定試劑盒(美國(guó)加州海格立斯,Bio-Rad公司)檢測(cè)裂解液中蛋白含量,細(xì)胞裂解液用樣品緩沖液混合。取1 μg細(xì)胞總蛋白行聚丙烯酰胺凝膠電泳,然后轉(zhuǎn)移到硝酸纖維素膜上,封閉后加入RhoA抗體(1∶1 000)、ROCK2抗體、抗eNOS抗體(1∶1 000)、抗α-微管蛋白抗體(1∶1 000)、或抗Myc抗體(1∶1 000)孵育;放置一定時(shí)間后棄一抗,洗膜后加入抗兔IgG-HRP(1∶5 000);一定時(shí)間后棄二抗,洗膜后加入顯色液,用NIH圖像處理系統(tǒng)分析目標(biāo)帶的分子量和凈光密度值[12,14]。
1.4統(tǒng)計(jì)學(xué)處理方法 采用SPSS16.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。計(jì)量資料用±s表示,組間比較用單因素方差分析進(jìn)行分析;計(jì)數(shù)資料用Fisher精確概率法檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1缺氧對(duì)RhoA蛋白的影響 將人體不同組織來源的細(xì)胞系暴露于缺氧環(huán)境中,人表皮細(xì)胞系HEK293、神經(jīng)元細(xì)胞系SH-SY5Y和人內(nèi)皮細(xì)胞系HUVEC在常氧條件下培育24 h后置于厭氧室,把培養(yǎng)基換成厭氧培養(yǎng)基。在規(guī)定的時(shí)間內(nèi)使細(xì)胞缺氧后,裂解細(xì)胞,進(jìn)行免疫印跡。結(jié)果發(fā)現(xiàn)在常氧條件下HEK293細(xì)胞和SH-SY5Y細(xì)胞中可以檢測(cè)到RhoA蛋白(見圖1A),而HUVEC中RhoA蛋白表達(dá)水平較低;隨著缺氧時(shí)間的延長(zhǎng),前兩者RhoA蛋白表達(dá)逐漸減少(見圖1A),而后者的表達(dá)逐漸增加(見圖1B),作為基數(shù)對(duì)照[12]的α-微管蛋白表達(dá)水平在缺氧24 h后也無明顯變化(見圖1A)。對(duì)HUVEC中的RhoA蛋白用NIH圖像處理系統(tǒng)進(jìn)行分析,結(jié)果發(fā)現(xiàn)在相同的時(shí)間點(diǎn)RhoA蛋白表達(dá)水平比內(nèi)參多,且RhoA蛋白的表達(dá)在缺氧5 h后顯著增加(見圖1C)。缺氧條件下不同組織來源的細(xì)胞RhoA蛋白表達(dá)模式不同,內(nèi)皮細(xì)胞系與其他2個(gè)細(xì)胞系相比表現(xiàn)出不同的特點(diǎn)。
2.2缺氧對(duì)Rho激酶的影響 RhoA的下游效應(yīng)分子之一ROCK2是一種絲氨酸/蘇氨酸激酶[15],與RhoAGTP結(jié)合后即可被激活[16]。缺氧時(shí)HUVEC中RhoA蛋白表達(dá)水平增加,缺氧3 h后檢測(cè)到Rho激酶(圖1B),5 h后顯著增加(見圖1C)。ROCKs的另一種亞型ROKβ/ROCK1,在缺氧條件下也具有類似的表達(dá)模式。
2.3缺氧對(duì)eNOS的影響 eNOS的表達(dá)能調(diào)節(jié)血管內(nèi)皮功能,因此在缺氧條件下也對(duì)其進(jìn)行了研究。eNOS表達(dá)在缺氧3 h后才會(huì)發(fā)生改變,隨著時(shí)間的延長(zhǎng)逐漸下降(見圖1C),與既往研究發(fā)現(xiàn)缺氧誘導(dǎo)eNOS蛋白表達(dá)水平下降的結(jié)果一致[13]。
圖1 缺氧對(duì)不同來源細(xì)胞RhoA蛋白的影響
2.4缺氧條件下RhoA蛋白對(duì)eNOS的影響 用空載體(對(duì)照組)或活化型RhoA(RhoAG14V)的表達(dá)載體轉(zhuǎn)染HUVEC。轉(zhuǎn)染24 h后,將細(xì)胞置于常氧或缺氧條件下5 h,裂解細(xì)胞并進(jìn)行免疫印跡,蛋白質(zhì)表達(dá)水平以α-微管蛋白作為內(nèi)參。缺氧條件下eNOS蛋白水平低于常氧條件(見圖2A),與在圖1B和1C中的結(jié)果相似。已有研究結(jié)果發(fā)現(xiàn)在哺乳動(dòng)物細(xì)胞中,RhoAG14V可以激活Rho激酶[17]。在缺氧條件下,與用空載體轉(zhuǎn)染的對(duì)照組細(xì)胞相比,用RhoAG14V表達(dá)載體轉(zhuǎn)染的細(xì)胞eNOS表達(dá)水平明顯下降(見圖2A)。與對(duì)照組比,常氧條件下2組差異沒有統(tǒng)計(jì)學(xué)意義(P>0.05),但用RhoAG14V表達(dá)載體轉(zhuǎn)染的細(xì)胞eNOS表達(dá)水平也呈現(xiàn)下降趨勢(shì)。
2.5RhoA蛋白對(duì)eNOS的影響 用非特異性siRNA(對(duì)照組)或RhoA siRNA轉(zhuǎn)染HUVEC,24 h后將細(xì)胞在常氧或缺氧條件下培育5 h,然后用相同的方法進(jìn)行免疫印跡。RhoA siRNA的轉(zhuǎn)染可以明顯抑制細(xì)胞中RhoA蛋白表達(dá)[18]。在缺氧條件下內(nèi)皮細(xì)胞系eNOS的表達(dá)水平要比在常氧條件下低(見圖2B),與對(duì)照組相比,在缺氧條件下抑制RhoA蛋白表達(dá)可以明顯上調(diào)eNOS的表達(dá)(見圖2B)。在常氧條件下2組差異無統(tǒng)計(jì)學(xué)意義(P>0.05),但抑制RhoA蛋白表達(dá)后eNOS蛋白表達(dá)水平呈現(xiàn)上升趨勢(shì)。
圖2 缺氧條件下RhoA蛋白對(duì)eNOS的影響
2.6缺氧條件下Rho激酶對(duì)eNOS的影響 通過阻止Rho激酶與RhoA結(jié)合而抑制內(nèi)源性Rho激酶的活性(見圖3A)。用圖2的方法將細(xì)胞置于常氧或缺氧條件下5 h,Rho激酶表達(dá)載體轉(zhuǎn)染的細(xì)胞,無論缺氧與否均可檢測(cè)到Rho激酶(見圖3B)。常氧條件下內(nèi)源性Rho激酶幾乎檢測(cè)不到,而在缺氧條件下可以檢測(cè)到(見圖3B)。在缺氧和常氧條件下Rho結(jié)合域(RB)表達(dá)時(shí)eNOS表達(dá)水平明顯增加(見圖3C)。在常氧條件下,表達(dá)活性型Rho激酶(CAT)的細(xì)胞eNOS的表達(dá)呈現(xiàn)下降趨勢(shì),而在缺氧條件下,與對(duì)照組相比eNOS的表達(dá)明顯下降(見圖3C)。在常氧條件下表達(dá)Rho激酶的細(xì)胞中,eNOS蛋白表達(dá)與對(duì)照組類似,而在缺氧條件下呈現(xiàn)出下降趨勢(shì)。
圖3 Rho激酶一級(jí)結(jié)構(gòu)示意圖及Rho激酶對(duì)eNOS的影響
目前的研究結(jié)果表明,缺氧可以誘導(dǎo)內(nèi)皮細(xì)胞系RhoA蛋白和Rho激酶水平上調(diào)從而抑制eNOS的表達(dá),具體機(jī)制可能是由于在缺氧條件下,細(xì)胞能量耗竭,抑制需要ATP的泛素-蛋白酶體途徑,從而抑制RhoA蛋白和Rho激酶的降解,增加一氧化氮合酶的活性,抑制血管收縮[19-20]。本研究中,定量分析結(jié)果發(fā)現(xiàn),eNOS表達(dá)在缺氧5 h后顯著減少。內(nèi)皮細(xì)胞系RhoA/Rho激酶與eNOS的表達(dá)對(duì)缺氧的反應(yīng)呈現(xiàn)相反的趨勢(shì)。在缺氧條件下RhoA蛋白的表達(dá)對(duì)eNOS的表達(dá)起著負(fù)調(diào)控作用,在內(nèi)皮細(xì)胞系缺氧誘導(dǎo)RhoA蛋白表達(dá)增加而eNOS表達(dá)減少,兩者間有相互關(guān)聯(lián)。在缺氧條件下,內(nèi)皮細(xì)胞系RhoA蛋白的活性和表達(dá)可能會(huì)抑制eNOS表達(dá)。缺氧可以增加內(nèi)源性RhoA蛋白的水平,且不受外源性RhoAG14V表達(dá)的影響。在常氧條件下無法檢測(cè)到RhoA的下游效應(yīng)分子Rho激酶,而在缺氧條件下Rho激酶與RhoA具有協(xié)同作用。
據(jù)報(bào)道,HMG-CoA還原酶抑制劑他汀類藥物,通過抑制eNOS的mRNA表達(dá),使RhoA蛋白的異戊二烯化作用受到抑制,在缺氧條件下減少eNOS的表達(dá)水平和活性[21]。與他汀類藥物類似,在缺氧條件下Rho激酶抑制劑逆轉(zhuǎn)eNOS表達(dá)[13]。Rho激酶抑制劑法舒地爾增加eNOS表達(dá),從而增加eNOS活性和NO的生成[12,22]。既然RhoA蛋白和Rho激酶的表達(dá)及活化可以抑制內(nèi)皮細(xì)胞eNOS的表達(dá),那么可以嘗試著通過某些藥物下調(diào)RhoA蛋白和Rho激酶的活性,從而上調(diào)eNOS的表達(dá)水平,對(duì)心腦血管疾病產(chǎn)生保護(hù)作用。
參考文獻(xiàn):
[1]FEHéR A,LAJKó D B. Signals fly when kinases meet Rhoof-plants (ROP) small G-proteins[J]. Plant Sci,2015,237: 93-107.
[2]AMIN E,DUBEY B N,ZHANG S C,et al. Rho-kinase: regulation,(dys)function,and inhibition[J]. Biol Chem,2013,394(11): 1399-1410.
[3]SATOH S,TAKAYASU M,KAWASAKI K,et al. Antivasospastic effects of hydroxyfasudil,a Rho-kinase inhibitor,after subarachnoid hemorrhage[J]. J Pharmacol Sci,2012,118 (1): 92-98.
[4]NARAOKA M,MUNAKATA A,MATSUDA N,et al. Suppression of the Rho/Rho-kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit[J]. Transl Stroke Res,2013,4(3): 368-374.
[5]LOIRAND G,PACAUD P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension[J]. Small GTPases,2014,5(4): 1-10.
[6]SHIMOKAWA H,SATOH K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine[J]. Arterioscler Thromb Vasc Biol,2015,35(8): 1756-1769.
[7]DONG M,JIANG X,LIAO J K,et al. Elevated rho-kinase activity as a marker indicating atherosclerosis and inflammation burden in polyvascular disease patients with concomitant coronary and peripheral arterial disease[J]. Clin Cardiol,2013,36(6): 347-351.
[8]LE GAL L,ALONSO F,MAZZOLAI L,et al. Interplay between connexin40 and nitric oxide signaling during hypertension[J]. Hypertension,2015,65(4): 910-915.
[9]LIU H,LI J,ZHAO F,et al. Nitric oxide synthase in hypoxic or ischemic brain injury[J]. Rev Neurosci,2015,26(1): 105-117.
[10]GARCIA-BONILLA L,MOORE J M,RACCHUMI G,et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice[J]. J Immunol,2014,193(5): 2531-2537.
[11]WRAY D W,WITMAN M A,IVES S J,et al. Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans[J]. Am J Physiol Heart Circ Physiol,2011,300(3): H1101-1107.
[12]FENG Y,LOGRASSO P V,DEFERT O,et al. Rho kinase (ROCK) inhibitors and their therapeutic potential[J]. J Med Chem,2016,59(6): 2269-2300.
[13]NODA K,GODO S,SAITO H,et al. Opposing roles of nitric oxide and rho-kinase in lipid metabolism in mice[J]. Tohoku J Exp Med,2015,235(3): 171-183.
[14]KANEKO Y,TAJIRI N,SHOJO H,et al. Oxygen-glucosedeprived rat primary neural cells exhibit DJ-1 translocation into healthy mitochondria: a potent stroke therapeutic target [J]. CNS Neurosci Ther,2014,20(3): 275-281.
[15]ALVAREZ-CASTELAO B,CASTA?O J G. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome[J]. Cell Mol Life Sci,2011,68(15): 2643-2654.
[16]LIAO Y C,LIU P Y,LIN H F,et al. Two functional polymorphisms of ROCK2 enhance arterial stiffening through inhibiting its activity and expression[J]. J Mol Cell Cardiol,2015,79: 180-186.
[17]GUAN R,XU X,CHEN M,et al. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors[J]. Eur J Med Chem,2013,70: 613-622.
[18]ABRAHAM S,SCARCIA M,BAGSHAW R D,et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis [J]. Nat Commun,2015,6: 7286.
[19]DENNIFF M,TURRELL H E,VANEZIS A,et al. The timeof-day variation in vascular smooth muscle contractility depends on a nitric oxide signalling pathway[J]. J Mol Cell Cardiol,2014,66: 133-140.
[20]ODAGIRI K,WATANABE H. Effects of the Rho-kinase inhibitor,fasudil,on pulmonary hypertension[J]. Circ J,2015,79(6): 1213-1214.
[21]DI LORENZO A,LIN M I,MURATA T,et al. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases [J]. J Cell Sci,2013,126(Pt24): 5541-5552.
[22]顧玲佳,倪連松. 法舒地爾對(duì)高糖培養(yǎng)腎小管上皮細(xì)胞增殖和纖維化的影響[J]. 溫州醫(yī)科大學(xué)學(xué)報(bào),2014,44(10):723-726.
(本文編輯:吳彬)
Study on the expression of RhoA/Rho-kinase and eNOS in vascular endothelial cells under hypoxic condi-tion
JIN Hongguo,ZHOU Min,JIN Meiyu,KOU Xuelian,HE Songbin,TANG Weiguo. Department of Neurology,Zhoushan Hospital Affiliated to Wenzhou Medical University,Zhoushan,316021
Abstract:Objective: To establish stable hypoxic model in vitro and to explore the effect of RhoA protein/ Rho-kinase in human umbilical vein endothelial cell,(HUVEC) on eNOS expression of its endothelial cell under hypoxic condition. Methods: SH-SY5Y cells,HEK293 cells and HUVEC were respectively transfected using jet-PEI-HUVEC and siRNA to prepare cellular hypoxic model,the Western blotting analysis was preformed for the related proteins through cellular lysis. Results: RhoA protein levels in HUVEC were low under normoxic conditions,but were significantly increased after 5 h of hypoxia. Endothelial Rho-kinase expression was not detected until 3 h of hypoxia; such expression remained significantly increased after 5 h. On the other hand,endothelial eNOS expression was similar after 3 h of hypoxia,but was significantly decreased after 5 h. The hypoxiainduced decrease in eNOS expression was significantly enhanced by expression of the constitutively active form of RhoA and significantly inhibited by suppression of RhoA expression by small interfering RNA. The hypoxiainduced decrease in eNOS expression was significantly inhibited when endogenous Rho-kinase activation was inhibited by Rho-binding domain expression. Conclusion: Expression and activation of RhoA and Rho-kinase inhibit eNOS expression in endothelial cells,attempts to down-regulate RhoA and Rho-kinase by multiple drugs,such as statins or Rho-kinase inhibitors,might provide endothelial and cardiovascular benefits through upregulation of eNOS.
Key words:Rho-kinase; eNOS; endothelial cell; RhoA; siRNA
通信作者:唐維國(guó),主任醫(yī)師,Email:tangweiguo2003@163. com。
作者簡(jiǎn)介:金洪國(guó)(1974-),男,吉林延邊人,副主任醫(yī)師,博士。
基金項(xiàng)目:浙江省醫(yī)藥衛(wèi)生一般研究計(jì)劃項(xiàng)目(2015KYA227)。
收稿日期:2016-01-15
[中圖分類號(hào)]R743.9
[文獻(xiàn)標(biāo)志碼]A
DOI:10.3969/j.issn.2095-9400.2016.05.002
溫州醫(yī)科大學(xué)學(xué)報(bào)2016年5期