張 理 濤
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
?
解鞍點(diǎn)問題的新SOR類迭代法的一個(gè)注記
張 理 濤
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
摘要:最近ZHENG等提出了新的SOR類(NSOR-Like)迭代法,研究了NSOR-類迭代矩陣特征值的性質(zhì). 基于NSOR類迭代法,提出了一種改進(jìn)的NSOR類(INSOR-Like)迭代法,并分析了相應(yīng)方法的收斂性. 此改進(jìn)的NSOR類(INSOR-Like)迭代法是NSOR類迭代法的推廣.
關(guān)鍵詞:鞍點(diǎn)問題;SOR類迭代法;收斂性
0引言
考慮如下鞍點(diǎn)問題
(1)
其中,A∈Rm×m是對(duì)稱正定矩陣,B∈Rm×n是列滿秩矩陣,b∈Rm和q∈Rn是已知給定的向量,且m≥n.
鞍點(diǎn)問題(1)常出現(xiàn)在許多不同的科學(xué)計(jì)算應(yīng)用中,譬如約束優(yōu)化問題[1]、求解Navier-Stokes方程的有限元法[2-4]以及限制最小二乘問題和廣義最小二乘問題[1-8].最近有大量文獻(xiàn)研究求解廣義鞍點(diǎn)問題(1).文獻(xiàn)[6]研究求解廣義鞍點(diǎn)問題A=I時(shí)的預(yù)處理迭代法. 文獻(xiàn)[7-8]提出了幾種類型的SOR迭代法和預(yù)處理的共軛梯度法,求解問題都來源于廣義最小二乘離散得到的廣義鞍點(diǎn),且系數(shù)矩陣A是對(duì)稱半正定的,B是秩虧矩陣. 對(duì)于每次迭代步,SOR類迭代法比其他方法要求的計(jì)算量相對(duì)較少,但是為了取得良好的收斂速度,須選擇一個(gè)最優(yōu)的迭代參數(shù). 因此,文獻(xiàn)[9]提出了SOR類迭代法. 文獻(xiàn)[10]研究了SSOR迭代法. 文獻(xiàn)[11-14]設(shè)計(jì)了GSOR迭代法、參數(shù)Uzawa(PU)和不精確的參數(shù)Uzawa(PIU)迭代法. 文獻(xiàn)[15]研究了廣義對(duì)稱SOR迭代法. 文獻(xiàn)[16]研究了非對(duì)稱塊超松弛類迭代法. 文獻(xiàn)[17-22]提出了分裂迭代法,譬如埃爾米特和反埃爾米特分裂(HSS)迭代格式,以及相應(yīng)的預(yù)處理變形;Krylov子空間迭代法,譬如預(yù)處理共軛梯度法(PCG)、預(yù)處理MINRES(PMINRES)和限制預(yù)處理共軛梯度法(RPCG);還提出了和預(yù)處理技術(shù)相關(guān)的Krylov子空間迭代法,譬如HSS、塊對(duì)角、塊三角和限制預(yù)處理技術(shù)等. 文獻(xiàn)[13,22]研究了與松弛分裂迭代法相關(guān)的廣義方法. 文獻(xiàn)[23]設(shè)計(jì)了改進(jìn)的SSOR(MSSOR)迭代法. 文獻(xiàn)[24-25]確立了一種廣義的MSSOR(GMSSOR)迭代法,并且分析了相應(yīng)方法的收斂性. 文獻(xiàn)[26]研究了廣義定常迭代法(GSI)的收斂性. 最近,文獻(xiàn)[27]提出了新SOR類(NSOR-Like)迭代法,并且研究了NSOR類法迭代矩陣特征值的性質(zhì).
本文設(shè)計(jì)了求解廣義鞍點(diǎn)問題的一種改進(jìn)的NSOR類(INSOR-Like)迭代法,并分析了相應(yīng)方法的收斂性.
1改進(jìn)的NSOR類迭代法
為方便起見,文獻(xiàn)[9]把鞍點(diǎn)問題(1)重寫為
(2)
最近,文獻(xiàn)[27]針對(duì)廣義鞍點(diǎn)問題(1)的系數(shù)矩陣,給出了如下分裂:
(3)
這里,Q1∈Rm×m,Q2∈Rn×n,α,β∈[0,1],滿足A+Q1非奇異,Q2對(duì)稱正定且α+β=1.
基于上面的分裂,采用松弛技術(shù),設(shè)計(jì)了如下的分裂:
其中,
(4)
(5)
令Q1∈Rm×m,Q2∈Rn×n,ξ是一個(gè)合適的參數(shù),滿足A+ξQ1非奇異、Q2對(duì)稱正定. 給定初始向量x(0)∈Rm和y(0)∈Rn,且4個(gè)松弛參數(shù)ω≠0,τ≠0,ξ,α>0滿足ατ≠1.對(duì)于k=0,1,2,…計(jì)算下列迭代格式:
直到迭代序列{((xk)T,(yk)T)T}收斂.
注記1當(dāng)Q1=0,α=0(β=1),τ=ω,ξ=1時(shí),INSOR類迭代法就變?yōu)镾OR類迭代法[9];當(dāng)Q1=0,τ=ω,ξ=1時(shí),INSOR類迭代法就變?yōu)閺V義SOR類迭代法[28];當(dāng)Q1=0,α=0(β=1),ξ=1時(shí),INSOR類迭代法就變?yōu)閰?shù)Uzawa迭代法[12,14].當(dāng)ξ=1時(shí),INSOR類迭代法就變?yōu)镹SOR類迭代法[27].因此,INSOR類迭代法是這些方法的推廣. 而且,當(dāng)選取合適的參數(shù)時(shí),INSOR類迭代法將有更好的收斂速度.
2INSOR類迭代法的收斂性
基于NSOR類迭代法并采用與文獻(xiàn)[27]中定理3.1相似的證明過程,可以得到如下收斂定理.
定理1令Q1∈Rm×m,Q2∈Rn×n,α,ξ是2個(gè)實(shí)數(shù),滿足A+ξQ1非奇異、Q2對(duì)稱正定和B∈Rm×m列滿秩. 且4個(gè)松弛參數(shù)ω≠0,τ≠0,ξ,α>0滿足ατ≠1.假定λ是迭代矩陣HINSOR的一個(gè)特征值,z=(u*,v*)∈Cm+n是2個(gè)復(fù)向量u∈Cm和v∈Cn的特征向量. 定義
(6)
則λ滿足如下二次方程:
(7)
證明假定λ是迭代矩陣HINSOR的一個(gè)特征值,z=(u*,v*)∈Cn+m是2個(gè)復(fù)向量u∈Cm和v∈Cn的特征向量.則有
(8)
得到
(9)
由文獻(xiàn)[27]引理3.1,得到λ≠1. 由式(9)的第2個(gè)方程得
代入式(9)的第1個(gè)方程,則有
(1-λ)Au + (1-λ)ξQ1u-ωAu=
等價(jià)于
-(λ-1)2Au-ξ(λ-1)2Q1u-ω(λ-1)Au=
由引理1,得到u≠0,因此有u*Au≠0.上式方程兩邊先乘u*再除u*Au,易知λ是二次方程式(7)的根.
定理2令Q1∈Rm×m,Q2∈Rn×n,α,ξ是2個(gè)實(shí)數(shù),滿足A+ξQ1非奇異、Q2對(duì)稱正定和B∈Rm×m列滿秩. 且4個(gè)松弛參數(shù)ω≠0,τ≠0,ξ,α>0滿足ατ≠1.假定λ是迭代矩陣HINSOR的一個(gè)特征值,z=(u*,v*)∈Cm+n是2個(gè)復(fù)向量u∈Cm和v∈Cn的特征向量.η和γ由式(6)定義,且η是實(shí)數(shù). 假定參數(shù)ω,γ,τ滿足
0<ω<2(1+ξηmin),
1+ηmin>0.
(10)
則INSOR迭代法收斂.
證明由定理1易知,λ滿足二次方程式(7),即滿足
(11)
(12)
類似文獻(xiàn)[27]定理3.2的證明,可直接得到定理2的結(jié)論.
參考文獻(xiàn)(References):
[1]WRIGHT S. Stability of augmented system factorizations in interior-point methods[J]. SIAM J Matrix Anal Appl,1997,18:191-222.
[2]ELMAN H , SILVESTER D. Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations[J]. SIAM J Sci Comput,1996,17:33-46.
[3]ELMAN H, GOLUB G H. Inexact and preconditioned Uzawa algorithms for saddle point problems[J]. SIAM J Numer Anal,1994,31:1645-1661.
[4]FISCHER B, RAMAGE A, SILVESTER D J, et al. Minimum residual methods for augmented systems[J]. BIT,1998,38:527-543.
[5]ARIOLI M , DUFF I S , de RIJK P P M. On the augmented system approach to sparse least-squares problems[J]. Numer Math,1989,55:667-684.
[6]SANTOS C H , SILVA B P B , YUAN J Y . Block SOR methods for rank deficient least squares problems[J]. J Comput Appl Math,1998,100:1-9.
[7]YUAN J Y. Numerical methods for generalized least squares problems[J]. J Comput Appl Math,1996,66:571-584.
[8]YUAN J Y, IUSEM A N . Preconditioned conjugate gradient method for generalized least squares problems[J]. J Comput Appl Math,1996,71:287-297.
[9]GOLUB H , WU X, YUAN J Y.SOR-like methods for augmented systems[J]. BIT,2001,41:71-85.
[10]DARVISHIM T ,HESSARI P . Symmetric SOR method for augmented systems[J]. Appl Math Comput,2006,183:409-415.
[11]BAI Z Z, PARLETT B N, WANG Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer Math,2005,102:1-38.
[12]BAI Z Z, WANG Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl,2008,428:2900-2932.
[13]CHEN F, JIANG Y L. A generalization of the inexact parameterized Uzawa methods for saddle point problems[J]. Appl Math Comput,2008,206:765-771.
[14]ZHENG B, BAI Z Z, YANG X. On semi-convergence of parameterized Uzawa methods for singular saddle point problems[J]. Linear Algebra Appl,2009,431:808-817.
[15]ZHANG G F , LU Q H. On generalized symmetric SOR method for augmented systems[J]. J Comput Appl Math,2008,1(15):51-58.
[16]PENG X F , LI W . On unsymmetric block overrelaxation-type methods for saddle point[J]. Appl Math Comput,2008,203(2):660-671.
[17]BAI Z Z, YANG X . On HSS-based iteration methods for weakly nonlinear systems[J]. Appl Numer Math,2009,59:2923-2936.
[18]BAI Z Z, GOLUB G H, MICHAEL K N .On inexact hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Linear Algebra Appl,2008,428:413-440.
[19]BAI Z Z. Several splittings for non-Hermitian linear systems[J]. Science in China, Ser A: Math,2008,51:1339-1348.
[20]BAIZ Z, GOLUB G H,LU L Z , et al. Block-Triangular and skew-Hermitian splitting methods for positive definite linear systems[J].SIAM J Sci Comput,2005,26:844-863.
[21]BAI Z Z, GOLUB G H, NG M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J Matrix Anal A,2003,24:603-626.
[22]WANG L , BAI Z Z . Convergence conditions for splitting iteration methods for non-Hermitian linear systems[J]. Linear Algebra Appl,2008,428:453-468.
[23]WU S L , HUANG T Z , ZHAO X L. A modified SSOR iterative method for augmented systems[J]. J Comput Appl Math,2009,228(1):424-433.
[24]ZHANG L T,HUANG T Z,CHENG S H, et al. Convergence of a generalized MSSOR method for augmented systems[J]. J Comput Appl Math,2012,236:1841-1850.
[25]ZHANG L T. A new preconditioner for generalized saddle matrices with highly singular(1,1) blocks[J].Int J Comput Math, 2014, 91(9):2091-2101.
[26]MIAO S X , WANG K . On generalized stationary iterative method for solving the saddle point problems[J].J Appl Math Comput,2011,35:459-468.
[27]ZHENG Q Q, MA C F. A new SOR-Like method for the saddle point problems[J]. Appl Math Comput,2014,233:421-429.
[28]SHAO X, SHEN H, LI C. The generalized SOR-Like method for the augmented systems[J]. Int J Inf Syst Sci,2006(2):92-98.
[29]YOUNG D M . Iteration Solution for Large Systems[M]. New York:Academic Press, 1971.
ZHANG Litao
(DepartmentofMathematicsandPhysics,ZhengzhouUniversityofAeronautics,Zhengzhou450015,China)
A note on new SOR-Like method for the saddle point problems. Journal of Zhejiang University(Science Edition), 2016,43(3):292-295
Abstract:Recently, ZHENG et al presented the new SOR-Like (NSOR-Like) method and studied the characteristic of eigenvalue of the iteration matrix of this NSOR-Like method. In this paper, we present an improved NSOR-Like (INSOR-Like) method based on NSOR-Like method, and analyze the convergence of the corresponding method. Moreover, the improved NSOR-Like (INSOR-Like) method is the generalization of NSOR-Like method.
Key Words:saddle point problems; SOR-Like method; convergence
中圖分類號(hào):TP 391.7
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-9497(2016)03-292-04
作者簡(jiǎn)介:張理濤(1980-),ORCID:http://orcid.org/0000-0002-6087-8611,男,博士,副教授,主要從事數(shù)值代數(shù)與科學(xué)計(jì)算及應(yīng)用研究,E-mail:litaozhang@163.com.
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11226337, 11501525);航空科學(xué)基金資助項(xiàng)目(2013ZD55006);河南省自然科學(xué)基金資助項(xiàng)目(152300410126);河南省高等學(xué)校青年骨干教師資助計(jì)劃項(xiàng)目(2013GGJS-142,2015GGJS-179);河南省高??萍紕?chuàng)新人才支持計(jì)劃(16HASTIT040); 鄭州市科技局自然科學(xué)基金資助項(xiàng)目(141PQYJS560);鄭州航空工業(yè)管理學(xué)院科研創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃項(xiàng)目(2014TD02).
收稿日期:2015-12-01.
DOI:10.3785/j.issn.1008-9497.2016.03.007
浙江大學(xué)學(xué)報(bào)(理學(xué)版)2016年3期