錢守旺
1.學生“道不明”,教師就“點撥”。
學生雖然有了先學的基礎,但學了并不等于一定懂了。例如,人教版《數學》五年級下冊《因數和倍數》,筆者是這樣組織教學的:
師:同學們,昨天大家自己學習了《因數和倍數》一課,你們有什么不明白的地方嗎?
生1:老師,我有時找一個數的因數找不全,您能告訴我一個竅門嗎?
(教師根據學生的上述問題,先組織學生交流,根據學生的發(fā)言,教師適當啟發(fā)、點撥、指導。)
師:剛才有的同學提到了找一個數的因數的竅門問題,這個問題提得好!誰能幫幫他?
生2:老師,我們可以從最小的1開始試,一直試到它本身為止。因為一個數的最小因數是1,最大因數是它本身。
師:是個好辦法。其他同學呢?
生3:老師,我是兩個兩個找的。比如12,我先想1和誰相乘得12,再想2和誰相乘得12,再想3和誰相乘得12。當兩個數離得越來越近,挨到一起時,這個數的因數就找全了。
師:他的意思大家聽明白了嗎?有序思考,成對去找,真會動腦筋!那么,你們用這種方法找一找36的因數。
(學生做完后教師提問:在找36的因數時,你們又遇到了什么新問題?)
生4:我們最后找到六六三十六,兩個數一樣了,貼到一塊了。老師您說這個時候是寫一個6,還是寫兩個6。
師:你們的意見呢?
生5:我覺得只要寫一個6就行了。
師:是這樣,在找一個數的因數時,如果出現了像“五五二十五”“六六三十六”“七七四十九”這類情況,我們寫一個數就行了。
2.學生理解“有困難”的,教師就“演示”。
教材一般以文字和圖片的形式呈現學習內容,有時候單一的靜態(tài)圖片很難完整地展示知識的形成過程,學生很難感受到“火熱的思考”過程。在教學“圓的面積”一課時,為了向學生滲透“極限思想”,教師就可以借助課件演示“把圓先切割成若干個相等的小扇形,再拼成近似平行四邊形”的過程;在教學“長方體的展開與折疊”一課時,為了讓學生發(fā)現長方體11種展開圖之間的內在聯系,教師可以通過動畫演示長方體展開圖的11種情況;在教學“一個數除以分數”時,為了幫助學生理解算理,真正理解算法,教師可以利用“分數墻”幫助學生直觀理解“除以一個分數等于乘這個分數的倒數”。
3.書上“看不到”的,教師就“補充”。
學生的知識面和資料畢竟有限,有些知識是隱性的,學生在自己學習時難以看透教材,體會到教材中所蘊涵的數學思想和方法,這就需要教師在課堂上適時“補充”,充分發(fā)揮主導作用。
一些規(guī)律性的東西,學生通過預習有時是感悟不到的,通過教師富有啟發(fā)性的問題,可以向學生滲透一些規(guī)律。
策略八 教不越位,學要到位
教育的過程不僅是傳輸知識的過程,還應是一個啟迪智慧的過程。教育需要有學生的自主觀察、感受、體驗、發(fā)現和領悟。
1.教不越位,是實現課堂學習自主的關鍵
“不越位”,就是要把那些本來應該由學生本人完成的事情留給他們自己。在教學過程中,教師的任務是帶著學生走向知識,而不是帶著知識走向學生。真正高明的教師是教給學生學習的本領。
福建師范大學的余文森教授經過二十多年的學習、實踐和研究,提出了三條教學“鐵律”:鐵律之一,當學生已經能夠自己閱讀教材和自己思考的時候(處于相對獨立和基本獨立的階段),就要先讓他們自己去閱讀和思考;鐵律之二,當學生不能獨立閱讀教材和思考問題的時候(處于依靠教師的階段),教師要把教學的著眼點放在教學生學會閱讀和學會思考上面;鐵律之三,一切教學都必須從學生實際出發(fā)(根據學生的原有知識狀況進行教學)。
在教學中要確保學生的主體地位,教師必須做到:目標讓學生明確;教材讓學生閱讀;過程讓學生參與;結論讓學生總結;疑問讓學生討論;錯誤讓學生剖析。
2.學要到位,是實現課堂學習自主的根本
教學是一種“奔跑”。有時教師在領跑,引領學生走向知識的殿堂;有時學生在自主地奔跑,教師在學生后面助力,在學生旁邊加油吶喊。教師與學生在互動中不斷改變前后位置,奔向一個又一個終點,又從一個個新的起點出發(fā)。
⑴ 優(yōu)化“看”的過程,觀察到位。
觀察能力是學生獲取知識過程中一種非常重要的能力。觀察是獲取感性認識的一個主要途徑,學生可以通過有目的、有計劃的觀察來獲得大量的感性材料,為進一步思維發(fā)展打下基礎。教師平時應多創(chuàng)造機會讓學生有計劃、多角度地仔細觀察,分析總結,養(yǎng)成勤于觀察的好習慣。
⑵ 優(yōu)化“做”的過程,操作到位。
小學數學教學內容具有很強的邏輯性和抽象性,而小學生受知識、經驗的限制,其思維能力往往停留在具體形象的水平上。一位教育家說過:“兒童的智慧就在他的手指尖上?!弊寣W生動手實踐操作有助于他們對概念理解得更深刻,有助于發(fā)展學生的空間觀念,有助于建立起形和數之間的關系。因此,要多安排學生動手畫畫、剪剪、拼拼、量量、摸摸、數數,讓他們通過擺弄和操作獲取知識、理解知識,從而發(fā)展思維能力,形成數學智慧。
⑶ 優(yōu)化“聽”與“說”的過程,表達到位。
教師可以根據不同的教學內容,確定說的內容和說的形式,如采用聽后學說、個別說、集體說、同桌說、鄰座小議等。教師要讓每一名學生都有“說”的機會,都能表達自己的想法。通過這種交流,達到相互啟發(fā)、共同提高的目的。
教師要特別鼓勵學生與同伴對話。在學生之間的對話中,學生要能夠提出自己的觀點和主張,并能夠有效地與同學交流。學生之間的對話不能只停留于經驗和觀點的交流,必須產生碰撞和引發(fā)問題,否則就不能引起思維上的變化。學生之間的對話是一種民主和平等的關系,是交流與合作的關系。
⑷ 優(yōu)化“想”的過程,思維到位。
教師要鼓勵學生在學習過程中不斷反思。對解題的全過程進行自覺、深入、反復的思考,再看一看、想一想,邏輯上有無漏洞?解題方法是否正確?有無其他方法?有無捷徑?結論能否推廣?能否變化條件得出新的命題?等等。
為了讓每一名學生都能真正參與思考過程,教師可以采用學習單的形式組織學生學習。學習單是指教師根據教學目標和教學主題設計的,由教師提供給學生并幫助學生完成學習任務的一種學習、教學和評量工具。因其能有效地實現分層教學、個別指導、隨時指導,能有效幫助學生有目的、有計劃地開展自主、合作的探究學習活動,越來越受到教師們的青睞和廣泛運用。
⑸ 優(yōu)化“練”的過程,訓練到位。
第一,組織練習要及時。每教完一個知識點應立即安排練習加以鞏固,做到一練一得,要保證每節(jié)課有足夠的練習時間;第二,要注意練習的層次性。練習的設計要遵循由易到難、由簡到繁、由基本到變式、由低級到高級的順序;第三,要注意練習設計的靈活性。練習的設計要有利于促進學生積極思考,激活思路,充分調動學生智力活動,能從不同方向去尋求最佳解題策略;第四,練習方式要多樣。練習方式多樣是指既有筆寫也有口述、動手操作的,既有單項練也有綜合練、系統(tǒng)練,還應根據學生的年齡特點,采取相應的練習形式。練習題目要注意緊扣內容,圍繞教學重點、難點、疑點,具有典型性,具備一定的變式;第五,要面向全體,兼顧差異。做到既確?;疽?,又照顧兩頭,使全班學生通過練習都能有所發(fā)展。
探尋數學課程對學生生命成長的意義價值,讓學生的人生充滿幸福和美好,是小學數學教學的根本落腳點。教不越位,學要到位,是對教和學辯證關系的生動概括,是學生“自主學習”的前提和保證,是深化課堂教學改革,落實新課程的有效途徑。