亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        SEVERAL UNIQUENESS THEOREMS OF ALGEBROID FUNCTIONS ON ANNULI?

        2016-04-18 05:44:46YangTAN譚洋SchoolofAppliedMathematicsBeijingNormalUniversityZhuhai519087China
        關(guān)鍵詞:誤工施工隊(duì)崗位培訓(xùn)

        Yang TAN(譚洋)School of Applied Mathematics,Beijing Normal University,Zhuhai 519087,China

        ?

        SEVERAL UNIQUENESS THEOREMS OF ALGEBROID FUNCTIONS ON ANNULI?

        Yang TAN(譚洋)
        School of Applied Mathematics,Beijing Normal University,Zhuhai 519087,China

        E-mail:shutongtan@sina.com

        AbstractIn this paper,we discuss the uniqueness problem of algebroid functions on annuli,we get several uniqueness theorems of algebroid functions on annuli,which extend the Nevanlinna value distribution theory for algebroid functions on annuli.

        Key wordsthe Nevanlinna theory;multiple values;the uniqueness of algebroid functions on annuli

        2010 MR Subject Classi fi cation34M10;30D35

        ?Received September 9,2014;revised June 16,2015.Project Supported by the Natural Science Foundation of China(11171013).

        1 Introduction

        In 1926,Nevanlinna[1]proved the following famous fi ve-value theorem:

        For two nonconstant meromorphic functions f(z)and g(z)on the complex plane C,

        if they have the same inverse images(ignoring multiplicities)for fi ve distinct values,

        then f(z)≡g(z).

        After this wonderful work,the uniqueness theory of meromorphic functions in C attracted many investigations[2-5].As the extension of meromorphic functions,the uniqueness of algebroid functions in the complex plane C is an important subject in the value distribution theory.The uniqueness problem of algebroid functions was firstly considered by Valiron,afterwards some scholars got several uniqueness theorems of algebroid functions in the complex plane C[6-13].In 2005,Khrystiyanyn and Kondratyuk proposed the Nevanlinna theory for meromorphic functions in multiply connected domains[14,15].In 2009,Cao and Yi[16]investigated the uniqueness of meromorphic functions sharing some values and some sets on annuli.Thus it is interesting to consider the uniqueness problem of algebroid functions in multiply connected domains.In this paper,we mainly study doubly connected domain.We assume that the readers are familiar with the Nevanlinna theory of meromorphic functions and algebroid functions[17-27].By the doubly connected mapping theorem[28]each doubly connected domain is conformally equivalent to the annulus A(R1,R2)={z:R1<|z|<R2},0≤R1<R2≤+∞.We only consider two cases:

        In the latter case the homothetyreduces the given domain to the annulusThus,in two cases every annulus is invariant with respect to the inversion

        2 Basic Notions and De finitions

        Let Av(z),Av?1(z),···,A0(z)be a group of holomorphic functions which have no common zeros and de fi ne on the annulus

        Then irreducible equation(2.1)de fines a v-valued algebroid function on the annulus(1<R0≤+∞).

        Let W(z)be a v-valued algebroid function on the annulususe the notations:

        where wj(z)(j=1,2,···,v)is a one-valued branch of W(z),n1(t,W)is the counting function of poles of the function W(z)in{z:t<|z|≤1}and n2(t,W)is its counting function of poles in{z:1<|z|≤t}(both counting multiplicity);is the counting function of poles of the functionis its counting function of poles in{z:1<|z|≤t}(both ignoring multiplicity);is the countingfunction of poles of the functionwith multiplicity≤k(or>k)in{z:t<|z|≤1},each point counts only once;is the counting function of poles of the functionwith multiplicity≤k(or>k)in{z:1<|z|≤t},each point counts only once.nx1(t,W)and nx2(t,W)are the counting function of branch points of the function W(z)in {z:t<|z|≤1}and{z:1<|z|≤t},respectively.Nx(r,W)is the density index of branch point of W(z)on the annulus

        Let W(z)be an algebroid function on the annulusif there are λ branches of W(z)which take a(∞)as the value in z0point,then we have the fractional power series

        n0(r,a)=where n0(r,a)is the counting function of zeros of W(z)?a on the annulus(counting multiplicity).If there are λ branches of W(z)which take∞as the value in z0point,then we have the fractional power series

        n0(r,∞)=n0(r,W)=where n0(r,∞)is the counting function of poles of W(z)on the annulus(counting multiplicity).z=z0is a branch point of λ?1 degree of W(z)on its Riemann Surfacedenotes the branch points of W(z)on its Riemann Surface on the annulus

        Let W(z)be a v-valued algebroid function which be determined by(2.1)on the annulusWhen a =∞,N0(r,W)=are the counting function of zeros of W(z)?a and ψ(z,a)on the annulus

        De finition 2.1Let W(z)be an algebroid function on the annulus+∞),the function

        is called the Nevanlinna characteristic of W(z).

        De finition 2.2Let W(z)be an algebroid function on the annulus+∞),we denote the de fi ciency of a∈C=C∪{∞}by

        and denote the reduced de fi ciency by

        3 Some Lemmas

        Lemma 3.1(see[14])Let f be a nonconstant meromorphic function on the annulus

        where 1≤r<R0.

        Lemma 3.2([14],Jensen theorem for meromorphic function on annuli)Let f be a nonconstant meromorphic function on the annulus

        where 1≤r<R0.

        Lemma 3.3Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulus

        ProofFirst,we have

        So,from above determinant we know that J(z)is a holomorphic function on the annulus.In fact,by(2.2),if there are λ branches of W(z)which take a∈C as the value in z0point,then there areitems including the factorin J(z)(τ is the multiplicity of zero),that is:z0is a zero of J(z),the multiplicity of z0isat least.That is to say,the branch points of λ?1 degree of W(z)are zeros of λ?1 degree of J(z)atleast.So(3.1)is true.By substitutinginto J(z),using Lemma 3.2,we get

        So we have

        Lemma 3.4(the first fundamental theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusR0≤+∞),a∈C,

        ProofBy Viete theorem,we have

        Using Lemma 3.2,we get

        Among them

        because

        So

        Lemma 3.5(the second fundamental theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusR0≤+∞),ak(k=1,2,···,p)are p distinct complex numbers(finite or in finite),then we have

        N1(r,W)is the density index of all multiple values including finite or in finite,every τ multiple value counts τ?1,and

        ProofLet ak∈C(k=1,2,···,p),wj=wj(z)(j=1,2,···,v)are v branches of W(z),by the following identity

        Ck=[(a1?ak)(a2?ak)···(ak?1?ak)(ak+1?ak)···(ap?ak)]?1,w′(z)is the derivative of w(z)and satisfies the following equation

        By(3.4),

        Among them,

        So we have

        Let

        So we get

        其次,在施工前期,管理人員對(duì)公路工程的具體施工設(shè)計(jì)和人員安排無(wú)法做到合理調(diào)配,導(dǎo)致在施工現(xiàn)場(chǎng)工作人員崗位不定,現(xiàn)場(chǎng)混亂,工序復(fù)雜,工期拖延,最終出現(xiàn)延工、誤工的現(xiàn)象[3]。而且部分施工隊(duì)的進(jìn)度控制意識(shí)薄弱,無(wú)法按照施工計(jì)劃在規(guī)定時(shí)間內(nèi)完成施工任務(wù)。個(gè)別施工隊(duì)為加快工程進(jìn)度,隨意增加施工人員,而部分施工人員由于沒(méi)有接受專業(yè)崗位培訓(xùn),匆忙上崗,造成部分已經(jīng)完工的工程質(zhì)量不合格,因無(wú)法通過(guò)質(zhì)量驗(yàn)收而必須返工,不僅拖延工期更增加了施工成本。

        By(3.9),(3.10),(3.11)

        Combining(3.6),(3.7),(3.8),(3.12)and using Lemma 3.4 we have

        And because

        Then

        By(3.13)and above formula

        Because N0(r,W)≤T0(r,W)+O(1),so(3.14)can be rewritten as the following

        So we get(3.16).By substituting(3.16)into(3.15)we have

        By(3.17)and Lemma 3.3,we get(3.3).

        The remainder of the Second Fundamental Theorem is the following formula,

        outside a set of finite linear measure,if r?→R0=+∞;while

        outside a set E of r such that

        We notice that the following formula is true,

        Lemma 3.6(the Cartan theorem for algebroid function on annuli)Let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusthen we get

        ProofLet a be a finite complex number,then we have[2,22]

        By(2.1)

        We integrate(3.21)on α from 0 to 2π and by(3.20),

        By(3.23),(3.24)and(3.25),

        By(3.26)and(3.27),(3.19)is true.

        Lemma 3.7Let W(z)be a v-valued algebroid function which be determinated by(2.1)on the annulusif the following conditions are satis fied

        then W(z)is an algebraic function.

        So we have

        Because therefore

        So we get

        On the other hand,there is the following formula by Viete theorem of algebraic equation

        where(α1,α2,···,αv?j)is the combination of taking v?j numbers from(1,2,···,v),(?1)αis 1 or-1,which depends onbeing even permutation or odd permutation.Now everyby(3.34),

        The right hand side of(3.35)has nothing to do with number j,so any(1<R0≤+∞)

        Then we get

        So according to(3.33)and(3.37),we have

        According to(3.38)and(3.39),we have

        By the conditions of Lemma 3.7 and above formula,all meromorphic functions fjk(z)(0≤j,k≤v)which satisfy the following conditions

        By references[14,15]and[22],all functions fjk(z)are rational functions,because A0(z),A1(z),···,Av(z)can’t have nonconstant common factor,so all Aj(z)(j=1,2···v)must be polynomials.Then W(z)degenerates an algebraic function.

        Remark 3.8Let W(z)be an algebroid function on the annulus+∞)and let a be a complex number.We useto denote the set of zeros of W(z)?a with multiplicity no greater than k,in which each zero is counted only once.

        Remark 3.9Now let W(z)be a v-valued algebroid function which is determined by(2.1)on the annulusbe aμ-valued algebroid function which is determined by the following equation on the annulus

        Without loss of generality,letdenotes the counting function of the common values of=a with multiplicity≤k on the annulus+∞),each point counts o︿nly once.And let

        4 Main Results

        Furthermore let

        and

        where m and n are positive integers in(1,2,···q)and b is an arbitrary complex number.If

        By De finition 2.2

        Because

        By De finition 2.2 we have

        From(4.6)and(4.7)

        From(4.4),(4.5)and(4.8)we get

        From(4.1)

        So we can deduce that

        Thus we have

        where

        By similar discussion we get

        where

        By(4.9),(4.10)and Remark 3.9

        R(?,ψ)denotes the resultant of ?(z,W)and ψ(z,W),it can be written as the following

        It can be written in another form

        So we know that R(?,ψ)is a holomorphic function,using Lemma 3.2,

        Then we get

        By the conditions of Theorem 4.1,we know that W(z)andtake the same values with multiplicity≤kjabout q distinct aj,each point counts only once,at the same time we getFrom(4.11),(4.12)and Remark 3.9

        Hence

        From Lemma 3.7 we know that this is not true.Therefore we complete the proof of Theorem 4.1.

        Set

        where m and n are positive integers in(1,2,···,q).If

        ProofSince δ0(aj,W)≥the assertion follows from Theorem 4.1.

        If

        where m is positive integer in(1,2,···q),then we have

        ProofLetting m=n,Corollary 4.3 immediately follows from Corollary 4.2.

        If

        ProofLetting m=4v+1,Corollary 4.4 immediately follows from Corollary 4.3.

        (ii)If q=8v and kj>1 then

        (iii)If q=7v and kj>2 then

        ProofWe note that

        Corollary 4.5 immediately follows from Corollary 4.4.

        Thus from Corollary 4.5 we obtain the theorem as following.

        References

        [1]Nevanlinna R.Einige eindeutigkeitss?tze in der theorie der meromorphen funktionen.Acta Math,1926,48(3/4):367-391

        [2]Yi H X,Yang C C.Uniqueness Theory of Meromorphic Function.Beijing:Science Press,1995

        [3]Ueda H.Unicity theorems for meromorphic or entire functions.Kodai Math,1980,3(3):457-471

        [4]Zhang Q C.The uniqueness of meromorphic functions with their derivatives.Kodai Math,1998,21(2):179-184

        [5]Bhoosnurmath S S,Dyavanal R S.Uniqueness and value-sharing of meromorphic functions.Comput Math Appl,2007,53(8):1191-1205

        [6]Sun D C,Gao Z S.On the operations of algebroid functions.Acta Math Sci,2010,30B(1):247-256

        [7]Sun D C,Gao Z S.Uniqueness theorem for algebroid functions.Journal of South China Normal University,2005,(3):80-85

        [8]Yi H X.On the multiple values and uniqueness of algebroid functions.Engineering Math,1991,8(4):1-8

        [9]Cao T B,Yi H X.On the uniqueness theory of algebroid functions.Southeast Asian Bull Math,2009,33(1):25-39

        [10]He Y Z.On the algebroid functions and their derivatives(I).Acta Mathematica Sinica,1965,15(2):281-295

        [11]He Y Z.On the algebroid functions and their derivatives(II).Acta Mathematica Sinica,1965,15(4):500-510

        [12]He Y Z.On the multiple values of algebroid functions.Acta Mathematica Sinica,1979,22(6):733-742

        [13]Xuan Z X,Gao Z S.Uniqueness theorems for algebroid functions.Complex Var Elliptic Equ,2006,51(7):701-712

        [14]Khrystiyanyn A Ya,Kondratyuk A A.On the Nevanlinna theory for meromorphic functions on annuli(I).Matematychni Studii,2005,23(1):19-30

        [15]Khrystiyanyn A Ya,Kondratyuk A A.On the Nevanlinna theory for meromorphic functions on annuli(II).Matematychni Studii,2005,24(2):57-68

        [16]Cao T B,Yi H X,Xu H Y,et al.On the multiple values and uniqueness of meromorphic function on annuli.Comput Math Appl,2009,58(7):1457-1465.

        [17]Sun D C,Gao Z S.Value Distribution Theory of Algebroid Functions.Beijing:Science Press,2014

        [18]Hayman W K.Meromorphic Functions.Oxford:Oxford University Press,1964

        [19]Yang L.Value Distribution Theory.Beijing:Science Press,1982

        [20]Tsuji M.Potential Theory in Modern Function Theory.Tokyo:Maruzen,1959

        [21]He Y Z,Gao S A.On algebroid functions taking the same values at the same points.Kodai Math,1986,9(2):256-265

        [22]He Y Z,Xiao X Z.Algebroid Functions and Ordinary Di ff erential Equations in the Complex Domain.Beijing:Science Press,1988

        [23]He Y Z,Li Y Z.Some results on algebroid functions.Complex Variables Theory Appl,2001,43(3/4):299-313

        [24]Sun D C,Gao Z S.On the operations of algebroid functions.Acta Math Sci,2010,30B(1):247-256

        [25]Liu H F.On the uniqueness of algebroid functions and their derivatives.Acta Math Sci,2014,34A(5):1296-1303

        [26]Wang S M.On the fundamental theorems for reducible algebroid functions.Acta Math Sci,2014,34A(5):1219-1227

        [27]Jiang Y B,Gao Z S.Uniqueness of algebroid functions concerning CM shared values.Acta Math Sci,2014,34A(4):796-801

        [28]Axler S.Harmonic functions from a complex analysis viewpoint.Amer Math Monthly,1986,93(4):246-258

        猜你喜歡
        誤工施工隊(duì)崗位培訓(xùn)
        加入倫敦施工隊(duì)
        審計(jì)誤工補(bǔ)貼背后的故事
        拆錯(cuò)房子
        分析影響社區(qū)護(hù)士崗位培訓(xùn)效果的相關(guān)因素
        警惕村集體誤工支出亂象
        試論農(nóng)民工誤工賠償?shù)臉?biāo)準(zhǔn)的適用范圍爭(zhēng)議
        法制博覽(2017年30期)2017-01-27 14:08:06
        村集體誤工支出管理與賬務(wù)處理
        驚蟄
        全科醫(yī)師崗位培訓(xùn)中神經(jīng)病學(xué)的教學(xué)體會(huì)
        編輯有感——基于崗位培訓(xùn)和編輯實(shí)踐的感悟
        久久久99久久久国产自输拍| 777亚洲精品乱码久久久久久| 精品国产乱码久久久软件下载| 日韩成人无码v清免费| 淫秽在线中国国产视频| 最新中文字幕一区二区| 亚洲精品一区国产欧美| 99视频在线国产| 久久综合给合久久97色| 久久av不卡人妻出轨一区二区| 精品久久久无码人妻中文字幕豆芽| 夜夜爽一区二区三区精品| 亚州五十路伊人网| 日本高级黄色一区二区三区| 狠狠噜狠狠狠狠丁香五月 | 亚洲第一狼人天堂网亚洲av| 蜜臀av无码精品人妻色欲| 国产高清在线91福利| 国产极品大秀在线性色| 国产片精品av在线观看夜色| 亚洲中文字幕无码中字| 蜜桃av夺取一区二区三区| 日本久久精品中文字幕| 曰韩人妻无码一区二区三区综合部| 亚洲最大成av人网站| 国产精品一区二区黄色片| 曰韩内射六十七十老熟女影视| 亚洲av无码专区国产乱码不卡| 亚洲AV秘 片一区二区三区| 久草视频这里只有精品| 特级a欧美做爰片第一次| 天天躁日日躁狠狠躁一区| 国产超碰在线91观看| 人妻精品久久久久中文字幕| 五十路熟女一区二区三区| 亚洲日本视频一区二区三区| 国产一区高清在线观看| 国产伦精品一区二区三区免费| 中文字幕无码高清一区二区三区| 国产av熟女一区二区三区密桃| 精品亚洲成a人片在线观看|