亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物抗病機(jī)制及信號(hào)轉(zhuǎn)導(dǎo)的研究進(jìn)展

        2016-04-12 04:14:43丁麗娜楊國(guó)興
        生物技術(shù)通報(bào) 2016年10期
        關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)抗病侵染

        丁麗娜楊國(guó)興

        (1. 江蘇大學(xué)生命科學(xué)研究院,鎮(zhèn)江 212013;2. 南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,南京 210095)

        植物抗病機(jī)制及信號(hào)轉(zhuǎn)導(dǎo)的研究進(jìn)展

        丁麗娜1楊國(guó)興2

        (1. 江蘇大學(xué)生命科學(xué)研究院,鎮(zhèn)江 212013;2. 南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,南京 210095)

        植物的抗病機(jī)制是植物病理學(xué)研究的重點(diǎn)。隨著分子生物學(xué)的不斷發(fā)展,人們對(duì)植物與病原之間的互作機(jī)制有了更多的了解。綜述了近年來(lái)植物抗病分子機(jī)制方面的研究進(jìn)展,同時(shí)闡述了鈣離子、活性氧、水楊酸、茉莉酸乙烯、一氧化氮及異源三聚體G蛋白等信號(hào)分子介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)途徑在誘導(dǎo)植物防衛(wèi)反應(yīng)中的作用,并對(duì)今后的研究前景進(jìn)行了展望。旨為病害防治提供思路。

        抗病機(jī)制;信號(hào)分子;防衛(wèi)反應(yīng);信號(hào)轉(zhuǎn)導(dǎo)

        DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.013

        在自然界中,植物總是受到各種病原物(如細(xì)菌、真菌和病毒等)的侵襲。在長(zhǎng)期進(jìn)化過(guò)程中,植物與病原物之間相互影響、相互適應(yīng)、協(xié)同進(jìn)化。一方面,植物為了生存,在進(jìn)化中逐漸建立了一系列復(fù)雜的防御機(jī)制,能很好地協(xié)調(diào)對(duì)抗病原菌的侵染;另一方面,病原物為了自身的利益也會(huì)通過(guò)調(diào)節(jié)植物防衛(wèi)反應(yīng)-信號(hào)轉(zhuǎn)導(dǎo)途徑來(lái)抑制誘導(dǎo)型防衛(wèi)反應(yīng),打破植物體內(nèi)的防御系統(tǒng),最終使植物表現(xiàn)病癥[1,2]。植物與病原物相互作用的過(guò)程中,植物體內(nèi)發(fā)生一系列的信號(hào)傳遞,并激發(fā)植物的防御體系,使植物產(chǎn)生抗病性反應(yīng)。目前已經(jīng)明確信號(hào)分子如鈣離子(Ca2+),活性氧(reactive oxygen species,ROS),水楊酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA),乙烯(ethylene,ET),一氧化氮(NO)及異源三聚體G蛋白(heterotrimeric G)等在調(diào)控抗病和防衛(wèi)信號(hào)傳導(dǎo)網(wǎng)絡(luò)中扮演了重要的角色[3-7]。近年在植物抗病的分子機(jī)制及其信號(hào)轉(zhuǎn)導(dǎo)方面取得了一系列進(jìn)展。本文著重從分子生物學(xué)水平介紹目前植物抗病機(jī)理與抗病信號(hào)轉(zhuǎn)導(dǎo)的研究現(xiàn)狀和成果。以期為植物病害的防治提供新思路。

        1 植物抗病性反應(yīng)

        1.1組成型抗性

        所謂組成型抗性是指植物細(xì)胞表面的物理屏障以及細(xì)胞內(nèi)部固有的對(duì)病原菌有毒的物質(zhì)等,包括物理抗性和化學(xué)抗性兩部分,是植物在與病原菌接觸以前就存在的。這些物理屏障通常是植物自身的一些特殊結(jié)構(gòu)如水孔、氣孔和皮孔,以及細(xì)胞壁的一些成分如角質(zhì)、蠟質(zhì)和木質(zhì)素等。另外,維管束、厚壁組織細(xì)胞也可以阻止病原物的侵染。化學(xué)抗性主要包括抗菌化合物,酚類物質(zhì)、皂角苷、不飽和內(nèi)酯及有機(jī)硫化合物等[8,9]。

        1.2誘導(dǎo)型抗性

        誘導(dǎo)型抗性也包括物理抗性和化學(xué)抗性兩部分。物理抗性包括細(xì)胞壁加固和修復(fù)、乳突的形成、木質(zhì)化作用及侵填體的形成等?;瘜W(xué)抗性則包括過(guò)敏性反應(yīng)的誘導(dǎo),植保素(Phytoalexins)的產(chǎn)生,水解酶的激活及病程相關(guān)蛋白的表達(dá)等。一些物理屏障和化學(xué)因子不僅屬于組成型抗性,同時(shí)在誘導(dǎo)型抗性中起著重要的作用,如氣孔及酚類物質(zhì)。氣孔作為植物和外界環(huán)境進(jìn)行氣體交換的主要孔道,其特性對(duì)植物生長(zhǎng)發(fā)育和病原菌入侵有重要影響[10,11]。在小麥與條銹真菌的不親和互作中,抑制單脫氫抗壞血酸還原酶基因的表達(dá)可以誘導(dǎo)氣孔形態(tài)的變化,導(dǎo)致病原菌對(duì)氣孔識(shí)別度變差,從而降低了侵染效率[12]。研究表明,植物抗病反應(yīng)中的信號(hào)分子如SA、過(guò)氧化氫及鈣離子等均可以誘導(dǎo)氣孔關(guān)閉,限制某些只能通過(guò)開放的氣孔侵染植物的病原菌的侵入,從而有利于植物抗病性的提高[12-14]。另外,一些酚類化合物比如植保素在植物誘導(dǎo)抗性中也起著重要作用[15]。植保素是植物與病原菌相互作用、或受到生理或機(jī)械損傷后,由植物產(chǎn)生的低分子量抗菌性次生代謝產(chǎn)物。植保素在誘導(dǎo)抗病中的作用取決于產(chǎn)生的速度和數(shù)量。一般認(rèn)為這些物質(zhì)在抗病品種中具有較強(qiáng)的合成能力,以抵抗病原菌的侵染[16,17]。水稻中主要含有黃酮類和二萜類兩大類植保素[18]。二萜植保素因子(DPF)是一類含有堿性螺旋-環(huán)-螺旋(bHLH)結(jié)構(gòu)域的轉(zhuǎn)錄因子,它可以轉(zhuǎn)錄調(diào)控二萜合成基因的表達(dá),從而對(duì)水稻中二萜的合成有重要作用[19]。此外,kauralexins是在玉米中被發(fā)現(xiàn)的一類新的萜類植保素,它能夠在歐洲玉米螟和真菌侵染部位迅速積累,并顯著抑制小孢根霉菌和炭疽病菌的生長(zhǎng)[20]。

        植物受到病原物侵染后,會(huì)誘導(dǎo)一系列防衛(wèi)反應(yīng)。植物的防衛(wèi)反應(yīng)機(jī)制通常在病原物侵染植物后的不同水平發(fā)揮作用。在侵染位點(diǎn),防衛(wèi)反應(yīng)由兩類來(lái)源于病原物的分子引發(fā),一類是病原物相關(guān)的分子模式(pathogen-associated molecular patterns,PAMPs)。由植物的PAMP受體識(shí)別PAMP激活的防衛(wèi)反應(yīng)稱為‘基礎(chǔ)抗性’,它通常可以使植物具有抵抗大多數(shù)病原菌侵染的基本抗病能力;另一類引發(fā)物是由病原物type-III分泌系統(tǒng)運(yùn)輸?shù)街参锛?xì)胞的效應(yīng)物蛋白。這些效應(yīng)物可以抑制PAMP引發(fā)的免疫性(PTI),干擾正常的細(xì)胞功能。然而,一些效應(yīng)物可以被寄主抗性(R)蛋白識(shí)別就會(huì)引發(fā)超敏反應(yīng)[21-23]。超敏反應(yīng)是植物的一種早期防衛(wèi)反應(yīng),是植物抗病反應(yīng)的一種典型特征,表現(xiàn)為被病原物侵染的植物細(xì)胞迅速死亡,使病原物不能從植物獲得賴以生存的營(yíng)養(yǎng),而隨之死亡,從而限制了病原菌在植物體內(nèi)的擴(kuò)散。這種反應(yīng)只是在寄主-病原物間專一性的侵染和抗病反應(yīng)中發(fā)生,具有植物品種與病原小種間的生理特異性,因此也把這種抗性稱為生理小種?;剐裕?4,25]。在超敏反應(yīng)產(chǎn)生局部抗性之后,活化更多的抗性基因的表達(dá),使植物產(chǎn)生非?;缘目剐约聪到y(tǒng)獲得抗性(systemic acquired resistance,SAR)。這種抗性賦予植物抗再次感染的能力,而且大多具有廣譜性[26,27]。

        1.3非宿主抗性

        非宿主抗性(non-host resistance,NHR)是目前為止了解最少的植物抗病機(jī)制之一,它使某一特定的植物物種具有抵抗侵染其他物種的絕大多數(shù)潛在病原菌的能力,在多數(shù)情況下沒有小種專一性且抗性持久。非宿主抗性比較復(fù)雜,屬于多組分形式的抗性,同時(shí)包括組成型抗性和誘導(dǎo)型抗性[28,29]。有研究表明基礎(chǔ)抗性和非宿主抗性在機(jī)制上存在關(guān)聯(lián)[30]。非宿主抗性在對(duì)抗真菌、細(xì)菌和卵菌侵染時(shí)表現(xiàn)出兩種不同的防衛(wèi)反應(yīng),類型I沒有可見的細(xì)胞死亡;而類型II則產(chǎn)生快速的超敏反應(yīng)細(xì)胞死亡反應(yīng),與R蛋白介導(dǎo)的宿主免疫性類似[31]。目前這類抗性研究比較清楚是擬南芥對(duì)白粉病菌的非宿主抗性。白粉病菌是一種活體子囊真菌,它在入侵前會(huì)在宿主植物的葉子表面形成許多的分生孢子,為了從宿主植物中獲取營(yíng)養(yǎng),產(chǎn)生的孢子會(huì)緊接著發(fā)育成侵入器官,包括附著胞(appressoria)和侵染釘(penetration pegs)。它們進(jìn)入宿主細(xì)胞的角質(zhì)層和表皮細(xì)胞壁后,在宿主的質(zhì)膜內(nèi)陷形成專門的取食結(jié)構(gòu)吸器(haustoria),作為從宿主植物中獲取營(yíng)養(yǎng)的管道[32]。白粉病菌的基因?qū)虻目剐院头撬拗骺剐砸粋€(gè)很關(guān)鍵的差異就是前者發(fā)生在吸器形成以后,而后者發(fā)生在吸器形成以前,并且大部分與超敏反應(yīng)無(wú)關(guān)[33,34]。在擬南芥對(duì)白粉病菌的非宿主抗性中,跨膜模式識(shí)別受體(pattern recognition receptors,PRR)識(shí)別真菌PAMPs,可能會(huì)誘導(dǎo)絲裂素活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)轉(zhuǎn)導(dǎo)途徑及ATAF1介導(dǎo)的對(duì)侵染前防衛(wèi)反應(yīng)的轉(zhuǎn)錄激活。然會(huì)在侵染位點(diǎn)引起三種PEN蛋白的積累,這些都是吸器形成前抗性的組成部分[35,36]。吸器形成后的抗性依賴超敏反應(yīng)及EDS1/PAD4/SAG101,它們都是基礎(chǔ)抗性和R蛋白介導(dǎo)的抗性所必需的,所以R蛋白也可能會(huì)識(shí)別吸器分泌的效應(yīng)物分子。因此,擬南芥對(duì)白粉病菌的非宿主抗性主要包括兩個(gè)連續(xù)又相互獨(dú)立的防衛(wèi)反應(yīng)構(gòu)成,一是PEN基因介導(dǎo)的侵入前的抗性;另外一種是由EDS1/PAD4/ SAG101介導(dǎo)的侵入后的抗性[37,38]。

        2 植物抗病信號(hào)轉(zhuǎn)導(dǎo)途徑

        2.1鈣離子(Ca2+)信號(hào)轉(zhuǎn)導(dǎo)途徑

        Ca2+作為重要的細(xì)胞內(nèi)第二信使分子參與植物體內(nèi)的許多信號(hào)轉(zhuǎn)導(dǎo)途徑。光、病原菌、植物激素等生理刺激以及高鹽、干旱、冷害等非生物脅迫都可以誘導(dǎo)Ca2+流穿過(guò)質(zhì)膜,導(dǎo)致細(xì)胞內(nèi)Ca2+濃度的增加,隨后激活鈣依賴的蛋白激酶[39]。在植物與病原菌相互作用過(guò)程中一般會(huì)伴隨細(xì)胞內(nèi)Ca2+瞬變,激活Ca2+信號(hào)傳導(dǎo)途徑,誘導(dǎo)ROS和NO的產(chǎn)生,正調(diào)控早期引發(fā)的局部和系統(tǒng)獲得性抗性。植物受到細(xì)菌侵染后的氣孔防御反應(yīng)中,可以檢測(cè)到鈣信號(hào)轉(zhuǎn)導(dǎo)途徑的激活[40]。在煙草中過(guò)量表達(dá)組成性傳導(dǎo)Ca2+的嵌合基因AtCNGC11/12后,即使在沒有無(wú)毒病原菌侵染的情況下也會(huì)出現(xiàn)類似于超敏反應(yīng)的程序性細(xì)胞死亡;施加Ca2+通道抑制劑能解除AtCNGC11/12誘導(dǎo)的程序性細(xì)胞死亡(programmed cell death,PCD)/超敏反應(yīng),從而證實(shí)Ca2+作為信號(hào)分子位于超敏反應(yīng)的上游[41]。Beneloujaephajri等[42]發(fā)現(xiàn)Ca2+信號(hào)消除后,同時(shí)抑制了活性氧的積累,表明氧化性釋放產(chǎn)生活性氧可能位于Ca2+信號(hào)積累的下游。施加鈣調(diào)素(CaMs)拮抗劑后可以抑制PAMPs引發(fā)的Ca2+通道和一氧化氮合酶(NOS)介導(dǎo)的對(duì)一氧化氮的誘導(dǎo),表明Ca2+,CaMs和NOS在植物病原物信號(hào)傳導(dǎo)級(jí)聯(lián)反應(yīng)中可能存在一定的聯(lián)系[43,44]。

        目前對(duì)于SA介導(dǎo)的防衛(wèi)反應(yīng)與Ca2+信號(hào)傳導(dǎo)途徑的關(guān)系還不是很清楚。研究發(fā)現(xiàn),Ca2+/CaM結(jié)合轉(zhuǎn)錄因子AtSR1可以與SA水平的調(diào)控因子EDS1的啟動(dòng)子相互作用并抑制其表達(dá),AtSR1功能缺失突變體則表現(xiàn)為組成性的抗病反應(yīng)及SA水平的提高,說(shuō)明Ca2+/CaM與AtSR1結(jié)合后負(fù)調(diào)控SA介導(dǎo)的植物免疫反應(yīng)[45]。Zhang等[46]發(fā)現(xiàn)AtSR1的互作蛋白SR1IP1可以清除防御抑制因子AtSR1正調(diào)控植物免疫反應(yīng),從而使我們對(duì)于植物如何通過(guò)協(xié)調(diào)Ca2+介導(dǎo)的反應(yīng)實(shí)現(xiàn)最有效的免疫有了進(jìn)一步的了解。

        2.2活性氧(ROS)信號(hào)轉(zhuǎn)導(dǎo)途徑

        過(guò)去ROS常常被認(rèn)為是細(xì)胞代謝產(chǎn)生的有毒物質(zhì),現(xiàn)在ROS已經(jīng)作為重要信號(hào)分子活躍在許多生物系統(tǒng)中,如在環(huán)境脅迫誘導(dǎo)的細(xì)胞程序化死亡中。在病原微生物入侵植物時(shí)產(chǎn)生的植物局部防衛(wèi)反應(yīng)-過(guò)敏反應(yīng)中,ROS快速而短暫地產(chǎn)生,使細(xì)胞中活性氧的濃度高出正常2-5倍,即通常提到的氧化迸發(fā)[47]。ROS迸發(fā)很可能是由NADPH 氧化酶的活性所致[48]。由于ROS對(duì)細(xì)胞的毒害作用,植物細(xì)胞具有高效的ROS清除機(jī)制。ROS可以被很多酶清除,如參與抗氧化系統(tǒng)的酶過(guò)氧化物酶(POD)、超氧化物歧化酶(SOD)和過(guò)氧化氫酶(CAT),它們對(duì)于維持抗氧化系統(tǒng)的平衡具有重要作用。冷害、臭氧、重金屬、傷害、植物激素和病原物侵染等許多逆境都會(huì)產(chǎn)生ROS,ROS可以誘導(dǎo)植物激活一些脅迫相關(guān)的基因,對(duì)抗環(huán)境的變化[49]。

        過(guò)氧化氫(H2O2)是一種相對(duì)穩(wěn)定、并能在亞細(xì)胞間隔間擴(kuò)散的活性氧類型,是生理上更為重要的ROS,植物細(xì)胞光合作用和光合呼吸過(guò)程中都會(huì)產(chǎn)生H2O2,所以H2O2及其他ROS是植物正常需氧代謝不可避免的副產(chǎn)物。H2O2也可以在細(xì)胞質(zhì)、細(xì)胞膜及細(xì)胞外基質(zhì)(ECM)中產(chǎn)生。在細(xì)胞外基質(zhì)中H2O2的產(chǎn)生涉及到NADPH 氧化酶、pH依賴的細(xì)胞壁過(guò)氧化物酶、胚相關(guān)蛋白、草酸氧化酶及胺類氧化酶等。在細(xì)胞外基質(zhì)中H2O2及其他ROS的作用不止局限于參與防衛(wèi)反應(yīng),還參與調(diào)控細(xì)胞壁組分的合成,如木質(zhì)素合成[50]。

        2.3水楊酸(SA)信號(hào)轉(zhuǎn)導(dǎo)途徑

        從超敏反應(yīng)到系統(tǒng)獲得性抗性的產(chǎn)生涉及到一系列病程相關(guān)蛋白的表達(dá)。目前認(rèn)為,SA是激發(fā)系統(tǒng)獲得性抗性的主要信號(hào)分子。植物在受到許多病原菌侵染后都會(huì)大量積累SA。SA與局部抗性和系統(tǒng)獲得性抗性的形成密切相關(guān),導(dǎo)致許多病程相關(guān)蛋白的表達(dá),對(duì)病原菌侵染的抗性也相應(yīng)增加[3]。來(lái)源于假單胞菌的NahG基因可以將SA轉(zhuǎn)化為無(wú)生物學(xué)活性的鄰苯二酚。在擬南芥中過(guò)量表達(dá)NahG后,系統(tǒng)獲得性抗性標(biāo)記基因PR-1、PR-2和PR-5的表達(dá)被抑制,系統(tǒng)獲得性抗性也不能形成[51]。SA合成突變體,如eds5和sid2,或SA不敏感的突變體,如npr1,在受到活體營(yíng)養(yǎng)或半活體營(yíng)養(yǎng)型病原菌侵染后一般會(huì)表現(xiàn)出感病性增加。在煙草中受到病原菌侵染后誘導(dǎo)甲基水楊酸(MeSA)的表達(dá),MeSA可以充當(dāng)系統(tǒng)獲得性抗性的可移動(dòng)誘導(dǎo)物,但是MeSA本身不具有生物活性[52]。SA作為信號(hào)分子,在與受體結(jié)合后,通過(guò)后者構(gòu)型的變化激活胞內(nèi)有關(guān)酶的活性和蛋白質(zhì)磷酸化,形成第二信使。SA在誘導(dǎo)植物抗病性過(guò)程中與H2O2有著密切的關(guān)系,但是在誘導(dǎo)系統(tǒng)獲得性抗性的信號(hào)傳遞過(guò)程中SA與H2O2的上下游關(guān)系還不是很明確。另外,植物體內(nèi)的離子流、蛋白磷酸化/去磷酸化反應(yīng)、NO產(chǎn)生及脂質(zhì)過(guò)氧化物等相互配合同樣可以激活植物的抗病反應(yīng),與SA也有一定的關(guān)系[53,54]。因此,SA介導(dǎo)的植物抗病反應(yīng)的機(jī)制遠(yuǎn)比想像的復(fù)雜得多。

        Non-expressor of PR genes 1(NPR1)是SA信號(hào)轉(zhuǎn)導(dǎo)途徑中一個(gè)重要調(diào)控元件,編碼一種氧化還原敏感蛋白。植物在受到病原菌侵染的時(shí)候,體內(nèi)SA水平上升,隨之引起細(xì)胞內(nèi)氧化還原電勢(shì)的變化,導(dǎo)致細(xì)胞質(zhì)中的NPR1以單體的形式從低聚復(fù)合體中釋放出來(lái)進(jìn)入細(xì)胞核,調(diào)控NPR1靶基因的轉(zhuǎn)錄。在這個(gè)過(guò)程中,系統(tǒng)獲得性抗性的誘導(dǎo)物可以促使NPR1在Ser11/Ser15殘基位置的磷酸化,這對(duì)于靶基因及系統(tǒng)獲得性抗性的完全誘導(dǎo)是必需的。在沒有病原菌侵染時(shí),NPR1不斷地被蛋白酶體清除,限制其輔激活子的活性,從而防止對(duì)系統(tǒng)獲得性抗性不適時(shí)激活[55]。在擬南芥中處于激活狀態(tài)的NPR1還調(diào)控SA耐受性、ICS1的表達(dá)和SA的積累[56]。并不是所有系統(tǒng)獲得性抗性介導(dǎo)的反應(yīng)都依賴NPR1,擬南芥Whirly轉(zhuǎn)錄因子(AtWHY1)就是一個(gè)依賴SA,不依賴NPR1的系統(tǒng)獲得性抗性的調(diào)控因子。WHY1和NPR1相結(jié)合,共同傳導(dǎo)SA信號(hào)[57]。SSI1也是一個(gè)依賴SA,不依賴NPR1的SA信號(hào)轉(zhuǎn)導(dǎo)途徑的調(diào)控元件。ssi1突變體引起SA積累水平的升高,SA調(diào)控基因 PR-1,PR-2和PR-5 及JA/ET調(diào)控基因PDF1.2上調(diào)表達(dá)。另外,ssi1突變體自發(fā)產(chǎn)生小的類似于超敏反應(yīng)的病斑,恢復(fù)npr1-5突變體對(duì)番茄丁香假單胞菌(Pseadomonas syringae)無(wú)毒菌株的抗性[58]。

        2.4茉莉酸/乙烯(JA/ET)信號(hào)轉(zhuǎn)導(dǎo)途徑

        JA和ET在自然界中普遍存在,是高等植物體內(nèi)的內(nèi)源生長(zhǎng)調(diào)節(jié)物質(zhì),同時(shí)也是逆境信號(hào)分子,在植物組織受到病原菌或昆蟲侵襲時(shí)快速而大量地積累。在擬南芥中至少存在兩種對(duì)抗不同的病原菌侵染的信號(hào)轉(zhuǎn)導(dǎo)途徑,一種是SA依賴的途徑,一般由活體營(yíng)養(yǎng)型病原菌觸發(fā);一種是JA和ET介導(dǎo)的途徑,主要對(duì)抗死體營(yíng)養(yǎng)的病原菌的侵染,不同的激素在對(duì)抗多種活體和死體營(yíng)養(yǎng)型病原物中有正或負(fù)的調(diào)控作用[59]。當(dāng)用非病原菌株熒光假單胞菌(Pseadomonas fluoxescens)侵染擬南芥時(shí)能誘導(dǎo)與系統(tǒng)獲得性抗性相似的系統(tǒng)抗性,稱為誘導(dǎo)性系統(tǒng)抗性(induced systemic resistance,ISR)。這種抗性反應(yīng)也是通過(guò)JA和ET介導(dǎo)的[60]。

        JA/ET介導(dǎo)的防衛(wèi)信號(hào)轉(zhuǎn)導(dǎo)途徑與植物體內(nèi)的許多生理過(guò)程相關(guān),對(duì)于其在非宿主抗性中作用的研究也比較廣泛[61]。JA介導(dǎo)的防衛(wèi)信號(hào)轉(zhuǎn)導(dǎo)途徑還參與傷害及昆蟲侵襲引起的防衛(wèi)反應(yīng)[62]。乙烯響應(yīng)因子1(ERF1)和茉莉酮酸酯不敏感轉(zhuǎn)錄因子(MYC2)整合來(lái)自于JA/ET信號(hào)轉(zhuǎn)導(dǎo)途徑的信號(hào),激活JA/ET響應(yīng)的防衛(wèi)相關(guān)基因[63,64]。JA和ET同調(diào)控PR-3,PR-4和PR-12等PR基因的表達(dá),這些基因編碼抗菌肽。JA在擬南芥體內(nèi)的積累對(duì)于植物防御素PR-12(PDF1.2)和抗菌肽硫堇Thi2.1的表達(dá)必不可少。進(jìn)一步研究表明,PDF1.2的表達(dá)依賴于JA和ET兩個(gè)信號(hào)同時(shí)激活,而Thi2.1的表達(dá)僅僅依賴Me-JA。另外,ET在jar1突變體中也可以產(chǎn)生誘導(dǎo)性系統(tǒng)抗性,表明在誘導(dǎo)性系統(tǒng)抗性信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,ET響應(yīng)的元件作用于JA下游[65,66]。

        2.5一氧化氮(NO)信號(hào)轉(zhuǎn)導(dǎo)途徑

        NO是一種廣泛分布于生物體內(nèi)的氣體活性分子,參與多種生理進(jìn)程,目前NO自由基作為信使物質(zhì)參與植物免疫反應(yīng)的報(bào)道也逐漸增多。它可以誘導(dǎo)植保素的積累[67],激活MAPK和防衛(wèi)基因比如苯丙素解氨酶(phenylalanine ammonia lyase,PAL)和病程相關(guān)蛋白的表達(dá)[68]。Asai等[69]研究了MAPK級(jí)聯(lián)反應(yīng)與病原菌引起的自由基釋放之間的關(guān)系,結(jié)果表明在煙草中MAPK級(jí)聯(lián)反應(yīng)調(diào)控NO ASSOCIATED1(NOA1)介導(dǎo)的NO產(chǎn)生及依賴NADPH 氧化酶的ROS產(chǎn)生。在植物與病原菌的非親合互作過(guò)程中迅速產(chǎn)生ROS和NO。許多研究證明NO通過(guò)與ROS的協(xié)同作用調(diào)控超敏反應(yīng)的程序性細(xì)胞死亡,激活植物抗病防衛(wèi)基因的表達(dá)。在煙草與死體營(yíng)養(yǎng)型真菌灰霉病菌(Botrytis cinerea)的親合互作過(guò)程中NO和ROS都增加,并激活了SA誘導(dǎo)蛋白激酶(SIPK)和一些防衛(wèi)相關(guān)的基因。功能缺失及病毒誘導(dǎo)的基因沉默(VIGS)分析發(fā)現(xiàn)NO在對(duì)抗B. cinerea的基礎(chǔ)抗性及誘導(dǎo)PR-1表達(dá)中起到了關(guān)鍵的作用。與此相反,ROS和病斑的擴(kuò)展呈正相關(guān)[70]。據(jù)Mur等[71]報(bào)道,在超敏反應(yīng)中NO也可以與SA相互作用調(diào)控ET的產(chǎn)生,最終影響超敏反應(yīng)的形成。

        2.6異三聚體G蛋白信號(hào)轉(zhuǎn)導(dǎo)途徑

        異三聚體G蛋白(Heterotrimeric G)目前被認(rèn)為是普遍存在于真核生物包括植物、真菌和動(dòng)物中的信號(hào)轉(zhuǎn)導(dǎo)元件,參與了很多的激素介導(dǎo)的生理過(guò)程。在擬南芥和水稻中典型的G蛋白由一個(gè)α亞基(GPA1),一個(gè)β亞基(AGB1)和兩個(gè)γ亞基(AGG1和AGG2)構(gòu)成[72]。G蛋白與特異的跨膜G蛋白偶聯(lián)受體(GPCRs)相結(jié)合。配體激活受體后引起Gα構(gòu)型的變化,催化GDP生成GTP。隨后三聚體分離成兩個(gè)功能元件:Gα亞基和Gβγ二聚體。這兩個(gè)元件獨(dú)立的與下游效應(yīng)物分子相互作用發(fā)揮信號(hào)轉(zhuǎn)導(dǎo)的功能。Gα本身具有的GTP酶活性催化GTP水解,導(dǎo)致三聚體的重新組合,并回到原來(lái)的非活性狀態(tài),直到下一個(gè)信號(hào)轉(zhuǎn)導(dǎo)事件發(fā)生[73]。

        G蛋白在擬南芥和水稻中與植物的抗性密切相關(guān)。在水稻中Gα信號(hào)轉(zhuǎn)導(dǎo)途徑作用于乙烯和過(guò)氧化氫的下游,參與對(duì)表皮細(xì)胞死亡的調(diào)控[74];在擬南芥中,Gβγ信號(hào)轉(zhuǎn)導(dǎo)途徑參與細(xì)胞壁防衛(wèi)反應(yīng)以及對(duì)死體營(yíng)養(yǎng)型病原菌的抗性,并且這種抗性不依賴SA-,JA-,ET-和ABA-介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)途徑[75]。Gα亞基在擬南芥中調(diào)控JA誘導(dǎo)基因的表達(dá)[76]。在擬南芥agb1-2突變體(AGB1的無(wú)義突變體)中,PAMPs如flg22或efl18引發(fā)的活性氧產(chǎn)生顯著降低,對(duì)抗根癌農(nóng)桿菌(Agrobacterium tumefaciens)的PAMP引發(fā)的免疫性(PAMP-triggered immunity,PTI)(由efl18引發(fā))也受到影響[77]。由NADPH 氧化酶介導(dǎo)的活性氧信號(hào)轉(zhuǎn)導(dǎo)途徑與G蛋白信號(hào)轉(zhuǎn)導(dǎo)途徑之間也存在復(fù)雜的關(guān)系,這取決于植物-病原菌互作的類型[78]。植物中異源三聚體G蛋白可能作為多種防御信號(hào)轉(zhuǎn)導(dǎo)途徑的交匯點(diǎn)發(fā)揮功能[79]。

        3 展望

        植物病害一直是制約農(nóng)作物高產(chǎn)、穩(wěn)產(chǎn)、優(yōu)質(zhì)及安全生產(chǎn)的主要問題。深入研究利用植物抗病機(jī)制將為植物病害的防治提供新的思路。植物抗病性反應(yīng)機(jī)制十分復(fù)雜多樣,植物與病原物的互作,抗病信號(hào)的轉(zhuǎn)導(dǎo)及防衛(wèi)反應(yīng)的發(fā)生過(guò)程中存在著一系列的調(diào)節(jié)因子和基因,并形成復(fù)雜的調(diào)控網(wǎng)絡(luò)。過(guò)氧化氫、水楊酸、茉莉酸、乙烯和異源三聚體G蛋白等信號(hào)分子在這個(gè)網(wǎng)絡(luò)中起著重要作用。雖然目前對(duì)植物抗病信號(hào)傳導(dǎo)途徑進(jìn)行了大量的研究,但是對(duì)于植物激素介導(dǎo)的植物防衛(wèi)反應(yīng)及病原物效應(yīng)物如何通過(guò)操縱激素合成和信號(hào)轉(zhuǎn)導(dǎo)途徑而使植物致病還不是很清楚。近年來(lái),國(guó)內(nèi)外不少研究者正致力于尋找與抗病有關(guān)的基因和抗病機(jī)制的研究,各種轉(zhuǎn)基因抗病植株相繼建成并應(yīng)用到農(nóng)業(yè)生產(chǎn)中。植物抗病機(jī)理的研究以及植物基因工程技術(shù)的應(yīng)用不但為農(nóng)作物品種的改良開辟了一條新的途徑,同時(shí)還為還將對(duì)保護(hù)環(huán)境和維持生態(tài)平衡提供新思路,具有特別重要的研究意義和廣闊的應(yīng)用前景。

        [1]Chisholm ST, Coaker G, Day B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell,2006, 124(4):803-814.

        [2]Jones JD, Dangl JL. The plant immune system[J]. Nature, 2006,444(7117):323-329.

        [3]Grant M, Lamb C. Systemic immunity[J]. Current Opinion in Plant Biology, 2006, 9(4):414-420.

        [4]Lee S, Rojas CM, Ishiga Y, et al. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens[J]. PLoS One, 2013, 8(12):e82445.

        [5]Bundó M, Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice[J]. Plant Biotechnology Journal, 2015, doi:10. 1111/pbi. 12500.

        [6]Martos GG, Terán Mdel M, Díaz Ricci JC. The defence elicitor AsES causes a rapid and transient membrane depolarization, a triphasic oxidative burst and the accumulation of nitric oxide[J]. Plant Physiology Biochemistry, 2015, 97:443-450.

        [7] Zhang Y, Li D, Zhang H, et al. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA-and JA/ET-mediated signaling pathways[J]. BMC Plant Biology,2015, 15:252.

        [8]覃瀚儀, 李魏, 戴良英. 植物代謝產(chǎn)物在抗病反應(yīng)中的功能研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2015, 31(18):256-259.

        [9] 宗兆鋒, 康振生. 植物病理學(xué)原理[M]. 北京:中國(guó)農(nóng)業(yè)出版社, 2002:226-230.

        [10]Vaz Patto MC, Rubiales D. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species[J]. Frontiers in Plant Science, 2014, 5:618.

        [11]Keerthisinghe S, Nadeau JA, Lucas JR, et al. The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis[J]. Plant Journal,2015, 81(5):684-694.

        [12]Abou-Attia MA, Wang X, Nashaat Al-Attala M, et al. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction[J]. Physiologia Plantarum, 2016, 156(3):262-277.

        [13]Shafiei R, Hang C, Kang JG, et al. Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina[J]. Molecular Plant Pathology, 2007,8(6):773-784.

        [14]Suh SJ, Wang YF, Frelet A, et al. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells[J]. Journal of Biological Chemistry, 2007, 282(3):1916-1924.

        [15]Vargas P, Farias GA, Nogales J, et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system[J]. Environmental Microbiology Reports, 2013,5(6):841-850.

        [16]Han Y, Zhang K, Yang J, et al. Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties[J]. BMC Genomics. 2015, 16(1):955.

        [17]Ding L, Xu H, Yi H, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One,2011, 6:e19008.

        [18]Cho MH, Lee SW. Phenolic phytoalexins in rice:biological functions and biosynthesis[J]. International Journal of Molecular Sciences, 2015, 16(12):29120-29133.

        [19]Yamamura C, Mizutani E, Okada K, et al. Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice[J]. Plant Journal, 2015,;84(6):1100-1113.

        [20]Schmelz EA, Kaplan F, Huffaker A, et al. Identity, regulation,and activity of inducible diterpenoid phytoalexins in maize[J]. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108(13):5455-4560.

        [21]de Wit PJ. How plants recognize pathogens and defend themselves[J]. Cellular and Molecular Life Sciences, 2007, 64(21):2726-2732.

        [22]Stam R, Mantelin S, McLellan H, et al. The role of effectors in nonhost resistance to filamentous plant pathogens[J]. Frontiers in Plant Science, 2014, 5:582.

        [23]Schoonbeek HJ, Wang HH, Stefanato FL, et al. Arabidopsis EFTu receptor enhances bacterial disease resistance in transgenic wheat[J]. New Phytologist, 2015, 206(2):606-613.

        [24]Kumar D, Kirti PB. Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut[J]. Plant Biotechnology Journal, 2015, 13(1):73-84.

        [25]Bentur JS, Rawat N, Divya D, et al. Rice-gall midge interactions:Battle for survival[J]. Journal of Insect Physiology, 2015, pii:S0022-1910(15)00198-5.

        [26]Durrant WE, Dong X. Systemic acquired resistance[J]. Annual Review of Phytopathology, 2004, 42:185-209.

        [27]Lee HJ, Park YJ, Seo PJ, et al. Systemic immunity requires SnRK2. 8-mediated nuclear import of NPR1 in Arabidopsis[J]. Plant Cell, 2015, 27(12):3425-3438.

        [28]Jaouannet M, Rodriguez PA, Thorpe P, et al. Plant immunity in plant-aphid interactions[J]. Frontiers in Plant Science, 2014, 5:663.

        [29]Strugala R, Delventhal R, Schaffrath U. An organ-specific view on non-host resistance[J]. Frontiers in Plant Science, 2015, 6:526.

        [30]Kang Z, Buchenauer H. Immunocytochemical localization of cell wall-bound thionins and hydroxyproline-rich glycoproteins in Fusarium culmorum-infected wheat spikes[J]. Journal of Phytopathology, 2003, 151(3):120-129.

        [31]Oh SK, Lee S, Chung E, et al. Insight into types I and II nonhost resistance using expression patterns of defense-related genes in tobacco[J]. Planta, 2006, 223(5):1101-1107.

        [32]Hückelhoven R. Powdery mildew susceptibility and biotrophic infection strategies[J]. FEMS Microbiology Letters, 2005, 245(1):9-17.

        [33]Ellis J. Insights into nonhost disease resistance:can they assist disease control in agriculture?[J]Plant Cell, 2006, 18(3):523-528.

        [34]Douchkov D, Lück S, Johrde A, et al. Discovery of genes affecting resistance of barley to adapted and non-adapted Powdery mildew fungi[J]. Genome Biology, 2014, 15(12):518.

        [35]Hiruma K, Takano Y. Roles of EDR1 in non-host resistance of Arabidopsis[J]. Plant Signaling & Behavior, 2011, 6(11):1831-1833.

        [36]Johansson ON, Fantozzi E, Fahlberg P, et al. Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana[J]. Plant Journal, 2014, 79(3):466-476.

        [37]Lipka U, Fuchs R, Lipka V. Arabidopsis non-host resistance to Powdery mildews[J]. Current Opinion in Plant Biology, 2008, 11(4):404-411.

        [38]Wen Y, Wang W, Feng J, et al. Identification and utilization of a sow thistle Powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):2117-2129.

        [39]Tuteja N, Mahajan S. Calcium signaling network in plants[J]. Plant Signaling & Behavior, 2007, 2(2):79-85.

        [40]Arnaud D, Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens[J]. Molecular Plant, 2015, 8(4):566-581.

        [41]Urquhart W, Gunawardena AH, Moeder W, et al. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+dependent manner[J]. Plant Molecular Biology, 2007, 65(6):747-761.

        [42]Beneloujaephajri E, Costa A, L'Haridon F, et al. 2013. Production of reactive oxygen species and wound-induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium[J]. BMC Plant Biology 13:160.

        [43]Ali R, Ma W, Lemtiri-Chlieh F, et al. Death don’t have no mercy and neither does calcium:Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity[J]. Plant Cell, 2007,19(3):1081-1095.

        [44]Jeandroz S, Lamotte O, Astier J, et al. There's more to the picture than meets the eye:nitric oxide cross talk with Ca2+signaling[J]. Plant Physiology, 2013, 163:459-470.

        [45]Du L, Ali GS, Simons KA, et al. Ca2+/calmodulin regulates salicylicacid-mediated plant immunity[J]. Nature, 2009, 457(7233):1154-1158.

        [46]Zhang L, Du L, Shen C, et al. Regulation of plant immunity throughubiquitin-mediated modulation of Ca2+-calmodulin-AtSR1/CAMTA3 signaling[J]. Plant Journal, 2014, 78(2):269-281.

        [47]Liu D, Wen J, Liu J, et al. The roles of free radicals in amyotrophic lateral sclerosis:reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids[J]. FASEB Journal,1999, 13(15):2318-2328.

        [48]Ishibashi Y, Kasa S, Sakamoto M, et al. A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination[J]. PLoS One, 2015, 10(11):e0143173.

        [49]You J, Chan Z. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Science, 2015, 6:1092.

        [50]Slesak I, Libik M, Karpinska B, et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses[J]. Acta Biochimica Polonica, 2007,54(1):39-45.

        [51]Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance[J]. Plant Cell, 1996, 8:1809-1819.

        [52]Park SW, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science,2007, 318(5847):113-116.

        [53]Chakravortty D, Kato Y, Sugiyama T, et al. The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW 267. 4 macrophage cells:a role of Raf-1 in lipopolysaccharide signaling[J]. Journal of Immunology, 2001,166(3):2011-2017.

        [54]Massoud K, Barchietto T, Le Rudulier T, et al. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis[J]. Plant Physiology, 2012, 159(1):286-298.

        [55]Spoel SH, Mou Z, Tada Y, et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity[J]. Cell, 2009, 137(5):860-872.

        [56]Zhang X, Chen S, Mou Z. Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis[J]. Journal of Plant Physiology, 2009, 167(2):144-148.

        [57]Desveaux D, Maréchal A, Brisson N. Whirly transcription factors:defense gene regulation and beyond[J]. Trends in Plant Science,2005, 10:95-102.

        [58]Shah J, Kachroo P, Klessig DF. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent[J]. Plant Cell, 1999, 11(2):191-206.

        [59]Yang YX, Ahammed GJ, Wu C, et al. Crosstalk among jasmonate,salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science,2015, 16(5):450-461.

        [60]Pozo MJ, Van Der Ent S, Van Loon LC, et al. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana[J]. New Phytologist, 2008, 180(2):511-523.

        [61]Gaudet DA, Wang Y, Penniket C, et al. Morphological and molecular analyses of host and nonhost interactions involving barley and wheat and the covered smut pathogen Ustilago hordei[J]. Molecular Plant-Microbe Interactions, 2010, 23(12):1619-1634.

        [62]Yan L, Zhai Q, Wei J, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores[J]. PLoS Genetics, 2013, 9(12):e1003964.

        [63]Lorenzo O, Piqueras R, Sáanchez-Serrano JJ, et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell, 2003, 15(1):165-178.

        [64]Lorenzo O, Chico JM, Sáanchez-Serrano JJ, et al. JASMONATEINSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16(7):1938-1950.

        [65]Zarate SI, Kempema LA, Walling LL, et al. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses[J]. Plant Physiology, 2007 143(2):866-875.

        [66]Penninckx IA, Thomma BP, Buchala A, et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis[J]. Plant Cell, 1998, 10(12):2103-2113.

        [67]Modolo LV, Cunha FQ, Braga MR, et al. Nitric oxide synthasemediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor[J]. Plant Physiology, 2002, 130(3):1288-1297.

        [68]Stefano MD, Ferrarini A, Delledonne M. Nitric oxide functions in the plant hypersensitive disease resistance response[J]. BMC Plant Biology, 2005, 5(Suppl 1):S10.

        [69]Asai S, Ohta K, Yoshioka H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana[J]. Plant Cell, 2008, 20(5):1390-1406.

        [70]Asai S, Mase K, Yoshioka H. Role of nitric oxide and reactive oxygen[corrected]species in disease resistance to necrotrophic pathogens[J]. Plant Signaling Behavior, 2010, 5(7):872-874.

        [71]Mur LA, Laarhoven LJ, Harren FJ, et al. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response[J]. Plant Physiology, 2008, 148(3):1537-1546.

        [72]Mason MG, Botella JR. Completing the heterotrimer:isolationand characterization of an Arabidopsis thaliana G protein γ-subunit cDNA[J]. Proceedings of the National Academy of Sciences USA, 2000, 97(36):14784-14788.

        [73]Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors[J]. Molecular Cell Biology, 2008, 9(1):60-71.

        [74]Steffens B, Sauter M. Heterotrimeric G protein signaling is required for epidermal cell death in rice[J]. Plant Physiology, 2009, 151(2):732-740.

        [75]Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, et al. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi[J]. Molecular Plant, 2012, 5(1):98-114.

        [76]Okamoto H, G?bel C, Capper RG, et al. The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2009, 60(7):1991-2003.

        [77]Ishikawa A. The Arabidopsis G-protein beta-subunit is required for defense response against Agrobacterium tumefaciens[J]. Bioscience, Biotechnology, & Biochemistry, 2009, 73(1):47-55.

        [78]Torres MA, Morales J, Sánchez-Rodríguez C, et al. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein[J]. Molecular Plant-Microbe Interactions, 2013, 26(6):686-694.

        [79]Liu J, Ding P, Sun T, et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases[J]. Plant Physiology, 2013, 161(4):2146-2158.

        (責(zé)任編輯李楠)

        Research Advances in the Mechanism and Signal Transduction of Plant Disease Resistance

        DING Li-na1YANG Guo-xing2
        (1. College of Life Sciences,Jiangsu University,Zhenjiang 212013;2. College of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095)

        The mechanism of plant disease resistance is the focus of plant pathology. With the development of the molecular biology,people has gained more and more insights into the interaction between plant host and pathogens. In this review,the recent research advances on molecular mechanism of plants disease resistance are summarized. It also presented the function of several signal molecular such as calcium Ion,nitric oxide,reactive oxygen species,salicylic acid,jasmonic acid/ethylene,and heterotrimeric G proteins,which are known to play important role in inducing plant defense response. In addition,the prospect of future work on plant defense research is discussed in the review,aiming to offer new thinking for the development of disease control stratey.

        mechanism of plant disease resistance;signal molecular;defense response;signal transduction

        2016-03-01

        國(guó)家自然科學(xué)基金項(xiàng)目(31200209),中國(guó)博士后科學(xué)基金項(xiàng)目(2013M531277),江蘇省博士后科學(xué)基金項(xiàng)目(1201070C),江蘇大學(xué)高級(jí)人才啟動(dòng)基金項(xiàng)目(11JDG121)

        丁麗娜,女,博士,碩士生導(dǎo)師,研究方向:植物與微生物互作及植物抗病機(jī)制;E-mail:lnding6@126.com

        猜你喜歡
        信號(hào)轉(zhuǎn)導(dǎo)抗病侵染
        我國(guó)小麥基因組編輯抗病育種取得突破
        揭示水霉菌繁殖和侵染過(guò)程
        Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
        bZIP轉(zhuǎn)錄因子在植物激素介導(dǎo)的抗病抗逆途徑中的作用
        葡萄新品種 優(yōu)質(zhì)又抗病
        蕓薹根腫菌侵染過(guò)程及影響因子研究
        甘藍(lán)根腫病菌休眠孢子的生物學(xué)特性及侵染寄主的顯微觀察
        HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
        鈣敏感受體及其與MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系
        番茄果實(shí)感染灰霉病過(guò)程中H2O2的抗病作用
        日韩精品成人无码专区免费| 欧洲乱码伦视频免费| 日韩女优中文字幕在线| 高潮av一区二区三区| 亚洲精品视频中文字幕| 97精品人人妻人人| 情侣黄网站免费看| 无遮挡很爽很污很黄的女同| 医院人妻闷声隔着帘子被中出 | 影音先锋女人av鲁色资源网久久| 久久97精品久久久久久久不卡| 国产av大片在线观看| 亚洲成人av一区二区| 欧美国产激情18| 国精产品推荐视频| 亚洲AV毛片无码成人区httP| 亚洲区一区二区中文字幕| 亚州av高清不卡一区二区| 欧美丰满少妇xxxx性| a级国产乱理伦片在线播放| 久久亚洲国产成人亚| 一区二区三区精品偷拍| av在线免费观看网站,| 一本一道人人妻人人妻αv| 一本之道高清无码视频| 国产精品va在线观看一| 美利坚合众国亚洲视频| 亚洲开心婷婷中文字幕| 欧美怡红院免费全部视频| 亚洲成在人网av天堂| 国产av自拍在线观看| 精品久久有码中文字幕| 亚洲人成网址在线播放| 久久九九青青国产精品| 亚洲在中文字幕乱码熟女| 白白白在线视频免费播放| 亚洲欧洲精品无码av| 亚洲日韩精品久久久久久| 人妻少妇中文字幕av| 久久免费看黄a级毛片| 国产女人高潮视频在线观看|