穆彩琴,張瑞娟,屈聰玲,齊 曉,米 怡,楊致榮
(1.山西農(nóng)業(yè)大學(xué)文理學(xué)院,山西太谷030801;2.山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,山西太谷030801)
高等植物抽穗開花調(diào)控的分子網(wǎng)絡(luò)
穆彩琴1,張瑞娟2,屈聰玲2,齊 曉2,米 怡2,楊致榮1
(1.山西農(nóng)業(yè)大學(xué)文理學(xué)院,山西太谷030801;2.山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,山西太谷030801)
抽穗開花是高等植物從營養(yǎng)生長向生殖生長轉(zhuǎn)變的過程,該過程受到眾多基因的調(diào)控,這些基因又相互作用形成了一個復(fù)雜的調(diào)控網(wǎng)絡(luò)。綜述了近年來模式植物擬南芥和水稻抽穗開花調(diào)控分子機(jī)制的研究進(jìn)展,重點介紹了植物抽穗開花調(diào)控的光周期途徑、赤霉素途徑、自主途徑和春化途徑,比較了這些途徑在擬南芥和水稻中的異同。最后,結(jié)合作者對谷子抽穗開花調(diào)控分子機(jī)制的研究,探討了未來的研究方向。
植物;擬南芥;水稻;抽穗開花;分子網(wǎng)絡(luò)
抽穗開花是植物生長發(fā)育過程中的重要環(huán)節(jié)之一,該過程受到光周期、溫度、激素和自身發(fā)育狀態(tài)等眾多內(nèi)外因素的綜合調(diào)控,且不同植物間的調(diào)控機(jī)制也不盡相同。
近年來,有關(guān)植物抽穗開花調(diào)控機(jī)制的研究取得了飛速發(fā)展。目前,研究最清楚的是擬南芥和水稻的開花途徑。在擬南芥中主要存在以下4種調(diào)控途徑:春化途徑,光周期途徑,赤霉素途徑以及自身發(fā)育途徑[1]。其中,春化途徑和光周期途徑是受外界條件影響的,而赤霉素和自身發(fā)育途徑不受外界環(huán)境的影響,主要由自身發(fā)育狀態(tài)所決定。在水稻中存在與擬南芥光周期途徑相似的開花途徑,即水稻中Heading date 1(Hd1),Heading date 3a(Hd3a),Heading date 6(Hd6)和GIGANTEA(OsGI)基因與擬南芥中的CONSTANS(CO),F(xiàn)LOWERING LOCUS T(FT),CK2和GI基因分別同源,但另外2條途徑是水稻中所特有的。因此,長日照植物擬南芥和短日照植物水稻抽穗開花調(diào)控機(jī)制有類似之處,但又不完全相同。因此,筆者分別以擬南芥和水稻為例,介紹了高等植物抽穗開花調(diào)控的分子網(wǎng)絡(luò)。
擬南芥是雙子葉長日照植物,也是經(jīng)典的模式植物,對它的開花途徑研究的最為清楚。擬南芥中主要存在4條開花調(diào)控途徑:光周期途徑、赤霉素途徑、春化途徑和自主開花途徑。
1.1 光周期途徑
在眾多外界環(huán)境中,植物對光周期信號尤其敏感,并據(jù)此調(diào)節(jié)自身的開花時間。CO是光周期途徑的一個關(guān)鍵基因,在植物生物鐘與開花間起著重要的樞紐作用。CO是BBX家族成員,含有2個B-Box結(jié)構(gòu)和一個CCT結(jié)構(gòu)域。CO基因是植物開花的正調(diào)控因子,其表達(dá)受到mRNA和蛋白水平的雙重調(diào)控。在短日照下,CO基因的高表達(dá)只出現(xiàn)在黑夜,而CO蛋白在黑暗條件下卻迅速降解,因此,不能促進(jìn)開花;而在長日照下,CO基因在傍晚和黑夜都具有高水平的表達(dá),CO蛋白在光照下可穩(wěn)定存在,從而促進(jìn)開花[2-3]。在轉(zhuǎn)錄水平上,CO受到眾多基因的調(diào)控,這些基因包括CYCLING DOF FACTOR1(CDF1),F(xiàn)LAVIN-BINDING KELCH REPEAT FBOX 1(FKF1),GIGANTEA(GI),CONSTITUTIVE PHOTOMORPHOGENESIS1(COP1)和EFL3等。其中,CDF蛋白可直接結(jié)合到CO基因的啟動子區(qū)域并抑制CO基因表達(dá),而這種抑制作用可被FKF1和GI蛋白解除[4]。在蛋白水平上,PHYTOCHROME B(PHYB)在上午促進(jìn)CO蛋白發(fā)生泛素化降解;而PHYA,CRYPTOCHROME 1(CRY1)以及CRY2可在傍晚穩(wěn)定CO蛋白的表達(dá)。在紅光下,PHYTOCHROME-DEPENDENTLATE-FLOWERING(PHL),PHYB和CO可以形成一個復(fù)合體,共同調(diào)控植物的光周期反應(yīng)[5]。FT是RAF激酶的相關(guān)蛋白,扮演一個長途信號,在葉片中通過維管系統(tǒng)向頂端分生組織遷移[6-7]。最終,CO基因通過調(diào)控FLOWERING LOCUS T(FT)基因的表達(dá)進(jìn)而調(diào)控植物開花[3]。
1.2 赤霉素途徑
赤霉素途徑也是擬南芥開花的一個重要途徑。在短日照條件下,用赤霉素處理擬南芥,能加速其開花。相反,赤霉素(gibberellin,GA)信號受阻的突變體表現(xiàn)為晚花表型[8],GA缺失突變體ga1-3缺失編碼杉合成酶的基因,該基因能催化赤霉素的合成。該突變體與GA受體GID1的三突變體(gid1a-1 gid1b-1 gid1c-1)在長日照甚至是全日照下也表現(xiàn)晚花。因此,在短日照條件下,突變體ga1-3不開花;在長日照條件下,花期明顯推遲[8]。PIF3,PIF4,PIF5在韌皮部伴胞處表達(dá),可以誘導(dǎo)FT和它的同源基因TSF表達(dá),并促進(jìn)開花。GA能夠在低溫15℃下不依靠PIF,F(xiàn)T和TSF基因,可能直接作用于枝條頂端分生組織來誘導(dǎo)開花。當(dāng)GA的表達(dá)降低時,能使DELLA蛋白聚集,DELLA蛋白可能是通過直接調(diào)節(jié)PIF4的活性來控制FT的表達(dá)。當(dāng)GA表達(dá)量恢復(fù)時,能解除這種抑制。同時,植物從營養(yǎng)生長向生殖生長轉(zhuǎn)變是受環(huán)境溫度的影響,GA信號可能在這一過程中起著關(guān)鍵作用[9]。
1.3 春化途徑
春化途徑介導(dǎo)植物開花是通過低溫誘導(dǎo)產(chǎn)生的。在春化途徑中有2個重要的基因:FLOWERING LOCUS C(FLC)和FRIGIDA(FRI)。FLC基因編碼一個MADS-box轉(zhuǎn)錄因子,通過直接結(jié)合到下游FLOWERING LOCUS D(FD),F(xiàn)T和SOC1等的染色體上抑制其轉(zhuǎn)錄從而抑制開花[10]。且FLC也是自主途徑的開花抑制因子,是擬南芥開花春化途徑和自主途徑中的中心抑制因子。擬南芥的春化途徑對FLC要經(jīng)過3個階段的處理:首先需要激活FLC的表達(dá);在冷處理過程中使FLC的染色質(zhì)程序重排;最后通過表觀遺傳沉默F(xiàn)LC來促進(jìn)開花[11]。而FRI是FLC基因高表達(dá)所必需的;但當(dāng)FRI缺失時,F(xiàn)LC EXPRESSOR(FLX),F(xiàn)LX-LIKE4(FLX4),F(xiàn)RI ESSENTIAL1(FES1)和SUPPRESSOR OF FRI4(SUF4)可以共同維持FLC的基礎(chǔ)表達(dá)[12]。近年來研究表明,春化過程主要通過低溫誘導(dǎo)FLC基因表達(dá)的非編碼RNA以及VERNALIZATION1(VRN1),VRN2和 VERNALIZATIONINDEPENDENTS3(VIN3)等介導(dǎo)的組蛋白甲基化抑制FLC基因的表達(dá)來完成[13-15]。盡管春化作用可以促進(jìn)植物開花,但短時間的冷脅迫卻延遲植物開花[16]。HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1(HOS1)是開花時間和冷脅迫應(yīng)答的關(guān)鍵調(diào)控因子。該基因編碼一個RING型E3泛素連接酶,通過泛素化途徑降解光周期途徑的關(guān)鍵因子CO蛋白而延遲開花,因此,CO是光周期途徑和冷脅迫途徑的樞紐[17]。Jung等[16]研究表明,在短期冷脅迫時,HOS1與FVE-HDA6復(fù)合體相結(jié)合,導(dǎo)致負(fù)調(diào)控因子HDA6從FLC上解離下來,從而使FLC的轉(zhuǎn)錄被激活而抑制開花。因此,HOS1對開花的調(diào)控是通過CO的降解和FLC激活而實現(xiàn)的。CRT/DRE BINDING FACTORS(CBFs)和COLD REGULATED(COR)是2個響應(yīng)冷脅迫的基因,通過正調(diào)控FLC的表達(dá)而抑制開花;反過來它們的表達(dá)又受到SOC1的負(fù)調(diào)控,從而形成一個負(fù)反饋調(diào)節(jié)環(huán)[15]。
1.4 自主開花途徑
自主途徑的突變體無論在長日照條件還是在短日照條件下都延遲開花,尤其在短日照條件下較為明顯。在這些突變體中發(fā)現(xiàn),F(xiàn)LC mRNA的表達(dá)量比較高,說明在自主途徑中FLC是開花抑制因子[18],而FCA(FLOWERING LOCUS CA),F(xiàn)Y(FLOWERING LOCUS Y),F(xiàn)PA(FLOWERING LOCUS PA),F(xiàn)VE(FLOWERING LOCUS VE),LD(LUMINIDEPENDENS),F(xiàn)LD(FLOWERING LOCUS D)和FLK(FLOWERING LOCUSKH DOMAIN)基因?qū)种艶LC的表達(dá)從而促進(jìn)開花[19]。在這些自主途徑的基因中,F(xiàn)CA,F(xiàn)PA,F(xiàn)Y和FLK在控制開花過程中參與RNA的調(diào)節(jié),而長日照條件下,F(xiàn)VE和FLD參與了染色質(zhì)修飾[20-23]。
與擬南芥不同,水稻是一種短日照植物。在水稻中現(xiàn)研究比較清楚的開花途徑有OsGI-Hd1-Hd3a途徑,Ghd7-Ehd1-Hd3a/RFT1途徑以及DTH2介導(dǎo)的開花途徑[24-26]。
2.1OsGI-Hd1-Hd3a開花途徑
Heading date 1(Hd1)與擬南芥中的CO基因同源,但與其功能不同,Hd1在開花調(diào)控上具有雙重功能:在短日照下促進(jìn)水稻的開花,在長日照下抑制水稻的開花。Hd1通過調(diào)控HEADING DATE 3a(Hd3a)的表達(dá)來促進(jìn)植物開花,Hd3a與擬南芥中的FT同源[27-28]。Heading date Associated Factor 1(HAF1)與Hd1相互作用,HAF1介導(dǎo)泛素化通過26S蛋白酶體途徑使目標(biāo)基因Hd1降解[29]。在水稻的光周期途徑中,HAF1對于Hd1的積累是必須的。在短日照條件下,HAF1通過Hd1促進(jìn)水稻開花。但HAF1在長日照和短日照條件下都能上調(diào)Ehd,Hd1,RFT1和Hd3a的表達(dá),表明HAF1可能與OsGIHd1-Hd3a開花途徑有關(guān)[24-25]。
2.2Ghd7-Ehd1-Hd3a/RFT1開花途徑
Ehd1和DTH2介導(dǎo)的開花途徑是水稻所特有的,在擬南芥中未發(fā)現(xiàn),它們都是通過調(diào)節(jié)成花素基因 Hd3a和 RICE FLOWERING LOCUS T 1(RFT1)的表達(dá)而控制水稻的抽穗開花[30-31]。AP2家族基因SNP和OsIDS1中有miR172的靶位點,抑制Ehd1基因的表達(dá),從而抑制開花[32]。而Hd1在短日照條件下能提高Ehd1的表達(dá),在長日照條件下抑制其表達(dá)[33-34]。Ehd4也是水稻中特有的調(diào)控開花的基因,編碼一個CCCH類鋅指蛋白,通過Ehd1上調(diào)成花素基因Hd3a和RFT1的表達(dá)而促進(jìn)開花,但獨立于已知的其他Ehd1調(diào)控因子[35]。Ghd7也是一個受光周期控制的基因,mRNA呈晝夜節(jié)律性表達(dá),短日照下表達(dá)受到抑制;而在長日照下,Ghd7可以通過抑制Hd3a和Ehd1的表達(dá)而抑制抽穗,然而OsTrithorax 1(OsTrx1)與Ehd3結(jié)合能抑制Ghd7的表達(dá)[36-37]。此外,當(dāng)OsLFL1過表達(dá)的時候也能抑制Ehd1的表達(dá)[38-39]。
2.3DTH2介導(dǎo)的開花途徑
Days to heading on chromosome 2(DTH2)是一個在長日照條件下促進(jìn)抽穗開花的數(shù)量性狀位點,編碼CONSTANS蛋白,通過誘導(dǎo)開花基因Heading date 3a(Hd3a)和RICE FLOWERING LOCUS T 1(RFT1)的表達(dá)來誘導(dǎo)植物開花,獨立于Hd1和E-h(huán)d1介導(dǎo)的開花途徑[31]。DTH2基因中的2個功能性核苷酸多態(tài)性與亞洲北部自然長日照條件下抽穗早、生殖適應(yīng)性提高有關(guān)。Ghd7和OsPRR37可使水稻種植區(qū)域擴(kuò)展到溫帶甚至是溫度更低的地區(qū)[40];而Ghd7的同源基因ZmCCT有可能幫助了玉米從熱帶到溫帶地區(qū)的擴(kuò)散[41]。這表明調(diào)控光周期的微效數(shù)量性狀基因座在農(nóng)作物適應(yīng)及多樣化中發(fā)揮了重要的作用,有可能成為今后農(nóng)作物馴化和育種過程中進(jìn)行人工選擇的重要靶標(biāo)。
綜述了以FT和CO為樞紐的植物抽穗開花調(diào)控的分子網(wǎng)絡(luò),該網(wǎng)絡(luò)涉及了光周期途徑、春化途徑、激素途徑和自主途徑等眾多途徑,這些途徑之間又存在著交叉反應(yīng)。盡管如此,目前有關(guān)植物抽穗開花調(diào)控機(jī)制的認(rèn)識仍然只是冰山一角,還有眾多的問題亟待解決。在谷子抽穗開花調(diào)控機(jī)制的研究中,發(fā)現(xiàn)谷子基因組編碼22個FT基因,其中極少數(shù)基因在幼苗時期就開始大量表達(dá)。如果FT基因的表達(dá)可以誘導(dǎo)植物開花,那么這些幼苗期表達(dá)的FT基因是否也參與了植物抽穗開花的調(diào)控,其功能是什么?其可以借鑒本研究的一些結(jié)論,為后續(xù)谷子抽穗開花途徑奠定基礎(chǔ)。短日照植物水稻與長日照植物擬南芥抽穗開花的調(diào)控網(wǎng)絡(luò)有很大的不同,包括參與調(diào)控的基因和調(diào)控的方式。那么同為短日照植物的水稻和谷子,它們抽穗開花調(diào)控機(jī)制是否完全相同?此外,干旱等逆境通常會誘導(dǎo)植物開花,以盡快完成其生活史,但目前有關(guān)逆境促進(jìn)植物開花的研究還不是很深入。
植物最佳的抽穗開花時間不僅在很大程度上決定了其對局部環(huán)境和栽培地域擴(kuò)張的適應(yīng),而且還影響著農(nóng)作物的產(chǎn)量和品質(zhì)。因此,抽穗開花時間相關(guān)基因也成為目前作物遺傳育種的一個重要靶標(biāo)。通過精準(zhǔn)分子設(shè)計和全基因組分子標(biāo)記,以抽穗開花相關(guān)基因作為靶標(biāo),結(jié)合對穗型、粒型、光周期、氮高效和抗逆等相關(guān)性狀的選育,培育生育期適中、株型理想、高產(chǎn)、多抗且耐貧瘠的超級農(nóng)作物將成為未來全基因組分子育種的方向。
[1]Andres F,Coupland G.The genetic basis of flowering responses toseasonal cues[J].Nat RevGenet,2012,13(9):627-639.
[2]Samach A,Onouchi H,Gold S E.Distinct roles ofCONSTANStarget genes in reproductive development of Arabidopsis[J].Science,2000,288:1613-1616.
[3] Valverde F,Mouradov A,Soppe W.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering [J].Science,2004,303:1003-1006.
[4]Sawa M,Nusinow D A,Kay S A.FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science,2007,318:261-265.
[5]Endo M,Tanigawa Y,Murakami T.PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS[J].Proc Natl A-cad Sci USA,2013,110(44):18017-18022.
[6]Corbesier L,Vincent C,Jang S.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316:1030-1033.
[7]Lifschitz E,Eviatar T,Rozman A.The tomato FT ortholog triggers systemic signals that regulate growth and floweringand substitute for diverse environmental stimuli[J].Proc Natl Acad Sci USA,2006,103(16):6398-6403.
[8]Griffiths J,Murase K,Rieu I.Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J].Plant Cell,2006,18(12):3399-3414.
[9]Galvao V C,Collani S,Horrer D.Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana[J].Plant J,2015,84(5):949-962.
[10]Searle I,He Y,Turck F.The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J].Genes Dev,2006,20(7):898-912.
[11]SongJ,Irwin J,Dean C.Remembering the prolonged cold of winter [J].Curr Biol,2013,23(17):R807-811.
[12]Ding L,Kim S Y,Michaels S D.FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis[J]. Plant Physiol,2013,163(1):243-252.
[13]Sung S.Vernalization in Arabidopsis thaliana is mediated by the PHDfinger protein VIN3[J].Nature,2004,427:159-164.
[14]Heo J B,Sung S.Vernalization-mediated epigenetic silencing by a longintronic noncodingRNA[J].Science,2011,331:76-79.
[15]Swiezewski S.Cold-induced silencingbylongantisense transcripts ofan Arabidopsis Polycomb target[J].Nature,2009,462:799-802.
[16]Jung J H,Park J H,Lee S.The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis[J].Plant Cell,2013,25(11):4378-4390.
[17]Jung J H,Seo P J,Park C M.The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress[J].J Biol Chem,2012,287(52):43277-43287.
[18]Mauro-Herrera M,Wang X,Barbier H.Genetic control and comparative genomic analysis offloweringtime in Setaria(Poaceae)[J]. G3-Genes Genomes Genetics,2013,3(2):283-295.
[19]Simpson G G.The autonomous pathway:epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time[J].Curr Opin Plant Biol,2004,7(5):570-574.
[20]Amasino R.Seasonal and developmental timing of flowering[J]. Plant J,2010,61(6):1001-1013.
[21]Kim D H,Sung S.Genetic and epigenetic mechanisms underlying vernalization[J].Arabidopsis Book,2014,12:171-186.
[22]Rataj K,Simpson GG.Message ends:RNA3'processingand floweringtime control[J].J Exp Bot,2014,65(2):353-363.
[23]He Y.Chromatin regulation of flowering[J].Trends Plant Sci,2012,17(9):556-562.
[24]Tsuji H,Taoka K,ShimamotoK.Regulation offloweringin rice:two florigen genes,a complex gene network,and natural variation[J]. Curr Opin Plant Biol,2011,14(1):45-52.
[25]SongYH,ShimJ S,Kinmonth-SchultzH A.Photoperiodic flowering:time measurement mechanisms in leaves[J].Annu Rev Plant Biol,2015,66:441-464.
[26]Xue W,XingY,WengX.Natural variation in Ghd7 is an important regulator of headingdate and yield potential in rice[J].Nat Genet,2008,40(6):761-767.
[27]Itoh H,Nonoue Y,Yano M.A pair of floral regulators sets critical day length for Hd3a florigen expression in rice[J].Nat Genet,2010,42(7):635-638.
[28]Yano M,Katayose Y,Ashikari M.Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS[J].Plant Cell,2000,12(12):2473-2484.
[29]YangY,F(xiàn)u D,Zhu C.The rING-finger ubiquitin ligase HAF1 mediates headingdate 1 degradation duringphotoperiodic floweringin rice[J].Plant Cell,2015,27(9):2455-2468.
[30]Doi K.Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independentlyofHd1[J].Genes Dev,2004,18(8):926-936.
[31]Wu W,Zheng X M.Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J].Proc Natl Acad Sci USA,2013,110(8):2775-2780.
[32]Lee Y S,Lee D Y.Rice miR172 induces flowering by suppressing OsIDS1 and SNB,two AP2 genes that negatively regulate expression ofEhd1 and florigens[J].Rice(NY),2014,7(1):31.
[33]Wei X,Xu J,Guo H.DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously[J].Plant Physiol,2010,153(4):1747-1758.
[34]Ishikawa R,Aoki M.Phytochrome B regulates Heading date 1(Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice[J].Mol Genet Genomics,2011,285(6):461-470.
[35] Gao H,Zheng X M,F(xiàn)ei G.Ehd4 encodes a novel and O-ryza-genus-specific regulator of photoperiodic floweringin rice[J]. PLoSGenet,2013,9(2):e1003281.
[36]Matsubara K,Yamanouchi U,Nonoue Y.Ehd3,encoding a planthomeodomain finger-containing protein,is a critical promoter of rice flowering[J].Plant J,2011,66(4):603-612.
[37]Choi S C,Lee S,Kim S R.Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early headingdate3[J].Plant Physiol,2014,164(3):1326-1337.
[38]Peng L T,Shi Z Y,Li L.Ectopic expression of OsLFL1 in rice represses Ehd1 bybindingon its promoter[J].BiochemBiophys Res Commun,2007,360(1):251-256.
[39]Peng L T,Shi Z Y,Li L.Overexpression of transcription factor OsLFL1 delays floweringtime in Oryza sativa[J].J Plant Physiol,2008,165(8):876-885.
[40]Koo B H,Yoo SC,Park J W.Natural variation in OsPRR37 regulates headingdate and contributes torice cultivation at a wide range oflatitudes[J].Mol Plant,2013,6(6):1877-1888.
[41]Yang Q,Li Z,Li W.CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivityand accelerated the postdomestication spread of maize[J].Proc Natl Acad Sci USA,2013,110(42):16969-16974.
Molecular Network of Heading and Flowering Regulation in Higher Plants
MUCaiqin1,ZHANGRuijuan2,QUCongling2,QI Xiao2,MI Yi2,YANGZhirong1
(1.College ofArts and Sciences,Shanxi Agricultural University,Taigu 030801,China;2.College ofLife Sciences,Shanxi Agricultural University,Taigu 030801,China)
Heading and flowering is the transition stage from vegetative to reproductive growth in higher plants,which is regulated by multiple genes.These genes interact with each other and form a complex control network.This paper reviewed the molecular mechanism of heading and flowering regulation in the model plant Arabidopsis thaliana and rice in recent years,mainly focused on the photoperiod pathway,gibberellin pathway,autonomous pathway and vernalization pathway.The similarities and differences in these pathways between Arabidopsis and rice were also compared.Finally,the future research perspectives were discussed based on our research on the headingand floweringregulation in foxtail millet.
plant;Arabidopsis thaliana;rice;headingand flowering;molecular network
S943.2
A
1002-2481(2016)08-1228-05
10.3969/j.issn.1002-2481.2016.08.42
2016-03-29
山西省回國留學(xué)人員科研資助項目(2015-067);山西省留學(xué)回國人員科技活動擇優(yōu)資助項目(2014-11)
穆彩琴(1990-),女,山西柳林人,在讀碩士,研究方向:谷子抽穗開花的調(diào)控機(jī)制。楊致榮為通信作者。