亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        胰島素樣生長(zhǎng)因子系統(tǒng)與衰老的研究進(jìn)展

        2016-02-16 05:43:40付建芳任東妮楊宏偉涂艷陽(yáng)第四軍醫(yī)大學(xué)西京醫(yī)院內(nèi)分泌科陜西西安700第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科陜西西安7008哈佛醫(yī)學(xué)院布列根與婦女醫(yī)院神經(jīng)外科美國(guó)波士頓05暨南大學(xué)附屬第一醫(yī)院輸血科廣東廣州5060
        關(guān)鍵詞:生長(zhǎng)因子受體通路

        付建芳,任東妮,王 欣,楊宏偉,梁 雁,涂艷陽(yáng)(第四軍醫(yī)大學(xué)西京醫(yī)院內(nèi)分泌科,陜西西安700,第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科,陜西西安7008,哈佛醫(yī)學(xué)院布列根與婦女醫(yī)院神經(jīng)外科,美國(guó)波士頓05,暨南大學(xué)附屬第一醫(yī)院輸血科,廣東廣州5060)

        胰島素樣生長(zhǎng)因子系統(tǒng)與衰老的研究進(jìn)展

        付建芳1,任東妮2,王 欣3,楊宏偉3,梁 雁4,涂艷陽(yáng)2(1第四軍醫(yī)大學(xué)西京醫(yī)院內(nèi)分泌科,陜西西安710032,2第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科,陜西西安710038,3哈佛醫(yī)學(xué)院布列根與婦女醫(yī)院神經(jīng)外科,美國(guó)波士頓02115,4暨南大學(xué)附屬第一醫(yī)院輸血科,廣東廣州510630)

        胰島素樣生長(zhǎng)因子(IGF)系統(tǒng)是由3個(gè)配體(胰島素、IGF-1、IGF-2),3個(gè)細(xì)胞表面結(jié)合受體(Ins R、IGF-1R、IGF-2R),以及胰島素樣生長(zhǎng)因子結(jié)合蛋白(IGFBPs)和IGFBP蛋白酶組成.IGF系統(tǒng)中各因子通過(guò)與受體結(jié)合或激活細(xì)胞內(nèi)多種信號(hào)級(jí)聯(lián)反應(yīng),在細(xì)胞、組織和機(jī)體的各個(gè)生命進(jìn)程發(fā)揮重要作用,例如衰老、延緩衰老.探究影響衰老的分子機(jī)制一直以來(lái)都是科學(xué)家研究的重要課題.研究發(fā)現(xiàn)IGF-1、IGF-1R、IGFBPs在多種細(xì)胞中調(diào)節(jié)衰老和衰老相關(guān)的信號(hào)通路,而且在機(jī)體衰老相關(guān)的疾病如心腦血管疾病、骨質(zhì)疏松及椎骨老化等中發(fā)揮重要作用.

        胰島素樣生長(zhǎng)因子系統(tǒng);衰老;信號(hào)轉(zhuǎn)導(dǎo)

        0 引言

        衰老是機(jī)體各器官功能普遍的、逐漸降低的過(guò)程.在衰老的進(jìn)程中許多生理因素發(fā)揮重要作用,其中的一個(gè)因素就是胰島素樣生長(zhǎng)因子(Insulin-like growth factor,IGF)系統(tǒng).研究發(fā)現(xiàn)局部抑制胰島素樣生長(zhǎng)因子介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)會(huì)導(dǎo)致無(wú)脊椎動(dòng)物和脊椎動(dòng)物模式生物壽命的增加,既延緩衰老[1].通過(guò)靶向突變技術(shù),在無(wú)脊椎動(dòng)物的壽命決定基因方面的研究取得了顯著進(jìn)展,已經(jīng)闡明抑制胰島素/胰島素樣生長(zhǎng)因子-1信號(hào)通路能夠顯著增加壽命[2].在Caenorhabditis elegans的研究中[3-5],首先發(fā)現(xiàn)抑制daf-2(編碼insulin-like growth factor-1 receptor,IGF-1R)信號(hào)通路能夠增加壽命.在果蠅、酵母和哺乳動(dòng)物中[6-8],與daf-2信號(hào)通路類似的胰島素樣信號(hào)級(jí)聯(lián)反應(yīng)可以通過(guò)改變IGF-1信號(hào)來(lái)增加壽命.經(jīng)過(guò)科學(xué)家長(zhǎng)期探索,已有大量研究結(jié)果表明IGF系統(tǒng)在細(xì)胞、組織和機(jī)體的衰老進(jìn)程中發(fā)揮重要作用.

        1 胰島素樣生長(zhǎng)因子系統(tǒng)及功能概述

        胰島素樣生長(zhǎng)因子是一類自然生長(zhǎng)激素,在機(jī)體的生長(zhǎng)和發(fā)育中發(fā)揮重要作用.IGF家族是由胰島素(Insulin,Ins)和兩個(gè)與胰島素類似的因子IGF-1和IGF-2組成.這些因子通過(guò)與特定的細(xì)胞表面受體(Ins R、IGF-1R、IGF-2R)結(jié)合或激活多種細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)反應(yīng)來(lái)調(diào)節(jié)細(xì)胞功能.受6個(gè)可以和IGFs結(jié)合的可溶的IGF結(jié)合蛋白(Insulin-like growth factor binding proteins,IGFBPs)以及IGFBP相關(guān)蛋白(IGFBP related proteins,IGFBP-rPs)調(diào)節(jié).這些IGFBP-rPs在結(jié)構(gòu)上與IGFBPs相似,但是與IGFs結(jié)合力較低.目前很多研究將IGFBP-rPs歸于IGFBPs,例如IGFBP-rP1又稱IGFBP7[9-11].較早的研究認(rèn)為IGF系統(tǒng)是由三個(gè)配體(Insulin、IGF-1、IGF-2)、三個(gè)受體(Ins R、IGF-1R、IGF-2R)、6個(gè)IGF結(jié)合蛋白(IGFBP1-6)組成.隨著研究的深入,目前的研究認(rèn)為IGF系統(tǒng),除了上述的配體和受體,還包括IGFBPs(IGFBP1-6、IGFBP-rP1-10)和IGFBP蛋白酶[11].

        1.1 IGF家族IGF家族第一個(gè)被發(fā)現(xiàn)的成員就是胰島素,研究表明它在葡萄糖代謝中發(fā)揮重要作用,是糖尿病的主要病因.IGF-1和IGF-2之所以稱為胰島素樣(“insulin-like”)生長(zhǎng)因子是因?yàn)樗麄兡軌虼碳ぜ?xì)胞和肌肉吸收葡萄糖,而且與胰島素同源性達(dá)到50%[12-13].

        循環(huán)中的IGFs通過(guò)與高親和力的IGFBPs形成復(fù)合物防止降解[14].在組織中,IGFBPs能夠抑制IGFs與相應(yīng)受體結(jié)合,因?yàn)镮GFBPs與IGFs結(jié)合的親和力高于受體與IGFs結(jié)合的親和力.在某些情況下,IGFBPs作為一個(gè)儲(chǔ)水庫(kù)慢慢釋放IGF配體從而加強(qiáng)IGF在產(chǎn)生部位的微環(huán)境中作用量.另外,一些IGFBPs可以不依賴IGFs作用于細(xì)胞.此處要強(qiáng)調(diào)一點(diǎn),IGFBPs不與胰島素結(jié)合,因此也不干擾胰島素與胰島素受體(Ins-Ins R)結(jié)合.

        1.2 胰島素受體及IGF受體 IGF-1R和IGF-2R是組成IGF系統(tǒng)的主要受體,是兩個(gè)在結(jié)構(gòu)和功能上完全不同的跨膜糖蛋白[15-19].IGF-1R是由兩個(gè)相同的ɑ-亞基和兩個(gè)相同的β-亞基組成的四聚體[17-18,20],在結(jié)構(gòu)上與胰島素受體(Insulin receptor,IR)相似.IGFs和Ins可以交叉結(jié)合其他因子的受體,雖然親和能力弱于優(yōu)先結(jié)合的配體[21-22](圖1).這些受體在功能上認(rèn)為與IGF-1R相同,但是其生物意義仍然不清楚.IGF-2R是單體[18,23-25],與IGF-1R和IR在功能上無(wú)相關(guān)性,受體細(xì)胞外區(qū)域有三個(gè)配體結(jié)合區(qū)域,一個(gè)結(jié)合IGF-2,一個(gè)結(jié)合甘露糖-6-磷酸(mannose-6-phosphate,M6P),另一個(gè)結(jié)合未激活形式的轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor-,TGF-)[26].結(jié)合IGF-2后的復(fù)合物結(jié)合TGF-β,可以激活TGF-β[27].IGF-2R在IGF系統(tǒng)中唯一的作用是捕獲循環(huán)的IGF-2,使IGF-2被水解為可溶的片段,促進(jìn)其降解[28-33].

        受體后信號(hào)轉(zhuǎn)導(dǎo)包括胰島素受體底物(insulin receptor substrate,IRS)家族蛋白磷酸化以及磷脂酰肌醇-3(phosphatidylinositol-3,PI-3)和絲裂原激活蛋白激酶類的激活[34-35].激活的IRSs引起細(xì)胞內(nèi)Ras/Raf/Mek/Erk和PI3K信號(hào)通路激活,前者主要介導(dǎo)有絲分裂,而PI3K通路通過(guò)Akt介導(dǎo)新陳代謝和細(xì)胞生長(zhǎng)效應(yīng)(圖1).

        圖1 胰島素與相應(yīng)胰島素受體結(jié)合并激活下游信號(hào)通路示意圖

        1.3 IGFBPs家族IGFBPs和IGFBP蛋白酶是IGF系統(tǒng)的重要組成部分[11].根據(jù)與IGFs的親和力,IGFBPs分為兩組:IGF高親和力結(jié)合蛋白(IGFBP1-6);IGF低親和力的IGFBP相關(guān)蛋白IGFBP-rP1-10.IGFBPs通過(guò)與IGFs以及相應(yīng)受體結(jié)合,調(diào)節(jié)其生物活性,在多種新陳代謝和生長(zhǎng)增殖進(jìn)程中發(fā)揮重要作用.IGFBPs分別在多種細(xì)胞的生長(zhǎng)、分裂、分化、凋亡、衰老等過(guò)程中發(fā)揮重要作用,有些依賴IGF信號(hào),有些則不依賴.IGFBP蛋白酶屬于蛋白酶家族,對(duì)IGFBPs具有特異性,受IGFBPs的調(diào)控,最終調(diào)節(jié)IGFs的生物活性和下游的信號(hào)轉(zhuǎn)導(dǎo)[14,36].

        2 IGF系統(tǒng)及信號(hào)轉(zhuǎn)導(dǎo)與細(xì)胞衰老

        細(xì)胞衰老是指細(xì)胞隨時(shí)間增長(zhǎng)或外界環(huán)境壓力下停止增長(zhǎng),是不可逆的細(xì)胞周期停滯,與機(jī)體的衰老密切相關(guān).大量研究表明增加的IGF信號(hào)促進(jìn)細(xì)胞分裂、生存和癌細(xì)胞發(fā)育,抑制IGF信號(hào)被認(rèn)為能夠增長(zhǎng)壽命,延緩衰老.IGF信號(hào)調(diào)節(jié)衰老的分子機(jī)制,以及是否IGF調(diào)節(jié)細(xì)胞衰老的研究目前還知之甚少.

        2.1 IGF-1與衰老分子機(jī)制Tran等[37]研究發(fā)現(xiàn)持續(xù)IGF-1處理能夠抑制SIRT1脫乙酰酶的生物活性,使得p53乙?;约皃53穩(wěn)定性和生物活性增加,進(jìn)一步導(dǎo)致不成熟細(xì)胞衰老.另外,SIRT1的表達(dá)或p53的抑制抑制了IGF-1誘導(dǎo)的不成熟細(xì)胞的衰老.結(jié)果表明p53作為一個(gè)鏈接分子介導(dǎo)IGF-1誘導(dǎo)的細(xì)胞增殖和不成熟細(xì)胞衰老,提示在細(xì)胞衰老和成熟中IGF-1-SIRT1-p53是一個(gè)可能的分子鏈接信號(hào).

        Selman等[38]監(jiān)測(cè)了IRS1或IRS2(是胰島素和IGF-1信號(hào)受體的細(xì)胞內(nèi)效應(yīng)物)缺失的小鼠的壽命,發(fā)現(xiàn)雌性Irs1-/-小鼠壽命較長(zhǎng).此外,Irs1-/-小鼠對(duì)于一系列年齡敏感性衰老指標(biāo)包括皮膚、骨骼、免疫和運(yùn)動(dòng)功能障礙表現(xiàn)出抵抗效應(yīng).

        2.2 IGFBPs與衰老最近的研究發(fā)現(xiàn)了一個(gè)由衰老細(xì)胞分泌的分子群,被提議稱為“衰老相關(guān)分泌表型”(senescence-associated secretory phenotype,SASP).這些分泌因子可以調(diào)節(jié)衰老反應(yīng),代表正常的鄰近細(xì)胞走向衰老的一種危險(xiǎn)信號(hào),能夠增強(qiáng)損傷細(xì)胞走向衰老.研究發(fā)現(xiàn)IGFBPs家族與SASP密切相關(guān).

        2.2.1 IGFBP2 在外周循環(huán)中,IGFBP2含量?jī)H次于IGFBP3的結(jié)合蛋白[14].IGF-1是IGFBP2合成的刺激物,而生長(zhǎng)激素(growth hormone,GH)則是一個(gè)抑制物[39].IGFBP2對(duì)于健康的影響的研究有些爭(zhēng)議.一方面研究認(rèn)為低濃度血清IGFBP2與高程度的肥胖和胰島素抵抗密切相關(guān)[40].另一方面,在老年人中,低濃度血清IGFBP2提示好的身體機(jī)能,高IGFBP2濃度則提示大的傷殘、較差的身體機(jī)能、較弱的肌肉強(qiáng)度和較低的骨密度,以及較小的瘦肉和脂肪量[41].α-2-巨球蛋白(Alpha-2-macroglobulin,α2M)是唯一一個(gè)在循環(huán)中與IGFBP2結(jié)合的蛋白.最近的的研究發(fā)現(xiàn)α2M和IGFBP2可以形成復(fù)合物,但這種現(xiàn)象的生理功能還不清楚[42].

        2.2.2 IBFBP3 Kim等[43]采用cDNA微陣列技術(shù)發(fā)現(xiàn)在衰老的人真皮成纖維細(xì)胞IGFBP3含量增加.在衰老的人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells,HUVECs)中,IGFBP3在mRNA和蛋白水平均增高.在年輕的HUVECs中,下調(diào)IGFBP3的表達(dá)則能夠補(bǔ)救P53過(guò)表達(dá)誘導(dǎo)的生長(zhǎng)停滯.在年輕細(xì)胞中,上調(diào)IGFBP3或持續(xù)采用IGFBP3則能夠加速細(xì)胞衰老.另外,IGFBP3在大鼠的肝臟和血清中是隨年齡增長(zhǎng)而增加的,能量限制能夠降低IGFBP3的蛋白水平.表明IGFBP3在HUVECs細(xì)胞的衰老和體內(nèi)的衰老中具有重要作用.Elzi等[44]在人乳腺癌細(xì)胞中發(fā)現(xiàn)IGFBP3的衰老誘導(dǎo)活性受組織型纖溶酶原激活物介導(dǎo)的蛋白水解作用抑制,而這一作用能夠被另一個(gè)衰老的分泌中介血纖維蛋白溶酶原激活物抑制因子(plasminogen activator inhibitor 1,PAI-1)抵消.表明IGFBP3是PAI-1誘導(dǎo)的衰老的重要的下游靶點(diǎn).

        2.2.3 IGFBP5 Kim等[45]的另外一個(gè)研究發(fā)現(xiàn)敲低IGFBP5能夠引起一系列衰老相關(guān)的表型,如細(xì)胞形態(tài)、細(xì)胞增生、衰老相關(guān)的β-半乳糖苷酶(senescence-associated β-galactosidase,SA-β-gal))染色.敲低P53能夠改善在年輕細(xì)胞中上調(diào)IGFBP5誘導(dǎo)的的細(xì)胞早衰.另外,動(dòng)脈粥樣硬化的動(dòng)脈內(nèi)膜斑塊在具有較強(qiáng)的P53陽(yáng)性染色.表明通過(guò)P53依賴的通路IGFBP5在調(diào)節(jié)細(xì)胞衰老和衰老相關(guān)的血管疾病中具有重要作用.Kojima等[46]研究認(rèn)為STAT3-IGFBP5軸是IL-6/gp130誘導(dǎo)的人纖維母細(xì)胞早衰的機(jī)制中重要部分.

        2.2.4 IGFBP4和IGFBP7 Severino等[47]研究認(rèn)為IGFBP4和IGFBP7在年輕的間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)中引發(fā)衰老的重要組成部分.在年輕的MSC中同時(shí)添加rIGFBP4/7能加快細(xì)胞衰老并誘發(fā)凋亡.

        Wajapeyee等[48]應(yīng)用全基因組RNA干擾篩選并鑒定了17個(gè)基因,這些基因是活化的BRAF原癌基因(BRAFV600E)抑制原發(fā)性黑色素細(xì)胞和黑色素瘤細(xì)胞的增殖所必須的,其中一個(gè)基因編碼一種分泌蛋白就是IFGBP7.IGFBP7在BRAFV600E介導(dǎo)的細(xì)胞衰老和凋亡中發(fā)揮重要作用.BRAFV600E在原代細(xì)胞的表達(dá)引起IGFBP7的合成和分泌,通過(guò)自分泌或旁分泌通路抑制然BRAF-MEK-ERK信號(hào)并誘導(dǎo)細(xì)胞衰老和凋亡.而Scurr等[49]的研究則認(rèn)為在人生黑色素細(xì)胞和纖維母細(xì)胞中BRAF信號(hào)不能誘導(dǎo)IGFBP7的表達(dá),也不能誘導(dǎo)IGFBP7的靶蛋白BNIP3L、SMARCB1和PEA15的表達(dá),并且發(fā)現(xiàn)在22種黑色素瘤細(xì)胞系、90個(gè)黑素瘤和46個(gè)良性痣中,BRAF突變作用與IGFBP7蛋白的表達(dá)無(wú)關(guān).此外,采用慢病毒沉默IGFBP7實(shí)驗(yàn)發(fā)現(xiàn)BRAF誘導(dǎo)的生黑色素細(xì)胞和纖維母細(xì)胞衰老不依賴IGFBP7.因此認(rèn)為分泌蛋白IGFBP7在BRAFV600E誘導(dǎo)的生黑色素細(xì)胞衰老是非必要的.文章一經(jīng)發(fā)表,Wajapeyee等[50]又進(jìn)行了一些數(shù)據(jù)補(bǔ)充,并對(duì)Scurr等的研究進(jìn)行反駁,認(rèn)為在黑素瘤中BRAFV600E轉(zhuǎn)錄誘導(dǎo)IGFBP7的表達(dá);BRAFV600E介導(dǎo)的衰老中IGFBP7是必須的;含有BRAFV600E的原代黑素瘤IGFBP7的常常缺失.綜上所述,在黑素瘤中IGFBP7是一個(gè)腫瘤抑制蛋白.

        3 IGF系統(tǒng)與組織、器官機(jī)體衰老

        3.1 IGF1與心血管疾病及血管衰老心血管系統(tǒng)疾病包括:心臟衰竭、心肌梗賽、中風(fēng)、血管性癡呆、高血壓及其并發(fā)癥、主動(dòng)脈瘤、外周動(dòng)脈疾病等,是引起老年人發(fā)病和死亡的重要因素.年齡相關(guān)的心臟和組織血液供應(yīng)障礙是人類機(jī)體衰老重要原因[51].血管衰老是通過(guò)氧化、炎癥、細(xì)胞衰老和表觀遺傳修飾,內(nèi)皮細(xì)胞(endothelial cells,ECs)和血管平滑肌細(xì)胞功能發(fā)生改變,導(dǎo)致動(dòng)脈粥樣硬化等疾病概率增加的過(guò)程.年齡相關(guān)的IGF-1減少與心血管系統(tǒng)衰老的分子、細(xì)胞和功能方面的變化密切相關(guān).

        最近的一些研究發(fā)現(xiàn)循環(huán)中的IGF-1與心血管疾病呈負(fù)相關(guān)性[52-55].例如,Troncoso等[56]和Vasan等[57]研究發(fā)現(xiàn)老年人IGF-1水平低則會(huì)有較高的缺血性中風(fēng)和充血性心力衰竭風(fēng)險(xiǎn),而且急性心肌梗死恢復(fù)期預(yù)后較差[58].在大多觀察性研究中,發(fā)現(xiàn)成人GH缺損,循環(huán)中IGF-1水平降低,增加了動(dòng)脈粥樣硬化等心腦血管疾病風(fēng)險(xiǎn)[59].Laughlin等[60]用將近10年時(shí)間對(duì)1185名患者進(jìn)行監(jiān)測(cè),并推斷循環(huán)的IGF-1水平能夠預(yù)測(cè)缺血性心臟疾病.

        GH/IGF-1 axis對(duì)心血管系統(tǒng)的影響被認(rèn)為是衰老進(jìn)程中微脈血管的保護(hù)和心臟保護(hù)的潛在機(jī)制.Granata等[61]的研究認(rèn)為IGF-1通過(guò)具有抗炎和修復(fù)機(jī)制從而產(chǎn)生抗動(dòng)脈粥樣硬化效應(yīng).Higashi等[62]研究報(bào)道IGF-1通過(guò)下調(diào)谷胱甘肽過(guò)氧化物酶1的表達(dá)增強(qiáng)內(nèi)皮細(xì)胞(endothelial cells,ECs)抗氧化活性和活性.

        3.2 IGF-1缺陷與骨質(zhì)疏松和椎骨老化 衰老常伴隨著骨結(jié)構(gòu)和功能的下降,顯著增加了老年患者骨質(zhì)疏松以及骨折的風(fēng)險(xiǎn).衰老相關(guān)的骨健康方面的改變是骨形成到骨吸收的改變的結(jié)果[63].一些信號(hào)激素包括IGF-1、類固醇激素,對(duì)于骨健康和成骨細(xì)胞活性非常重要.在成骨細(xì)胞中敲除IGF-1R導(dǎo)致成年期骨體積和骨密度減少[64-65]類似的,特異性刪除肝臟中IGF-1產(chǎn)物導(dǎo)致成年期股骨長(zhǎng)度[66]和骨密度[67]降低.雖然這些研究清楚地強(qiáng)調(diào)了IGF-1對(duì)正常的骨發(fā)育的重要性,但是循環(huán)的IGF-1的減少效應(yīng)對(duì)于年齡相關(guān)的椎骨結(jié)構(gòu)和功能上的改變?nèi)圆磺宄?

        有趣地是,高的IGF水平不總意味著增加的骨健康.例如早期敲除循環(huán)中IGF-1的一個(gè)重要的穩(wěn)定蛋白-酸不穩(wěn)定性亞單位(acid-labile subunit,ALS),能夠減少60%~75%的IGF-1水平,但是在老年雄鼠中則降低股骨皮質(zhì)厚度[68],表明早期或長(zhǎng)期IGF-1缺失促進(jìn)長(zhǎng)骨骼老化.與此相反,最近的一項(xiàng)研究發(fā)現(xiàn)在成年期循環(huán)的IGF-1減少導(dǎo)致在衰老進(jìn)程中股骨皮質(zhì)和松質(zhì)骨厚度減?。?9].因此,不同的結(jié)果表明IGF-1缺失的結(jié)果可能依賴于誘導(dǎo)缺失時(shí)生命的階段.最新的一項(xiàng)研究發(fā)現(xiàn),在雄鼠中循環(huán)的IGF-1降低在任何年齡階段都不能減小椎骨骨質(zhì)流失.有趣的是,在雌鼠中早期缺失IGF-1導(dǎo)致椎骨體積分?jǐn)?shù)增加67%,而且增加相應(yīng)的密度.表明IGF-1調(diào)節(jié)椎骨老化是通過(guò)一個(gè)性別特異性和時(shí)間依賴性的機(jī)制[70].另外,大量臨床研究表明降低循環(huán)中IGF-1水平增加骨質(zhì)疏松的風(fēng)險(xiǎn)[71-72].

        4 展望

        IGF系統(tǒng)中各成員如IGF-1,IGFBPs與衰老相關(guān)的分子、信號(hào)通路、疾病有著密切的聯(lián)系.IGF-1和IGFBPs可以與衰老相關(guān)分子如p53、GH、PAI-1等作用共同介導(dǎo)細(xì)胞衰老.這些分子參與多種信號(hào)轉(zhuǎn)導(dǎo)通路,如胰島素/IGF-1信號(hào)、Ras/Raf/Mek/Erk和PI3K信號(hào)通路,mTOR信號(hào)通路等共同導(dǎo)致細(xì)胞或機(jī)體的衰老.目前這些研究在不同細(xì)胞、不同組織機(jī)體中還存在許多爭(zhēng)議,而這些衰老相關(guān)分子和通路還不完整.因此IGF系統(tǒng)對(duì)于衰老的影響的分子機(jī)制還不完善,有待于進(jìn)一步研究.另外,IGFBPs中IGFBP2、IGFBP3、IGFBP4、IGFBP5、IGFBP7等在多種細(xì)胞中被證實(shí)具有調(diào)節(jié)細(xì)胞衰老的作用,推測(cè),IGFBPs可能作為衰老的生物指標(biāo).

        [1]Berryman DE,Christiansen JS,Johannsson G,et al.Role of GH/IGF-1 axis in lifespan and healthspan:lessons from animal models[J].Growth Horm IGF Res,2008,18(6):455-471.

        [2]Carter CS,Ramsey MM,Sonntag WE.A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan[J].Trends Genet,2002,18(6):295-301.

        [3]Paradis S,Ruvkun G.Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor[J].Genes Dev,1998,12(16):2488-2498.

        [4]Kenyon C,Chang J,Gensch E,et al.A C.elegans mutant that lives twice as long as wild type[J].Nature,1993,366(6454):461-464.

        [5]Johnson TE.Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging[J].Science,1990,249(4971):908-912.

        [6]Kenyon C.A conserved regulatory system for aging[J].Cell,2001,105(2):165-168.

        [7]Clancy DJ,Gems D,Harshman LG,et al.Extension of life-span by loss of CHICO,a Drosophila insulin receptor substrate protein[J].Science,2001,292(5514):104-106.

        [8]Fabrizio P,Pozza F,Pletcher SD,et al.Regulation of longevity and stress resistance by Sch9 in yeast[J].Science,2001,292(5515):288-290.

        [9]Minchenko DO,Kharkova AP,Tsymbal DO,et al.IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells[J].Endocr Regul,2015,49(4):185-197.

        [10]Rupp C,Scherzer M,Rudisch A,et al.IGFBP7,a novel tumor stroma marker,with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction[J].Oncogene,2015,34(7):815-825.

        [11]Zhu S,Xu F,Zhang J,et al.Insulin-like growth factor binding protein-related protein 1 and cancer[J].Clin Chim Acta,2014,431:23-32.

        [12]Rinderknecht E,Humbel RE.The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin[J].J Biol Chem,1978,253(8):2769-2776.

        [13]Blundell TL,Bedarkar S,Humbel RE.Tertiary structures,receptor binding,and antigenicity of insulinlike growth factors[J].Fed Proc,1983,42(9):2592-2597.

        [14]Firth SM,Baxter RC.Cellular actions of the insulin-like growth factor binding proteins[J].Endocr Rev,2002,23(6):824-854.

        [15]Han VK,Lund PK,Lee DC,et al.Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus:identification,characterization,and tissue distribution[J].J Clin Endocrinol Metab,1988,66(2):422-429.

        [16]Lowe WL Jr,Lasky SR,LeRoith D,et al.Distribution and regulation of rat insulin-like growth factor I messenger ribonucleic acids encoding alternative carboxyterminal E-peptides:evidence for differential processing and regulation in liver[J].Mol Endocrinol,1988,2(6):528-535.

        [17]LeRoith D,Werner H,Beitner-Johnson D,et al.Molecular and cellular aspects of the insulin-like growth factor I receptor[J].Endocr Rev,1995,16(2):143-163.

        [18]Stewart CE,Rotwein P.Growth,differentiation,and survival:multiple physiological functions for insulin-like growth factors[J].Physiol Rev,1996,76(4):1005-1026.

        [19]Yu H,Rohan T.Role of the insulin-like growth factor family in cancer development and progression[J].J Natl Cancer Inst,2000,92(18):1472-1489.

        [20]Sepp-Lorenzino L.Structure and function of the insulin-like growth factor I receptor[J].Breast Cancer Res Treat,1998,47(3):235-253.

        [21]Steele-Perkins G,Turner J,Edman JC,et al.Expression and characterization of a functional human insulin-like growth factor I receptor[J].J Biol Chem,1988,263(23):11486-11492.

        [22]Frattali AL,Pessin JE.Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors[J].J Biol Chem,1993,268(10):7393-7400.

        [23]Oates AJ,Schumaker LM,Jenkins SB,et al.The mannose 6-phosphate/insulin-like growth factor 2 receptor(M6P/IGF2R),a putative breast tumor suppressor gene[J].Breast Cancer Res Treat,1998,47(3):269-281.

        [24]Morgan DO,Edman JC,Standring DN,et al.Insulin-like growth factor II receptor as a multifunctional binding protein[J].Nature,1987,329(6137):301-307.

        [25]Oshima A,Nolan CM,Kyle JW,et al.The human cation-independent mannose 6-phosphate receptor.Cloning and sequence of the fulllength cDNA and expression of functional receptor in COS cells[J].J Biol Chem,1988,263(5):2553-2562.

        [26]Jones JI,Clemmons DR.Insulin-like growth factors and their binding proteins:biological actions[J].Endocr Rev,1995,16(1):3-34.

        [27]Braulke T.Type-2 IGF receptor:a multi-ligand binding protein[J].Horm Metab Res,1999,31(2-3):242-246.

        [28]Kiess W,Greenstein LA,White RM,et al.TypeⅡinsulin-like growth factor receptor is present in rat serum[J].Proc Natl Acad Sci U S A,1987,84(21):7720-7724.

        [29]MacDonald RG,Tepper MA,Clairmont KB,et al.Serum form of the rat insulin-like growth factorⅡ/mannose 6-phosphate receptor is truncated in the carboxyl-terminal domain[J].J Biol Chem,1989,264(6):3256-3261.

        [30]Valenzano KJ,Remmler J,Lobel P.Soluble insulin-like growth factorⅡ/mannose 6-phosphate receptor carries multiple high molecular weight forms of insulin-like growth factorⅡin fetal bovine serum[J].J Biol Chem,1995,270(27):16441-16448.

        [31]Zaina S,Squire S.The soluble type 2 insulin-like growth factor(IGF-Ⅱ)receptor reduces organ size by IGF-Ⅱ-mediated and IGF-Ⅱ-independent mechanisms[J].J Biol Chem,1998,273(44):28610-28616.

        [32]Xu Y,Papageorgiou A,Polychronakos C.Developmental regulation of the soluble form of insulin-like growth factor-Ⅱ/mannose 6-phosphate receptor in human serum and amniotic fluid[J].J Clin Endocrinol Metab,1998,83(2):437-442.

        [33]Costello M,Baxter RC,Scott CD.Regulation of soluble insulin-like growth factorⅡ/mannose 6-phosphate receptor in human serum:measurement by enzyme-linked immunosorbent assay[J].J Clin Endocrinol Metab,1999,84(2):611-617.

        [34]Roberts CT Jr,Lasky SR,Lowe WL Jr,et al.Molecular cloning of rat insulin-like growth factor I complementary deoxyribonucleic acids:differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues[J].Mol Endocrinol,1987,1(3):243-248.

        [35]Chrysis D,Calikoglu AS,Ye P,et al.Insulin-like growth factor-Ⅰoverexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner[J].J Neurosci,2001,21(5):1481-1489.

        [36]Hwa V,Oh Y,Rosenfeld RG.The insulin-like growth factor-binding protein(IGFBP)superfamily[J].Endocr Rev,1999,20(6):761-787.

        [37]Tran D,Bergholz J,Zhang H,et al.Insulin-like growth factor-1 regulatestheSIRT1-p53pathwayincellularsenescence[J].Aging Cell,2014,13(4):669-678.

        [38]Selman C,Lingard S,Choudhury AI,et al.Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice[J].FASEB J,2008,22(3):807-818.

        [39]Hoeflich A,Reisinger R,Lahm H,et al.Insulin-like growth factorbinding protein 2 in tumorigenesis:protector or promoter[J].Cancer Res,2001,61(24):8601-8610.

        [40]Wheatcroft SB,Kearney MT,Shah AM,et al.IGF-binding protein-2 protects against the development of obesity and insulin resistance[J].Diabetes,2007,56(2):285-294.

        [41]Hu D,Pawlikowska L,Kanaya A,et al.Serum insulin-like growth factor-1 binding proteins 1 and 2 and mortality in older adults:the health,aging,and body composition study[J].J Am Geriatr Soc,2009,57(7):1213-1218.

        [42]?underic'M,Milju? G,Nedic'O.Interaction of insulin-like growth factor-binding protein 2 with α2-macroglobulin in the circulation[J].Protein J,2013,32(2):138-142.

        [43]Kim KS,Kim MS,Seu YB,et al.Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells[J].Aging Cell,2007,6(4):535-545.[44]Elzi DJ,Lai Y,Song M,et al.Plasminogen activator inhibitor1-insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence[J].Proc Natl Acad Sci USA,2012,109(30):12052-12057.

        [45]Kim KS,Seu YB,Baek SH,et al.Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism[J].Mol Biol Cell,2007,18(11):4543-4552.

        [46]Kojima H,Kunimoto H,Inoue T,et al.The STAT3-IGFBP5 axis is critical for IL-6/gp130-induced premature senescence in human fibroblasts[J].Cell Cycle,2012,11(4):730-739.

        [47]Severino V,Alessio N,F(xiàn)arina A,et al.Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells[J].CeⅡDeath Dis,2013,7(4):e911.

        [48]Wajapeyee N,Serra RW,Zhu X,et al.Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7[J].Cell,2008,132(3):363-374.

        [49]Scurr LL,Pupo GM,Becker TM,et al.IGFBP7 is not required for B-RAF-induced melanocyte senescence[J].Cell,2010,141(4):717-727.

        [50]Wajapeyee N,Serra RW,Zhu X,et al.Role for IGFBP7 in senescence induction by BRAF[J].Cell,2010,141(5):746-747.

        [51]Ungvari Z,Csiszar A.The emerging role of IGF-1 deficiency in cardiovascular aging:recent advances[J].J Gerontol A Biol Sci Med Sci,2012,67(6):599-610.

        [52]Hausenloy DJ,Yellon DM.Myocardial ischemia-reperfusion injury:a neglected therapeutic target[J].J Clin Invest,2013,123(1):92-100.

        [53]Berryman DE,Glad CA,List EO,et al.The GH/IGF-1 axis in obesity:pathophysiology and therapeutic considerations[J].Nat Rev Endocrinol,2013,9(6):346-356.

        [54]Juul A,Scheike T,Davidsen M,et al.Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease:a population-based case-control study[J].Circulation,2002,106(8):939-944.

        [55]Laughlin GA,Barrett-Connor E,Criqui MH,et al.The prospective association of serum insulin-like growth factor I(IGF-I)and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults:the Rancho Bernardo Study[J].J Clin Endocrinol Metab,2004,89(1):114-120.

        [56]Troncoso R,Ibarra C,Vicencio JM,et al.New insights into IGF-1 signaling in the heart[J].Trends Endocrinol Metab,2014,25(3):128-137.

        [57]Vasan RS,Sullivan LM,D'Agostino RB,et al.Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction:the Framingham Heart Study[J].Ann Intern Med,2003,139(8):642-648.

        [58]Conti E,Andreotti F,Sciahbasi A,et al.Markedly reduced insulinlike growth factor-1 in the acute phase of myocardial infarction[J].J Am Coll Cardiol,2001,38(1):26-32.

        [59]Palmeiro CR,Anand R,Dardi IK,et al.Growth hormone and the cardiovascular system[J].Cardiol Rev,2012,20(4):197-207.

        [60]Friedrich N,Haring R,Nauck M,et al.Mortality and serum insulin-like growth factor(IGF)-1 and IGF binding protein 3 concentrations[J].J Clin Endocrinol Metab,2009,94(5):1732-1739.

        [61]Granata R,Isgaard J.Cardiovascular Issues in Endocrinology[M].Front Horm Res,Basel,Karger,2014:107-124.

        [62]Higashi Y,Pandey A,Goodwin B,et al.Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells:implications for atheroprotective actions of insulinlike growth factor-1[J].Biochim Biophys Acta,2013,1832(3):391-399.

        [63]Burge R,Dawson-Hughes B,Solomon DH,et al.Incidence and economic burden of osteoporosis-related fractures in the United States,2005-2025[J].J Bone Miner Res,2007,22(3):465-475.

        [64]Zhang M,Xuan S,Bouxsein ML,et al.Osteoblast-specific knockout of the insulin-like growth factor(IGF)receptor gene reveals an essential role of IGF signaling in bone matrix mineralization[J].J Biol Chem,2002,277(46):44005-44012.

        [65]Kubota T,Elalieh HZ,Saless N,et al.Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading[J].Acta Astronaut,2013,92(1):73-78.

        [66]Sj?gren K,Sheng M,Movérare S,et al.Effects of liver-derived insulin-like growth factor I on bone metabolism in mice[J].J Bone Miner Res,2002,17(11):1977-1987.

        [67]Courtland HW,Elis S,Wu Y,et al.Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner[J].PLoS One,2011,6(3):e14762.

        [68]Courtland HW,Kennedy OD,Wu Y,et al.Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging[J].Age(Dordr),2013,35(5):1691-1703.

        [69]Gong Z,Kennedy O,Sun H,et al.Reductions in serum IGF-1 during aging impair health span[J].Aging Cell,2014,13(3):408-418.

        [70]Ashpole NM,Herron JC,Mitschelen MC,et al.IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms[J].J Bone Miner Res,2016,31(2):443-454.

        [71]Liu JM,Zhao HY,Ning G,et al.IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women[J].J Bone Miner Metab,2008,26(2):159-164.

        [72]Paccou J,Dewailly J,Cortet B.Reduced levels of serum IGF-1 is related to the presence of osteoporotic fractures in male idiopathic osteoporosis[J].Joint Bone Spine,2012,79(1):78-82.

        R392.6

        A

        2095-6894(2016)12-01-06

        2016-09-26;接受日期:2016-10-12

        國(guó)家自然科學(xué)基金資助項(xiàng)目(81670736,81572983);陜西省國(guó)際科技合作與交流計(jì)劃項(xiàng)目(2016KW-002)

        付建芳.副主任醫(yī)師.Tel:029-84771305 E-mail:jianff@fmmu.edu.cn

        涂艷陽(yáng).博士,副教授,副主任醫(yī)師.Tel:029-84777469

        E-mail:tu.fmmu@gmail.com

        猜你喜歡
        生長(zhǎng)因子受體通路
        Toll樣受體在胎膜早破新生兒宮內(nèi)感染中的臨床意義
        2,2’,4,4’-四溴聯(lián)苯醚對(duì)視黃醛受體和雌激素受體的影響
        鼠神經(jīng)生長(zhǎng)因子對(duì)2型糖尿病相關(guān)阿爾茨海默病的治療探索
        胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
        Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
        proBDNF-p75NTR通路抑制C6細(xì)胞增殖
        鼠神經(jīng)生長(zhǎng)因子修復(fù)周圍神經(jīng)損傷對(duì)斷掌再植術(shù)的影響
        通路快建林翰:對(duì)重模式應(yīng)有再認(rèn)識(shí)
        轉(zhuǎn)化生長(zhǎng)因子β激活激酶-1在乳腺癌組織中的表達(dá)及臨床意義
        Hippo/YAP和Wnt/β-catenin通路的對(duì)話
        遺傳(2014年2期)2014-02-28 20:58:11
        尤物蜜桃视频一区二区三区| 亚洲午夜精品久久久久久一区| 亚洲国产精品久久九色| 中文乱码字幕人妻熟女人妻| 国产特级毛片aaaaaa高潮流水| 日本亚洲色大成网站www久久| 伊人久久一区二区三区无码| 在线观看国产av一区二区| 插上翅膀插上科学的翅膀飞| 久久aⅴ人妻少妇嫩草影院| 久久久精品国产亚洲AV蜜| 日本高清色一区二区三区| 亚洲精品无码精品mv在线观看| 亚洲综合无码无在线观看| 国产在线欧美日韩一区二区| 亚洲国产女同在线观看| 中文字幕人成乱码熟女| 又黄又爽又高潮免费毛片| 久久精品国产亚洲AⅤ无码剧情| 成人av毛片免费大全| 国产精品免费_区二区三区观看 | 强开少妇嫩苞又嫩又紧九色 | 久久久亚洲一区二区三区| 欧美亚洲精品suv| 女同性黄网aaaaa片| 美女裸体无遮挡黄污网站| 日韩一区二区三区熟女| 7m精品福利视频导航| 久久永久免费视频| 蜜桃av噜噜噜一区二区三区| 四虎永久在线精品免费一区二区| 日韩亚洲av无码一区二区不卡| 97久久综合区小说区图片专区 | 亚洲人精品亚洲人成在线| 国产精品主播视频| 国产精品黄色在线观看| 国产亚洲精品美女久久久m | 欧美日韩国产成人综合在线影院| 日本高清一区二区在线播放| 国产精品538一区二区在线| 亚洲视频在线看|