一類帶有分數(shù)階邊值條件的分數(shù)階q-差分方程解的存在性
范成濤,葛琦*
( 延邊大學(xué)理學(xué)院 數(shù)學(xué)系,吉林 延吉 133002 )
摘要:研究了一類帶有分數(shù)階q-差分邊值條件的分數(shù)階q-差分方程解的存在性和唯一性.首先分析了格林函數(shù)的一些性質(zhì);其次分別利用完備度量空間上的不動點定理、Banach空間上的Schauder不動點定理和Banach壓縮映像原理,證明了該方程解的存在性和唯一性;最后通過實例驗證了本文所得結(jié)論的正確性.
關(guān)鍵詞:分數(shù)階q-差分; 完備度量空間; 不動點定理; 解的存在性和唯一性
收稿日期:2015-01-12*通信作者: 葛琦(1975—),女,副教授,研究方向為微分方程理論及其應(yīng)用.
基金項目:國家自然科學(xué)基金資助項目(11161049);吉林省教育廳“十二五”科技項目(012015042)
文章編號:1004-4353(2015)03-0207-08
中圖分類號:O175.6
Existence of solutions for a class of fractionalq-differences equation with fractional boundary value conditions
FAN Chengtao,GE Qi*
(DepartmentofMathematics,CollegeofScience,YanbianUniversity,Yanji133002,China)
Abstract:We study the existence and uniqueness of solutions for a class of the fractional q-differences equation with the fractional q-differences boundary conditions. Firstly,we analyze some properties of the Green function. Secondly,the existence and uniqueness of the solutions of the equation are proved by using the fixed point theorem in complete metric space,Schauder fixed point theorem in Banach space and Banach contraction principle. Finally,the correctness of the conclusion in this paper is verified by some examples.
Key words: fractional q-differences; complete metric space; fixed point theorem; existence and uniqueness of solutions
0引言
近年來,q-差分微積分理論在數(shù)學(xué)物理問題、動力系統(tǒng)和量子模型等科學(xué)領(lǐng)域被廣泛應(yīng)用[1-2].q-微積分概念是由Jackson于1910年提出的[3-4],之后由Al-Salam[5]和Agarwal[6]給出了分數(shù)階q-微積分的基本概念和性質(zhì).近年來,關(guān)于分數(shù)階q-差分方程邊值問題解存在性的研究受到人們關(guān)注,并取得了許多成果[7-13],但這些研究成果中大多數(shù)研究的是帶有整數(shù)階邊值條件的分數(shù)階q-差分方程的解[9-13].本文研究帶有分數(shù)階邊值條件的分數(shù)階q-差分方程
(1)
其中1<α<2,0
1預(yù)備知識
定義2[14]冪指函數(shù)(a-b)n的q-類似定義為:
定義5[14]Riemann-Liouville型分數(shù)階q-積分定義為:
定義6[15]稱函數(shù)φ為變距離函數(shù),若函數(shù)φ∶[0,∞)→[0,∞)滿足:(i) 是連續(xù)函數(shù),并且是遞增的;(ii)φ(t)=0,當且僅當t=0.
性質(zhì)1[14]若α>0,a≤b≤t,則(t-a)(α)≥(t-b)(α).
引理1[14]設(shè)α>0,p是正整數(shù),則
引理4[15]設(shè)(X,≤)是一個偏序集,并假設(shè)存在X上的一個度量d,使得(X,d)是一個完備度量空間.假設(shè)下列條件成立:
(ii) 對x,y∈X存在z∈X,使得z與x,y是可比較的;
(iii)F∶X→X是遞增映射,對于任意x,y∈X,且x≥y,滿足
ψ(d(F(x),F(y)))≤ψ(d(x,y))-φ(d(x,y)) ,
(2)
這里ψ,φ是變距離函數(shù);
(iv) 存在x0∈X,使得x0≤F(x0).
那么F在X內(nèi)存在唯一的不動點.
2Green函數(shù)及其性質(zhì)
定理1設(shè)1<α<2,0
(3)
有唯一解:
(4)
其中
證明假設(shè)u(x)是問題(3)的解,則由引理1有
(5)
由邊值條件u(0)=0解得c2=0.根據(jù)定義5、引理2和引理3有
(6)
從而有
定理2Green函數(shù)G(x,s)具有下面的性質(zhì):
(i)G(x,s)是連續(xù)函數(shù),且G(x,qs)≥0,x,s∈[0,1];
(ii)G(x,qs)≤G(qs,qs),x,s∈[0,1].
證明設(shè)h1(x,qs)=(1-qs)(α-v-1)xα-1-(x-qs)(α-1),0≤qs≤x≤1;h2(x,qs)=(1-qs)(α-v-1)xα-1,0≤x≤qs≤1.
注1根據(jù)定理2易知H(x,qs)≥0.
注2如果定理1中h(x)≥0,x∈(0,1],那么方程(2)的解u(x)≥0.
3主要結(jié)果及其證明
定理3假設(shè)如下條件(H1)和(H2)成立,則方程(1)存在唯一正解u(x):
(H1)函數(shù)f∶[0,1]×[0,+∞)→[0,+∞)是連續(xù)函數(shù),并且f關(guān)于第2個變量是遞增的,同時滿足f(x,u(x))≠0,x∈(0,1);
證明在B=C[0,1]上定義錐P={u∈B:u(x)≥0},由于P是B的閉子集,因此(P,d)是一個完備度量空間.定義算子T∶P→B如下:
由定理2和條件(H1)可知T(P)?P.
首先證明引理4中的所有條件都成立.事實上,對于u,v∈P且u≥v有
故有算子T是一個遞增算子.此外,由條件(H2),對于u,v∈P且u≥v有
‖u-v‖-[‖u-v‖-ln(‖u-v‖+1)]=d(u,v)-[d(u,v)-ln(d(u,v)+1)].
其次證明零函數(shù)不是算子T的不動點.事實上,假設(shè)零函數(shù)是算子T的不動點,則對于x∈[0,1]有
由于G(x,qs)≥0,H(η,qs)>0,f(x,u(x))≥0,則G(x,qs)f(s,0)=0,H(η,qs)f(s,0)=0.因當x≠0,1時,有G(x,qs)>0,故有f(s,0)=0,這與f(x,u(x))≠0,x∈(0,1)矛盾,所以零函數(shù)不是T的不動點.
最后,在f(x,u(x))≠0,x∈(0,1)的假設(shè)下,證明方程(1)的解u(x)>0,x∈(0,1).事實上,假設(shè)存在x0∈(0,1),使得u(x0)=0,由式(4)有
下面利用Banach空間上Schauder不動點定理和Banach壓縮映像原理,在f∶[0,1]×[0,+∞)→[0,+∞)連續(xù)的假設(shè)下,證明方程(1)解的存在性和唯一性.定義算子T1∶B→B如下:
這里c1如式(6)所示,顯然T1的不動點是方程(1)的解.
定理4假設(shè)f(x,u)滿足如下條件(H3),則方程(1)至少有一個非負解:
證明定義算子T1∶B→B,有
首先證明T1是Br到Br上的映射.事實上,根據(jù)條件(H3)和引理5,對于u∈Br有
因此,T1是Br到Br上的映射.
因此,T1(Br)是一致有界的.
最后證明T1(Br)是等度連續(xù)的.對于u∈Br,x1,x2∈[0,1],且x1 定理5假設(shè)如下條件(H4)和(H5)成立,則方程(1)存在唯一解u(x): 4應(yīng)用舉例 例1考慮方程 (7) 例2考慮方程 (8) 參考文獻: [1]PageDN.Informationinblackholeradiation[J].PhysRevLett,1993,71(23):3743-3746. [2]YoumD. q-Deformedconformalquantummechanics[J].PhysRevD,2000,62(9):095009. [3]JacksonFH.Onq-definiteintegrals,Quart[J].JPureApplMath,1910,41:193-203. [4]JacksonFH. q-DifferenceequationsAmer[J].JMath,1910,32(4):305-314. [5]Al-SalamWA.Somefractionalq-integralsandq-derivatives[J].ProcEdinbMathSoc,1996,15(2):135-140. [6]AgarwalRP.Certainfractionalq-integralsandq-derivatives[J].ProcCambridgePhilosSoc,1996,66:365-370. [7]NeamatyA,YadollahzadehM,DarziR.Existenceofsolutionforanonlocalboundaryvalueproblemwithfractionalq-derivatives[J].JournalofFractionalCalculusandApplications,2015,6(2):18-27. [8]AhmadB,NietoJJ,AlsaediA,etal.Existenceofsolutionsfornonlinearfractionalq-differenceintegralequationswithtwofractionalordersandnonlocalfour-pointboundaryconditions[J].JournaloftheFranklinInstitute,2014,351:2890-2909. [9]YangWengui.Anti-periodicboundaryvalueproblemsinvolvingnonlinearfractionalq-differenceequations[J].MalayaJournalofMatematik,2013,4(1):107-114. [10]AhmadB,NtouyasS,PurnarasI.Existenceresultsfornonlocalboundaryvalueproblemsofnonlinearfractionalq-differenceequations[J].AdvDifferEqu,2012,140:1-15. [11]El-ShahedM,HassanHA.Positivesolutionsofq-differenceequation[J].ProcAmerMathSoc, 2010,138:1733-1738. [12]LiXinhui,HanZhenlai,SunShurong,etal.Boundaryvalueproblemsforfractionalq-differenceequationswithnonlocalconditions[J].AdvDifferEqu,2014(2014):1-16. [13]WangJufang,YuChanglong,GaoYanping.Positivesolutionsforaclassofsingularboundaryvalueproblemswithfractionalq-differenceequations[J].JournalofFunctionSpaces,2015,2015:1-8. [14]孫明哲,韓筱爽.一類分數(shù)階q-差分邊值問題的正解[J].延邊大學(xué)學(xué)報版(自然科學(xué)版),2013,39(4):252-255. [15]HarjaniJ,SadaranganiK.Generalizedcontractionsinpartiallyorderedmetricspacesandapplicationstoordinarydifferentialequations[J].NonlinearAnalysis,2010,72:1188-1197. [16]AnnabyMH,MansourZS.q-FractionalCalculusandEquations[M].BerlinHeidelberg:Springer-Verlag, 2012. [17]RicardoAlmeida,NatáliaMartins.Existenceresultsforfractionalq-differenceequationsoforderwiththree-pointboundaryconditions[J].CommunicationsinNonlinearScienceandNumericalSimulation,2014,19(6):1675-1685.