摘要:PR10蛋白是植物在受到各類生物和非生物脅迫后產(chǎn)生的一種病程相關(guān)蛋白,在植物生長(zhǎng)發(fā)育和應(yīng)對(duì)外界生物和非生物脅迫時(shí)發(fā)揮重要作用。通過對(duì)近年來PR10研究結(jié)果的回顧,對(duì)PR10蛋白家族的序列、結(jié)構(gòu)特征、系統(tǒng)發(fā)生、生物化學(xué)功能、表達(dá)調(diào)控模式、啟動(dòng)子分析、亞細(xì)胞定位與蛋白互作及其在抑菌反應(yīng)和根瘤固氮中的作用進(jìn)行了綜述,重點(diǎn)闡述了PR10蛋白的表達(dá)調(diào)控模式及生物化學(xué)功能,并提出了PR10蛋白研究中存在的問題及對(duì)未來的展望。
關(guān)鍵詞:PR10;表達(dá)調(diào)控模式;生物化學(xué)功能
中圖分類號(hào):Q71 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2016)02-0273-07
DOI:10.14088/j.cnki.issn0439-8114.2016.02.001
植物在受到外源病原體入侵時(shí),體內(nèi)會(huì)產(chǎn)生一系列“應(yīng)激反應(yīng)”,其中包括誘導(dǎo)表達(dá)一類病原體相關(guān)蛋白(Pathogenesis-related protein)[1,2]。在開花植物中,人們根據(jù)PR蛋白結(jié)構(gòu)和功能特性的不同,將這些蛋白分為17個(gè)不同的家族。這些PR蛋白家族具有廣泛的功能,從細(xì)胞壁硬化到信號(hào)傳導(dǎo),以至于抗菌活性[1,3,4]。在這些PR蛋白中,來自荷蘭芹(Petroselinum crispum)中的PR-1蛋白屬于典型的PR10家族,該蛋白廣泛存在于種子植物中,并受發(fā)育過程和環(huán)境脅迫的調(diào)控。根據(jù)蛋白序列的相似性、亞細(xì)胞定位區(qū)間及可能的功能,PR10家族蛋白又可以被分為兩個(gè)不同大類:①細(xì)胞內(nèi)病原體相關(guān)蛋白(IPR,Intracellular pathogenesis-related proteins),該類蛋白與核糖核酸酶(Ribonuclease)具有序列同源性;②Norcoclaurine合成酶(NCS,Norcoclaurine synthase,EC 4.2.1.78),該類蛋白參與芐基異喹啉堿(BIA,Benzylisoquinoline alkaloids)—一種植物次級(jí)代謝物的合成[5]。PR10蛋白最初是以IPR蛋白被發(fā)現(xiàn)的,包括樹花粉過敏原和主要的食物過敏原[6]。迄今,人們已從不同開花植物中發(fā)現(xiàn)100多種PR10蛋白或者PR10相關(guān)蛋白。在這些植物中,有單子葉植物也有雙子葉植物,有裸子植物也有被子植物[7]。
近年來,各種植物中關(guān)于PR10的研究有較大進(jìn)展,PR10蛋白不僅參與植物病原體入侵的防御反應(yīng),在植物的正常發(fā)育過程以及根瘤菌共生過程中均起著非常重要的作用。本文從PR10蛋白的系統(tǒng)發(fā)生、功能、表達(dá)調(diào)控模式以及在不同生物學(xué)過程中的作用等方面進(jìn)行綜述。
1 PR10蛋白家族的序列和結(jié)構(gòu)特征
大多數(shù)PR10基因由長(zhǎng)度介于456~489 bp的開放閱讀框(ORF)編碼,蛋白產(chǎn)物約為151~162個(gè)氨基酸,分子質(zhì)量為15~18 ku。通常情況下,PR10基因的開放閱讀框包含一個(gè)76~359 bp的內(nèi)含子,內(nèi)含子位置在種子植物中非常保守[6,8],但來源于蘋果的一個(gè)PR10亞家族卻沒有內(nèi)含子[9]。盡管PR10蛋白家族成員間的氨基酸序列分化非常嚴(yán)重,它們之間也有一些保守的特征,例如保守P-loop、小分子量、酸性等電點(diǎn)、亞細(xì)胞定位到細(xì)胞質(zhì)以及相似的三維結(jié)構(gòu)等[1,10]。研究發(fā)現(xiàn),具有NCS活性的PR10家族成員的開放閱讀框比傳統(tǒng)PR10長(zhǎng),通常由633~696 bp所編碼,相對(duì)分子質(zhì)量為23~26 ku,蛋白序列比傳統(tǒng)PR10蛋白多出N端或者C端[5,11]。
2 PR10蛋白系統(tǒng)發(fā)生
Liu等[7]用來自多種種子植物,包括裸子植物和被子植物的95個(gè)PR10蛋白的氨基酸序列構(gòu)建NJ系統(tǒng)發(fā)生樹。結(jié)果發(fā)現(xiàn),進(jìn)化樹變異非常大,包括2個(gè)主要的進(jìn)化枝。絕大多數(shù)PR10蛋白被聚在第一個(gè)大的進(jìn)化枝,而NCS組群蛋白則被聚在罌粟PR10組成的進(jìn)化枝,位于系統(tǒng)進(jìn)化樹的基部。這種拓?fù)浣Y(jié)構(gòu)暗示了NCS組群蛋白的起源可能先于種子植物的分化。在大的進(jìn)化枝內(nèi)部,高度分化的IPR蛋白被分成4個(gè)亞進(jìn)化枝,來自雙子葉植物的PR10蛋白被分在第一亞進(jìn)化枝,而來自單子葉植物的PR10蛋白被聚在第二和第四亞進(jìn)化枝,第三亞進(jìn)化枝則包括了來自松柏科植物的PR10蛋白。絕大多數(shù)來自同一物種的PR10蛋白聚在一起,推測(cè)在開花植物進(jìn)化之初,可能發(fā)生了PR10蛋白的爆發(fā),進(jìn)而隨著基因組的進(jìn)化,導(dǎo)致了PR10的復(fù)制或者等位基因的發(fā)生。PR10蛋白同時(shí)存在于裸子植物和被子植物,可能進(jìn)化上來自同一個(gè)祖先基因,經(jīng)歷了結(jié)構(gòu)變異和功能分化。盡管如此,不同物種中PR10基因的分化具有各自不同的特點(diǎn),有待進(jìn)一步研究。
3 PR10蛋白的生物化學(xué)功能
3.1 PR10蛋白的RNase活性
PR10蛋白具有RNase活性,首先在白樺(Betula alba L.)得到驗(yàn)證,該P(yáng)R10蛋白與人參RNase具有較高同源性[12]。之后相繼發(fā)現(xiàn)很多PR10蛋白具有RNase功能[7,13-18]。通過不同物種中PR10蛋白氨基酸位點(diǎn)突變分析,發(fā)現(xiàn)PR10蛋白中有3個(gè)位點(diǎn):P-loop、E94、Y150突變后在不同蛋白中均對(duì)RNase活性表現(xiàn)出一致的影響,推斷這幾個(gè)位點(diǎn)與RNase具有較為緊密的關(guān)系[19-22]。據(jù)報(bào)道,P-loop為保守的核酸結(jié)合模序,能與ATP和GTP結(jié)合,存在于許多核酸結(jié)合蛋白中[23]。Liu等[7]在對(duì)具有RNase活性的蛋白進(jìn)行序列比對(duì)后發(fā)現(xiàn),有4個(gè)位點(diǎn)在所有成員間保守,Y150便是其中之一。除PR10蛋白序列直接與RNase活性相關(guān)外,磷酸化可能也參與了RNase活性的激活,如CaPR10的磷酸化將RNase活性提高為非磷酸化蛋白的12.4倍[15]。
盡管來自很多物種的PR10蛋白被證實(shí)具有RNase活性,也有一些PR10蛋白被證明并不具有RNase活性,如LlPR10.1B在某種程度上具有RNase,但是它的同源類似物L(fēng)lPR10.1A卻沒有RNase活性[24]。除此之外,來源于西部白松的PmPR10-1.10重組蛋白也被證實(shí)不具有RNase活性,可能也不具有生理功能[25]。
3.2 PR10蛋白配體結(jié)合活性
除具有RNase活性外,PR10還具有配體結(jié)合活性。據(jù)報(bào)道,來自綠豆(Vigna radiata)和苔蘚(Physcomitrella patens)的PR10蛋白(VrCSBP)和具有細(xì)胞分裂素特異結(jié)合活性[26-28]。來自櫻桃(Prunus pseudocerasus)的過敏原PR10蛋白(Pru av1)能夠結(jié)合植物類固醇粟甾酮(Phytosteroid homocastasteron)[29]。樺樹(Birch)主要過敏原(Bet v1)能夠與很多具有生理功能的配體,如細(xì)胞分裂素、脂肪酸以及類黃酮等結(jié)合[30]。除此之外,Bet v1還能與脫氧膽酸鹽、蕓苔甾內(nèi)酯、表油菜素內(nèi)酯等特異性的非共價(jià)結(jié)合[10]。樺樹PR10-c能與細(xì)胞分裂素、黃酮苷、固醇類、大黃素等結(jié)合[31]。這些配體分子當(dāng)中,很多是具有重要生物學(xué)功能的激素、生物大分子和活性物質(zhì),PR10蛋白可通過與這些分子的結(jié)合,調(diào)控其在植物體內(nèi)的濃度,從而調(diào)節(jié)生長(zhǎng)發(fā)育及其抗病防御。
3.3 PR10蛋白在植物次級(jí)代謝中的酶活性
PR10蛋白參與次級(jí)代謝主要通過其NCS活性來實(shí)現(xiàn)。第一個(gè)被報(bào)道參與次級(jí)代謝的PR10蛋白是金絲桃中的HpHyp-1,編碼一個(gè)HYP1酶負(fù)責(zé)合成金絲桃素,金絲桃素參與二蒽酮的合成[32]。同時(shí)該蛋白還具有催化(S)-Norcoclaurine合成的功能,進(jìn)而參與芐基異喹啉堿的合成。但并非所有的PR10均具有NCS活性,到目前為止,具有NCS活性的蛋白多分離自毛茛目(Ranunculales),如罌粟(Papaver somniferum)、黃唐松草(Thalictrum flavum)和日本黃連(Coptis japonica)等[11,33]。
4 PR10蛋白表達(dá)模式
4.1 生物脅迫和非生物脅迫下的誘導(dǎo)表達(dá)
PR10蛋白能在病原微生物脅迫條件下被誘導(dǎo)表達(dá),在很多植物物種中都有過廣泛的研究。這些病原微生物包括:病毒[15,34-36]、細(xì)菌[37-39]、真菌[34,40-46]等。據(jù)報(bào)道,在蘭伯氏松松針被銹病真菌侵染條件下,PR10能被誘導(dǎo)并結(jié)合到銹病病原體(Cronartium ribicola)水泡細(xì)胞壁上[47]。當(dāng)北美黃衫木(Pseudotsuga menziesii)被真菌侵染時(shí),位于根皮層組織的PR10被誘導(dǎo)。
PR10表達(dá)除受病原微生物誘導(dǎo)之外,還受非生物脅迫如傷害、冷脅迫、干旱脅迫、堿性條件、金屬離子、氧化脅迫、紫外輻射等的誘導(dǎo)。在蘆筍中,AoPR1基因轉(zhuǎn)錄本在受到外界傷害后得到積累[48,49]。馬鈴薯PR10a在傷害和效應(yīng)物處理后快速積累,處理后6 h便能檢測(cè)到,但PR10c卻不能被誘導(dǎo)[50,51]。在西部白松中,受傷害誘導(dǎo)后,PR10在基因水平上和蛋白水平上均快速升高[44-46]。寒冬里,蘭伯氏松和西部白樺的根中PR10蛋白水平積累到最高水平[52]。同樣,冷脅迫誘導(dǎo)PR10的表達(dá)也發(fā)生在桃樹和桑葚中[53,54]。在堿性條件下,水稻根中PR10受到誘導(dǎo)上調(diào)表達(dá)[55]。干旱條件下,南歐海松和辣椒中PR10受到誘導(dǎo)[15,56]。沙漠豆科植物中Retama raetam PR10受休眠誘導(dǎo)[57],樺樹葉和根中PR10受銅脅迫和其他相關(guān)氧化脅迫[58,59],羽扇豆中PR10受紫外輻射誘導(dǎo)[34]。
4.2 PR10的組成性表達(dá)
盡管PR10最初的發(fā)現(xiàn)是在病原菌侵染條件下,隨著研究的深入,陸續(xù)有報(bào)道稱有些PR10表現(xiàn)出組成性表達(dá)模式,而與病原體侵染無關(guān),且發(fā)育過程中在不同的植物組織器官中被調(diào)控[45,53]。在植物生長(zhǎng)過程中和不同組織器官中,如花[51,60-64]、花粉粒[50,60]、葉[25,46,65]、莖[46,61]、果實(shí)[35,66,67]、種子[20,61]和根[45,65,68]中均發(fā)現(xiàn)了PR10蛋白的組成性積累。作為花粉或者食物過敏原,PR10蛋白在樺樹花粉[60]、鵝耳櫪(Carpinus betulus)[69]、蘋果[67]、芹菜[70]、梨[71]和大豆[72]中大量存在。
5 PR10基因調(diào)控與啟動(dòng)子分析
PR10基因轉(zhuǎn)錄被多種脅迫條件所調(diào)節(jié),并在生長(zhǎng)發(fā)育的不同階段也有不同的調(diào)節(jié)模式。Walter等[73]研究顯示,Ypr10c啟動(dòng)子驅(qū)動(dòng)的GUS基因表達(dá)具有組織特異性,并能受谷胱甘肽或SA誘導(dǎo),但在Ypr10c啟動(dòng)子中并未發(fā)現(xiàn)特異的順式元件。在蘆筍PR10基因AoPR1啟動(dòng)子中發(fā)現(xiàn)的一些元件可能與傷害誘導(dǎo)有關(guān),包括G-box、H-box和一個(gè)9 bp的序列(ATTTGACCG)[49,61]。另外在荷蘭芹PcPR1啟動(dòng)子分析時(shí),發(fā)現(xiàn)-240~-130是真菌誘導(dǎo)所必需[74]。進(jìn)一步研究發(fā)現(xiàn),該段序列中存在一個(gè)W-box,它的核心序列(T)TGAC(C)能與WRKY蛋白(WRKY1,2,3)相互作用,而WRKY蛋白則與效應(yīng)物響應(yīng)誘導(dǎo)的PcPR1表達(dá)相關(guān)[75,76]。PcPR2基因啟動(dòng)子中有一個(gè)11 bp模序(CTAATTGTTTA),也證明與效應(yīng)物介導(dǎo)的PR10基因表達(dá)有關(guān)[77]。
在西部白松中,PmPR10-1-14啟動(dòng)子的不同區(qū)域在轉(zhuǎn)基因煙草中與根部特異表達(dá)有關(guān),其中包括一個(gè)長(zhǎng)的重復(fù)序列[45]。在PmPR10-1-13啟動(dòng)子序列中,有兩個(gè)區(qū)域(-1 316~-930 和 -309~-100)與疾病和傷害誘導(dǎo)活性有關(guān)[46]。在PmPR10-1-13啟動(dòng)子序列中也發(fā)現(xiàn)了一些在被子植物中與誘導(dǎo)表達(dá)相關(guān)的順式作用元件,如典型的Box-W1(TTGACC)[78]、茉莉酸甲酯響應(yīng)元件(CGTCA/TGACG)、乙烯響應(yīng)增強(qiáng)元件(ATTTCAAG)。啟動(dòng)子刪除及啟動(dòng)子活性比較分析表明,EIRE-box、G-box和一段回文結(jié)構(gòu)(ATGAAGTTCAT)可能參與了疾病和傷害條件下的PR10誘導(dǎo)表達(dá)[46]。在馬鈴薯PR10啟動(dòng)子中,-155~-52為一段正調(diào)節(jié)順式作用元件,與真菌和傷害誘導(dǎo)有關(guān),而-52~-28是一段負(fù)調(diào)節(jié)順式作用元件[79]。進(jìn)一步研究發(fā)現(xiàn)馬鈴薯PR10a啟動(dòng)子的一段50 bp(-155~-105)的序列與效應(yīng)子(Effectors)響應(yīng)有關(guān),磷酸化的核轉(zhuǎn)錄因子PBF1與 -135~-105區(qū)段結(jié)合,為PR10a轉(zhuǎn)錄活化所必需[80]。同時(shí)另一個(gè)磷酸化的核轉(zhuǎn)錄因子PBF2與ERE元件(TGACAnnnnTGTCA)的結(jié)合對(duì)PR10a的轉(zhuǎn)錄活化也至關(guān)重要[81]。
6 PR10蛋白家族成員的亞細(xì)胞定位及相關(guān)互作蛋白
PR10蛋白家族成員在亞細(xì)胞水平的分布多種多樣。根據(jù)PR10蛋白的序列特征,多數(shù)PR10蛋白不具備信號(hào)肽,被定位在細(xì)胞質(zhì)中[7,82],如葉綠體中[47],但也有例外。Islam等[83]研究發(fā)現(xiàn),北美黃衫木根中PR10被定位在細(xì)胞壁和細(xì)胞質(zhì)中。Zhang等[84]發(fā)現(xiàn)來自剛毛怪柳(Tamarix hispida)的ThPR10在洋蔥上表皮胞中定位在細(xì)胞核中。新近有報(bào)道稱,來自中國(guó)的野葡萄品種(Vitis pseudoreticulata)中VpPR10在細(xì)胞內(nèi)外均有存在,包括細(xì)胞壁、葉綠體、細(xì)胞質(zhì)中,液泡和細(xì)胞核中也有少量存在,當(dāng)葡萄葉片在受到葡萄霜霉病(P. viticola)時(shí),在細(xì)胞核中也檢測(cè)到VpPR10存在的信號(hào)[18]。對(duì)于另一類具有NCS活性的PR10蛋白,Lee等[33]研究表明,NCS蛋白N端肽段實(shí)際為信號(hào)肽,將PR10蛋白定位到液泡當(dāng)中。
與PR10相關(guān)的蛋白互作研究進(jìn)展相對(duì)緩慢,到目前為止,僅有為數(shù)不多的幾例報(bào)道。在蘋果(Malus domestica)中,報(bào)道了一個(gè)功能未知的蛋白MadP,具有與蘋果PR10(Ma d1)蛋白結(jié)合的能力[85],暗示了PR10在信號(hào)傳導(dǎo)中的潛在功能。另?yè)?jù)報(bào)道,一個(gè)來自辣椒(Capsicum annuum)的PR10蛋白,能與植物免疫系統(tǒng)中的一類LRR(Leucine rich repeat)蛋白結(jié)合,且這種結(jié)合對(duì)于抗病反應(yīng)非常重要,暗示了PR10可以通過調(diào)節(jié)植物免疫系統(tǒng)來實(shí)現(xiàn)其抗病功能[82]。
7 抗菌抑菌反應(yīng)與根瘤固氮
很多體外試驗(yàn)證明,PR10蛋白具有抗菌抑菌的功能。辣椒中重組蛋白CaPR10能抑制卵菌病原體(P. capsici),同時(shí)體外試驗(yàn)表明,該蛋白還具有RNase活性,能消化煙草花葉病毒RNA[15]。來自可可屬的TcPR10能抑制念珠菌病原物(M.perniciosa),體外試驗(yàn)表明,該蛋白同樣具有RNase活性和抗真菌活性[86]。牛茄子中SsPR10具有RNase活性和抗菌活性[7]。Ocatin是一種塊莖貯藏蛋白,屬于PR10蛋白家族。ZmPR10轉(zhuǎn)基因煙草葉片提取物具有RNase活性,并能抑制玉米黃曲霉(Aspergillus flavus)[87]。研究發(fā)現(xiàn),該蛋白具有抗細(xì)菌和抗真菌的活性[88]。來自大豆(Glycine max)的GmPR10顯著抑制大豆疫霉的菌絲生長(zhǎng)并具有RNase活性,體外試驗(yàn)表明,過量表達(dá)的GmPR10能增加煙草對(duì)黑脛病的抗性[89]。鑒于此,研究人員提出PR10蛋白的抗菌功能很可能與RNase活性有關(guān),具有RNase活性的PR10蛋白可能在植物的感染位點(diǎn)通過程序性死亡來保護(hù)植物,或者直接參與抵御病原體。已有一些結(jié)果支持該假設(shè),但同時(shí)也有一些結(jié)果并不支持該假設(shè)。如馬鈴薯過表達(dá)STH-2并未提高對(duì)病原的抗性[90]。
在根瘤固氮方面,有研究表明,GmPR10.1在大豆根瘤菌(Bradyrhizobium japonicum)侵染后6~48 h內(nèi)在轉(zhuǎn)錄水平上被顯著上調(diào)表達(dá)[91],最高達(dá)7倍(6 hpi),在蛋白水平也表現(xiàn)出上調(diào)(結(jié)果未發(fā)表),表明GmPR10.1能同時(shí)在基因水平和蛋白水平上對(duì)根瘤菌侵染作出響應(yīng),在根瘤固氮的侵染過程中具有重要作用。PR10受根瘤菌侵染誘導(dǎo)上調(diào)表達(dá)在其他豆科植物,如豌豆、蒺藜苜蓿和菜豆等,均有報(bào)道[92-94]。
8 展望
PR10是一類小分子量酸性蛋白,不僅受病原體侵染誘導(dǎo),在植物不同生長(zhǎng)發(fā)育和應(yīng)對(duì)外界生物和非生物脅迫過程中均起著非常重要的作用[15,34-59]。但其作用機(jī)理尚不明確,如PR10具有配體結(jié)合活性,如何決定其配體結(jié)合專一性以及如何通過配體結(jié)合調(diào)控生長(zhǎng)發(fā)育等還有待進(jìn)一步研究。此外,植物PR10對(duì)外源病原微生物具有抗性作用,但同時(shí)能與豆科植物共生的固氮菌侵染后又能誘導(dǎo)其表達(dá)[91-94],這種誘導(dǎo)對(duì)共生作用的形成是利是弊,是否還有其他未知的功能,對(duì)這些問題的解答,將為解析植物如何利用PR10蛋白實(shí)現(xiàn)自我防御、生長(zhǎng)調(diào)控、協(xié)作共生的發(fā)生機(jī)理打下堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn):
[1] VAN LOON L C, PIERPOINT W S, BOLLER T, et al. Recommendation for naming plant pathogenesis-related proteins[J]. Plant Molecular Biology Reporter, 1994, 12(3):245-264.
[2] VAN LOON L C, VAN STRIEN E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology, 1999, 55:85-97.
[3] CHRISTENSEN A B, CHO B H, NAESBY M, et al. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins[J]. Molecular Plant Pathology, 2002, 3(3):135-144.
[4] VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology, 2006, 44:135-162.
[5] SAMANANI N,LISCOMBE D K,F(xiàn)ACCHINI P J.Molecular cloning and characterization of norcoclaurine synthase,anenzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis[J].The Plant Journal,2004,40(2):302-313.
[6] WEN J,VANEK-KREBITZ M, HOFFMANN-SOMMERGRUBER K,et al.The potential of Betv1 homologues,a nuclear multigene family,as phylogenetic markers in flowering plants[J].Molecular Phylogenetics and Evolution,1997,8(3):317-333.
[7] LIU J J, EKRAMODDOULLAH A K M.The family 10 of plant pathogenesis-related proteins:Their structure,regulation, and function in response to biotic and abiotic stresses[J]. Physiological and Molecular Plant Pathology,2006,68(1-3):3-13.
[8] HOFFMANN-SOMMERGRUBER K, VANEK-KREBITZ M, RADAUER C, et al. Genomic characterization of members of the Bet v1 family: Genes coding for allergens and pathogenesis-related proteins share intron positions[J]. Gene, 1997, 197(1-2): 91-100.
[9] GAO Z S, VAN DE WEG W E, SCHAART J G, et al. Genomic cloning and linkage mapping of the Mal d1 (PR-10) gene family in apple (Malus domestica)[J]. Theoretical and Applied Genetics, 2005, 111(1):171-183.
[10] MARKOVIC-HOUSLEY Z, DEGANO M, LAMBA D, et al. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v1 and its likely biological function as a plant steroid carrier[J]. Journal of Molecular Biology, 2003, 325(1):123-133.
[11] LISCOMBE D K, MACLEOD B P, LOUKANINA N, et al. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms[J]. Phytochemistry, 2005, 66(20):2500-2520.
[12] MOISEYEV G P, BEINTEMA J J, FEDOREYEVA L I, et al. High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases[J]. Planta, 1994, 193(3):470-472.
[13] BUFE A S M, KAHLERT H, SCHLAAK M, et al. The major birch pollen allergen,Bet v1, shows ribonuclease activity[J]. Planta, 1996, 199(3):413-415.
[14] BANTIGNIES B, SEGUIN J, MUZAC I, et al. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots[J]. Plant Molecular Biology, 2000, 42(6):871-881.
[15] PARK C J, KIM K J, SHIN R, et al. Pathogenesis-related protein 10 isolated from hot pep-per functions as a ribonuclease in an antiviral pathway[J]. The Plant Journal, 2004, 37(2):186-198.
[16] SRIVASTAVA S, EMERY R J N, KUREPIN L V, et al. Pea PR10.1 is a Ribonuclease and its transgenic expression elevates cytokinin levels[J]. Plant Growth Regulation, 2006, 49(1):17-25.
[17] YAN Q, QI X, JIANG Z, et al. Characterization of a pathogenesis-related class 10 protein (PR-10) from Astragalus mongholicus with ribonuclease activity[J]. Plant Physiology and Biochemistry, 2008, 46(1):93-99.
[18] HE M, XU Y, CAO J, et al. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection[J]. Protoplasma,2013, 250(1):129-140.
[19] ZHOU X J,LU S,XU Y H, et al. A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity[J].Plant Science,2002,162(2):629-636.
[20] WU F,YAN M,LI Y,et al. cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus[J]. Biochemical biophysical research communications,2003,312(3):761-766.
[21] CHADHA P,DAS R H. A pathogenesis related protein, AhPR10 from peanut: An insight of its mode of antifungal activity[J].Planta,2006,225(1):213-222.
[22] KRISHNASWAMY S,BARAL P K,JAMES M N,et al. Site-directed mutagenesis of histidine 69 and glutamic acid 148 alters the ribonuclease activity of pea ABR17 (PR10.4)[J]. Plant Physiology and Biochemistry, 2011, 49(9):958-962.
[23] SARASTE M, SIBBALD P R, WITTINGHOFER A. The P-loop--a common motif in ATP-and GTP-binding proteins[J].Trends in Biochemical Sciences,1990, 15(11):430-434.
[24] BIESIADKA J,BUJACZ G,SIKORSKI M M,et al.Crystal structures of two homologous pathogenesis-related proteins from yellow lupine[J]. Journal of Molecular Biology,2002,319(5):1223-1234.
[25] LIU J J, EKRAMODDOULLAH A K, Characterization, expression and evolution of two novel subfamilies of Pinus monticola cDNAs encoding pathogenesis-related (PR)-10 proteins[J]. Tree Physiology, 2004, 24(12):1377-1385.
[26] NAGATA R, KAWACHI E, HASHIMOTO Y, et al. Cytokinin-specific binding protein in etiolated mung bean seedlings[J]. Biochemical Biophysical Research Communications, 1993, 191(2):543-549.
[27] FUJIMOTO Y, NAGATA R, FUKASAWA H, et al. Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata)[J]. European Journal of Biochemistry, 1998, 258(2):794-802.
[28] GONNEAU M, PAGANT S, BRUN F, et al. Photoaffinity labelling with the cytokinin agonist azido-CPPU of a 34 kDa peptide of the intracellular pathogenesis-related protein family in the moss Physcomitrella patens[J]. Plant Molecular Biology, 2001, 46(5):539-548.
[29] NEUDECKER P, SCHWEIMER K, NERKAMP J, et al. Allergic cross-reactivity made visible: Solution structure of the major cherry allergen Pru av 1[J]. The Journal of Biological Chemistry, 2001, 276(25):22756-22763.
[30] MOGENSEN J E, WIMMER R, LARSEN J N, et al. The major birch allergen, Bet v1, shows affinity for a broad spectrum of physiological ligands[J]. The Journal of Biological Chemistry, 2002, 277(26):23684-23692.
[31] KOISTINEN K M, SOININEN P, VEN?魧L?魧INEN T A, et al. Birch PR-10c interacts with several biologically important ligands[J]. Phytochemistry, 2005, 66(21):2524-2533.
[32] BAIS H P, VEPACHEDU R, LAWRENCE C B, et al. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John's wort (Hypericum perforatum L.)[J]. The Journal of Biological Chemistry, 2003, 278(34):32413-32422.
[33] LEE E J, FACCHINI P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family[J]. The Plant Cell, 2010, 22(10):3489-3503.
[34] PINTO M P, RICARDO C P, LUPINUS ALBUS L. Pathogenesis-related proteins that show similarity to PR-10 proteins[J]. Plant Physiology, 1995, 109(4):1345-1351.
[35] P?譈HRINGER H, MOLL D, HOFFMANN-SOMMERGRUBER K, et al. The promoter of an apple Ypr10 Gene encoding the major allergen Mal d 1, is stress- and pathogen-inducible[J]. Plant Science, 2000, 152(1):35-50.
[36] XU P,BLANCAFLOR E B,ROOSSINCK M J.In spite of induced multiple defense responses,tomato plants infected with Cucumber mosaic virus and D satellite RNA succumb to systemic necrosis[J]. Molecular Plant-Microbe Interaction,2003, 16(6):467-476.
[37] ESNAULT R, BUFFARD D, BREDA C, et al. Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria,Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. Pisi[J]. Molecular Plant-Microbe Interaction,1993,6(5):655-664.
[38] BREDA C,SALLAUD C,EL-TURK J,et al. Defense reaction in Medicago sativa:a gene encoding a class 10 PR protein is expressed in vascular bundles[J].Molecular Plant-Microbe Interaction,1996,9(8):713-719.
[39] ROBERT N,F(xiàn)ERRAN J,BREDA C,et al. Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas Syringae Pv. Pisi: expression of genes goding for stilbene synthase and class 10 PR protein[J]. European Journal of Plant Pathology, 2001, 107(2):249-261.
[40] WALTER M H, LIU J W, GRAND C, et al. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens[J]. Molecular and General Genetics, 1990, 222(2-3):353-360.
[41] SWOBODA I,JILEK A,F(xiàn)ERREIRA F,et al. Isoforms of Bet v1,the major birch pollen allergen,analyzed by liquid chromatography, mass spectrometry,and cDNA cloning[J]. The Journal of Biological Chemistry,1995,270(6):2607-2613.
[42] JWA N S,KUMAR AGRAWAL G,RAKWAL R,et al. Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein Gene JIOsPR10, from rice (Oryza sativa L.) seedling leaves[J]. Biochemical biophysical research communications,2001,286(5):973-983.
[43] MCGEE J D, HAMER J E, HODGES T K. Characterization of a PR-10 pathogenesis-related gene 44family induced in rice during infection with Magnaporthe grisea[J]. Molecular Plant-Microbe Interaction, 2001, 14(7):877-886.
[44] LIU J J, EKRAMODDOULLAH A K M, YU X. Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening[J]. Physiologia Plantarum, 2003, 119(4):544-553.
[45] LIU J J, EKRAMODDOULLAH A K. Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco[J]. Plant Molecular Biology, 2003, 52(1):103-120.
[46] LIU J J, EKRAMODDOULLAH A K, PIGGOTT N, et al. Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants[J]. Planta, 2005, 221(2):159-169.
[47] EKRAMODDOULLAH A K M. Physiology and molecular biology of a family of pathogenesis-related PR-10 proteins in conifers[J]. Journal of Crop Improvement, 2004, 10(1-2):261-280.
[48] WARNER S A, SCOTT R, DRAPER J. Characterisation of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related (PR) proteins[J]. Plant Molecular Biology,1992,19(4):555-561.
[49] WARNER S A, SCOTT R, DRAPER J. Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco[J]. The Plant Journal, 1993, 3(2):191-201.
[50] APOLD J, FLORVAAG E, ELSAYED S. Comparative studies on tree-pollen allergens. I. Isolation and Apold partial characterization of a major allergen from birch pollen (Betula verrucosa)[J]. International Archives of Allergy and Immunology, 1981, 64(4):439-447.
[51] CONSTABEL C P, BRISSON N. Stigma- and vascular-specific expression of the PR10a gene of potato: A novel pattern of expression of a pathogenesis-related gene[J]. Molecular Plant-Microbe Interact, 1995, 15:104-113.
[52] EKRAMODDOULLAH A K M, TAYLOR D, HAWKINS B J. Characterization of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles[J]. Canadian Journal of Forest Research, 1995, 25:1137-1147.
[53] UKAJI N,KUWABARA C,TAKEZAWA D,et al.Accumulation of pathogenesis-related (PR) 10/Bet v1 protein homologues in mulberry (Morus bombycis Koidz) tree during winter[J]. The Plant Cell and Environment,2004,27(9):1112-1121.
[54] WISNIEWSKI M, BASSETT C,ARORA R.Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of ‘Loring’ peach (Prunus persica)[J].Tree Physiology,2004,24(3):339-345.
[55] MOONS A,PRINSEN E,BAUW G,et al. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots[J]. The Plant Cell,1997,9(12):2243-2259.
[56] DUBOS C, PLOMION C. Drought differentially affects expression of a PR-10 protein, in needles of maritime pine (Pinus pinaster Ait.) seedlings[J]. The Journal of Experimental Botany, 2001, 52(358):1143-1144.
[57] PNUELI L, HALLAK-HERR E, ROZENBERG M, et al. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam[J]. The Plant Journal, 2002, 31(3):319-330.
[58] UTRIAINEN M, KOKKO H,AURIOLA S,et al. PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch,Betula pendula[J]. The Plant Cell and Environment, 1998, 21(8):821-828.
[59] KOISTINEN K M, HASSINEN V H, GYNTHER P A M, et al. Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents[J]. New Phytologist, 2002, 155(3):381-391.
[60] BREITENEDER H, PETTENBURGER K, BITO A, et al. The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene[J]. The EMBO Journal, 1989, 8(7):1935-1938.
[61] WARNER S A, GILL A, DRAPER J. The developmental expression of the asparagus intracellular PR protein (AoPR1) gene correlates with sites of phenylpropanoid biosynthesis[J]. The Plant Journal, 1994, 6(1):31-43.
[62] SWOBODA I, HOFFMANN-SOMMERGRUBER K, O′R?魱ORD?魣IN G, et al. Bet v1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro[J]. Physiologia Plantarum 1996, 96(3): 433-438.
[63] HUANG J C, CHANG F C, WANG C S. Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins[J]. Plant Molecular Biology, 1997, 34(4):681-686.
[64] DENG W,BIAN W P,XIAN Z Q,et al. Molecular cloning and characterization of a pathogen-related protein PR10 gene in pyrethrum (Chrysanthemum cinerariaefolium) flower response to insect herbivore[J]. African Journal of Biotechnology, 2011, 10(84):19514-19521.
[65] CROWELL D N, JOHN M E, RUSSELL D, et al. Characterization of a stress-induced, developmentally regulated gene family from soybean[J]. Plant Molecular Biology,1992,18(3): 459-466.
[66] ATKINSON R G, PERRY J, MATSUI T, et al. A stress-, pathogenesis-, and allergen-related cDNA in apple fruit is also ripening-related[J]. New Zealand Journal of Crop and Horticultural Science, 1996, 24(1):103-107.
[67] VANEK-KREBITZ M, HOFFMANN-SOMMERGRUBER K, LAIMER DA CAMARA MACHADO M, et al. Cloning and sequencing of Mal d1, the major allergen from apple (Malus domestica), and its immunological relationship to Bet v1, the major birch pollen allergen[J]. Biochemical Biophysical Research Communications, 1995, 214(2):538-551.
[68] MYLONA P,MOERMAN M, YANG W C,et al.The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene[J].Plant Molecular Biology,1994,26(1):39-50.
[69] LARSEN J N,STR?覫MAN P,IPSEN H. PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam[J]. Molecular Immunology, 1992, 29(6):703-711.
[70] BREITENEDER H,HOFFMANN-SOMMERGRUBER K,O′RIORDAIN G, et al. Molecular characterization of Api g1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens[J]. European Journal of Biochemistry, 1995, 233(2):484-489.
[71] KARAMLOO F, SCHEURER S, WANGORSCH A, et al. Pyr c1, the major allergen from pear (Pyrus communis), is a new member of the Bet v1 allergen family[J]. Journal of Chromatography B: Biomedical Sciences and Application, 2001, 756(1-2):281-293.
[72] KLEINE-TEBBE J, VOGEL L, CROWELL D N, et al. Severe oral allergy syndrome and anaphylactic reactions caused by a Bet v1- related PR-10 protein in soybean, SAM22[J]. Journal of Allergy and Clinical Immunology, 2002, 110(5):797-804.
[73] WALTER M H, LIU J W, WUNN J, et al. Bean ribonuclease-like pathogenesis-related protein genes (Ypr10) display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression[J]. European Journal of Biochemistry,1996,239(2):281-293.
[74] MEIER I, HAHLBROCK K, SOMSSICH I E. Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1[J]. The Plant Cell, 1991, 3(3):309-315.
[75] RUSHTON P J, TORRES J T, PARNISKE M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. The EMBO Journal, 1996, 15(20):5690-5700.
[76] EULGEM T, RUSHTON P J, SCHMELZER E, et al. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors[J]. The EMBO Journal, 1999, 18(17):4689-4699.
[77] KORFHAGE U, TREZZINI G F, MEIER I, et al. Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene[J]. The Plant Cell, 1994, 6(5): 695-708.
[78] ROUSTER J, LEAH R, MUNDY J, et al. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain[J]. The Plant Journal, 1997, 11(3):513-523.
[79] MATTON D P, PRESCOTT G, BERTRAND C, et al. Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato[J]. Plant Molecular Biology, 1993, 22(2):279-291.
[80] DESPRES C, SUBRAMANIAM R, MATTON D P, et al. The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1[J]. The Plant Cell,1995, 7(5):589-598.
[81] DESVEAUX D, DESPR?魪S C, JOYEUX A, et al. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato[J]. The Plant Cell, 2000, 12 (8):1477-1489.
[82] CHOI DU S, HWANG I S, HWANG B K. Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper[J]. The Plant Cell, 2012, 24(4):1675-1690.
[83] ISLAM M A, STURROCK R N, HOLMES T A, et al. Ultrastructural studies of Phellinus sulphurascens infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins[J]. Mycological Research,2009, 113(2):700-712.
[84] ZHANG R,WANG Y,LIU G,et al. Cloning and characterization of a pathogenesis-related gene(ThPR10) from Tamarix hispida[J].Acta Biologica Cracoviensia,2010,52(2):17-25.
[85] PUEHRINGER H M, ZINOECKER I, MARZBAN G, et al. MdAP, a novel protein in apple, is associated with the major allergen Mal d1[J]. Gene,2003,321(1):173-183.
[86] MENEZES S, DOS SANTOS J, CARDOSO T, et al. Evaluation of the allergenicity potential of TcPR-10 protein from Theobroma cacao[J]. Ploss One,2012,7(6):e37969.
[87] CHEN Z Y, BROWN R L, RAJASEKARAN K, et al. Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production[J]. Phytopathology, 2006, 96(1):87-95.
[88] FLORES T,ALAPE-GIR?魷N A,F(xiàn)LORES-DI?魱AZ M,et al.Ocatin,a novel tuber storage protein from the Andean Tuber Crop Oca with antibacterial and antifungal activities[J].Plant Physiology, 2002, 128(4):1291-1302.
[89] XU P, JIANG L, WU J, et al. Isolation and characterization of a pathogenesis-related protein 10 gene(GmPR10) with induced expression in soybean(Glycine max) during infection with Phytophthora sojae[J]. Molecular Biology Reports, 2014, 41(8):4899-4909.
[90] CONSTABEL C P, BERTRAND C, BRISSON N. Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus[J]. Plant Molecular Biology, 1993, 22(5):775-782.
[91] LIBAULT M, ZHANG X C, GOVINDARAJULU M, et al. A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis[J]. The Plant Journal, 2010, 62(5):852-864.
[92] EL YAHYAOUI F, KUSTER H, BEN AMOR B, et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program[J]. Plant Physiology, 2004, 136(2):3159-3176.
[93] VAN NOORDEN G E, KERIM T, GOFFARD N, et al. Overlap of proteome changes in Medicagotruncatula in response to auxin and Sinorhizobium meliloti[J]. Plant Physiology, 2007, 144(2):1115-1131.
[94] REGUERA M, BONILLA I, BOLANOS L. Boron deficiency results in induction of pathogenesis-related proteins from the PR-10 family during the legume-rhizobia interaction[J]. Journal of Plant Physiology, 2010, 167(8):625-632.