亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        2型糖尿病患者血脂紊亂的機制

        2015-12-31 00:00:00王亞男江峰
        醫(yī)學信息 2015年34期

        1 2型糖尿病患者血脂紊亂的情況

        多機構研究發(fā)現(xiàn)2型糖尿?。═2DM)患者常伴隨著血漿甘油三酯(TG)濃度增高、高密度脂蛋白(HDL)降低等血脂代謝紊亂情況[1,2]。Jacobs 等研究發(fā)現(xiàn)約25.3 %的T2DM患者伴發(fā)血漿低密度脂蛋白LDL濃度升高(LDL>100mg/dL),而在非糖尿病患者占24.3%,提示T2DM患者血漿LDL濃度較正常人沒有明顯差異[3]。但T2DM患者LDL顆粒容易被氧化,且伴發(fā)翻轉減少等運動的異常,這些異常潛在都是有害的[1]。當血漿LDL<50mg/dL或者非HDL<80 mg/dL時,LDL顆粒明顯增多,LDL顆粒密度增高(特別是當TG>100mg/dL時)[4]。T2DM患者肝內(nèi)極低密度脂蛋白(VLDL)產(chǎn)生增多,VLDL和中密度脂蛋白(IDL)分解減少,VLDL在TG中的含量相對增多,小而密LDL(sdLDL)在富含LDL、HDL的TG中的含量也相對增多[1],而這些血脂紊亂可導致動脈粥樣硬化形成[5]。

        2 T2DM血脂代謝紊亂的機制

        T2DM患者游離脂肪酸(FFA)增多,促進肝臟VLDL-TG的產(chǎn)生,VLDL-TG在膽固醇酯轉移蛋白(CETP)的作用下,轉變?yōu)镠DL,導致VLDL-C和富含TG、缺失膽固醇(CHO)的HDL數(shù)量增多。CETP可促進VLDL中的TG轉移到LDL中形成富含TG的LDL,經(jīng)脂肪酶和脂蛋白酶水解后產(chǎn)生sdLDL,故導致血漿sdLDL增多[6]。HDL分解也明顯增多,而合成沒有明顯變化,導致血漿HDL濃度下降[7]。腫瘤壞死因子(TNF-α)等炎性因子增多,促進胰島素抵抗,導致 HDL合成減少[8]。肝內(nèi)VLDL產(chǎn)生增多對HDL減少、sdLDL增多起重要作用,而VLDL增多的機制尚未明確,但是一些因素可能扮演著重要角色。

        2.1游離脂肪酸增多 因為胰島素在脂質(zhì)代謝過程中起著重要作用,所以T2DM患者胰島素抵抗和相對胰島素缺少可能在血脂紊亂發(fā)病過程中扮演著重要角色[1]。肝臟VLDL產(chǎn)生增多和胰島素抵抗相關,是T2DM患者血脂代謝紊亂的顯著特征 [9]。激素敏感型脂肪酶可促進脂肪的分解,胰島素抵抗時,胰島素對脂肪組織中的激素敏感型脂肪酶的抑制作用減少[1,10],導致T2DM血漿游離脂肪酸(FFA)的濃度升高,進入肝臟的FFA也增多,肝臟內(nèi)FFA緩慢長期增多,促進TG的產(chǎn)生,導致細胞質(zhì)內(nèi)TG儲存池增大,通過抑制翻譯后載脂蛋白B(apoB)的消除、促進微粒體轉運蛋白(MTP)的表達來促進VLDL的產(chǎn)生[11,12]。

        2.2磷脂酰肌醇(-3)激酶(PI3K)失活和apoB消除減少 胰島素可直接抑制肝癌細胞VLDL-apoB和VLDL-TG的產(chǎn)生[13]。胰島素直接抑制肝臟VLDL產(chǎn)生的機制尚未明確,有研究發(fā)現(xiàn),PI3K途徑可能參與其中。當胰島素和其細胞表面的受體結合后,胰島素的信號通路被激活。胰島素受體自身磷酸化、酪氨酸激酶受體激活,導致胰島素受體底物1(IRS1)和IRS2等IRSs中的絡氨酸磷酸化[14]。IRS1和IRS2中絡氨酸磷酸化導致PI3K的激活,PI3K一旦激活,促使磷酯酰肌醇二磷酸 (PIP2)轉變?yōu)镻I3K,促進AKT蛋白激酶的激活。AKT蛋白激酶是一種絲氨酸/蘇氨酸(Ser/Thr)蛋白激酶,是調(diào)節(jié)脂質(zhì)代謝的效應器。用PI3K抑制劑LY-294002,可以消除胰島素對apoB的抑制作用,說明PI3K參與胰島素對apoB的調(diào)節(jié)[15]。有研究發(fā)現(xiàn)PI3K/AKT的激活可導致酪氨酸磷酸酶1B的失活,將促進apoB的減少[16]。T2DM患者由于胰島素抵抗,胰島素抑制肝細胞VLDL產(chǎn)生的作用明顯減弱[17],導致VLDL產(chǎn)生增多。

        2.3肝細胞微粒體甘油三酯轉移蛋白(MTP)表達增多 細胞研究發(fā)現(xiàn)胰島素可以下調(diào)MTP基因的表達,抑制MTP蛋白的產(chǎn)生。叉頭框轉錄因子O1(FoxO1)通過PI3K/AKT途徑被磷酸化,以促進細胞內(nèi)MTP基因表達[19]。Foxa2與其激活因子過氧化物酶體增殖活化受體γ共激活因子-1β(PGC-1β) 形成復合體,刺激肝細胞MTP基因 mRNA 的表達,促進肝細胞VLDL的分泌[20]。胰島素抵抗和T2DM患者MTP表達和活性都增高,PI3K活性的減弱可導致FoxO1增多[19]。胰島素介導的Foxa2失活減少可能參與MTP表達增多[21]。

        2.4磷脂酶D1 和 ADP-核糖基化因子1(ARF-1)的活性增高 胰島素可以抑制VLDL的產(chǎn)生,胰島素通過PI3K途徑促進細胞膜磷脂中的磷脂酰肌醇4,5二磷酸(PIP2)轉變?yōu)榱字<〈?,5三磷酸(PIP3),導致PIP2減少,PIP2可以刺激磷脂酶D1和ARF-1形成,磷脂酶D1和ARF-1參與VLDL形成過程。胰島素抵抗時,胰島素信號通路受損將降低PI3K活性,抑制PIP2轉變?yōu)镻I3K,導致PIP2增多,從而導致VLDL的產(chǎn)生增多[22]。

        2.5脂肪合成增多 一些研究表明肥胖和胰島素抵抗者,脂肪合成是增多的[23]。胰島素抵抗和T2DM患者肝臟FFA及脂肪含量增高,可促進內(nèi)質(zhì)網(wǎng)應激性增高 [24]。動物模型研究發(fā)現(xiàn)而內(nèi)質(zhì)網(wǎng)應激性增高和肝臟脂肪合成相關[25]。血糖在5.5到27.5mmol/l波動時,可誘導碳水化合物反應元件結合蛋白(ChREBP)激活脂肪合成酶基因啟動子,促進其表達[26,27]。膽固醇調(diào)節(jié)元件結合蛋白-1c(SREBP-1c)表達增高可能和內(nèi)質(zhì)網(wǎng)應激性增高有關[28]。肝X受體(LXR)活性增高可能參與脂肪合成增多,LXR可促進SREBP-1c的表達,導致肝臟脂肪酸合成和脂肪分解增加[29]。LXR不僅可上調(diào)SREBP-1c,而且可上調(diào) ChREBP[30]。

        2.6脂聯(lián)素降低 T2DM患者腺苷酸激酶活性降低可能是由于血漿脂聯(lián)素濃度降低導致的,因為血漿脂聯(lián)素是腺苷酸激酶的激活劑[31]。循環(huán)脂聯(lián)素降低導致肌肉FFA氧化減少,血漿FFA濃度增高,肝臟脂肪含量增高,促進肝臟VLDL產(chǎn)生。高脂聯(lián)素血癥可降低肝臟腺苷酸激酶的活性,可能提高SREBP-1c的表達,激活乙酰輔酶A,脂肪酸合酶等脂肪合成酶,來促進脂肪的重新合成[32-34]。

        3 總結

        T2DM患者伴隨著血漿TG、sdLDL增高,HDL降低等血脂代謝紊亂的情況,具體的機制仍然未知。現(xiàn)在研究發(fā)現(xiàn)肝內(nèi)VLDL產(chǎn)生增多起著重要的作用,而FFA增多,PI3K失活和apoB消除減少,MTP表達增多,ARF-1活性增高,脂肪合成增多,脂聯(lián)素降低等因素可促進VLDL產(chǎn)生增多,進而引起血脂代謝紊亂。

        參考文獻:

        [1]Verges B.New insight into the pathophysiology of lipid abnormalities in type 2 diabetes[J]. Diabetes metabolism,2005,31(5):429-439.

        [2]Parish S,Offer A,Clarke R,et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study[J].Circulation,2012,125(20):2469-2478.

        [3]Jacobs MJ,Kleisli T,Pio JR,et al. Prevalence and control of dyslipidemia among persons with diabetes in the United States[J].Diabetes research and clinical practice,2005,70(3):263-269.

        [4]Malave H,Castro M,Burkle J,et al.Evaluation of low-density lipoprotein particle number distribution in patients with type 2 diabetes mellitus with low-density lipoprotein cholesterol <50 mg/dl and non-high-density lipoprotein cholesterol <80 mg/dl[J].The American journal of cardiology,2012,110(5):662-665.

        [5]Grundy SM.Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance[J]. Clinical cornerstone,2006,8(Suppl 1):S21-27.

        [6]Mooradian AD.Dyslipidemia in type 2 diabetes mellitus[J].Nature clinical practice Endocrinology metabolism,2009,5(3):150-159.

        [7]Frenais R,Ouguerram K,Maugeais C,et al. High density lipoprotein apolipoprotein AI kinetics in NIDDM: a stable isotope study[J].Diabetologia,1997,40(5):578-583.

        [8]Haas MJ,Mooradian AD. Regulation of high-density lipoprotein by inflammatory cytokines: establishing links between immune dysfunction and cardiovascular disease[J].Diabetes/metabolism research and reviews,2010,26(2):90-99.

        [9]Adiels M,Boren J,Caslake MJ,et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia[J].Arteriosclerosis, thrombosis,and vascular biology, 2005,25(8):1697-1703.

        [10]Adiels M,Olofsson SO,Taskinen MR,et al. Diabetic dyslipidaemia[J].Current opinion in lipidology,2006,17(3):238-246.

        [11]Kelley DE,McKolanis TM,Hegazi RA,et al.Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance[J].American journal of physiology Endocrinology and metabolism,2003,285(4):E906-916.

        [12]Taghibiglou C,Carpentier A,Van Iderstine SC,et al.Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model[J].The Journal of biological chemistry,2000,275(12):8416-8425.

        [13]Chirieac DV,Chirieac LR,Corsetti JP,et al. Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production[J].American journal of physiology Endocrinology and metabolism,2000,279(5):E1003-1011.

        [14]Taniguchi CM,Ueki K,Kahn R.Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism[J].The Journal of clinical investigation,2005,115(3):718-727.

        [15]Sparks JD,Phung TL,Bolognino M,et al. Insulin-mediated inhibition of apolipoprotein B secretion requires an intracellular trafficking event and phosphatidylinositol 3-kinase activation: studies with brefeldin A and wortmannin in primary cultures of rat hepatocytes[J].The Biochemical journal,1996,313(Pt2):567-574.

        [16]Taghibiglou C,Rashid-Kolvear F,Van Iderstine SC,et al. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance[J].The Journal of biological chemistry,2002,277(1):793-803.

        [17]Lewis GF,Uffelman KD,Szeto LW,et al.Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals[J].Diabetes, 1993,42(6):833-842.

        [18]Qiu W,Kohen-Avramoglu R,Rashid-Kolvear F,et al. Overexpression of the endoplasmic reticulum 60 protein ER-60 downregulates apoB100 secretion by inducing its intracellular degradation via a nonproteasomal pathway: evidence for an ER-60-mediated and pCMB-sensitive intracellular degradative pathway[J].Biochemistry,2004,43(16):4819-4831.

        [19]Kamagate A,Qu S,Perdomo G,et al.FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice[J].The Journal of clinical investigation,2008,11(6):2347-2364.

        [20]Wolfrum C,Stoffel M.Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion[J].Cell metabolism,2006,3(2):99-110.

        [21]Koo SH,Montminy M.Fatty acids and insulin resistance: a perfect storm[J].Molecular cell, 2006,21(4):449-450.

        [22]Oude Weernink PA,Lopez de Jesus M,Schmidt M.Phospholipase D signaling: orchestration by PIP2 and small GTPases[J].Naunyn-Schmiedeberg's archives of pharmacology, 2007,374(5-6):399-411.

        [23]Diraison F,Moulin P,Beylot M.Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease[J].Diabetes metabolism,2003,29(5):478-485.

        [24]Ota T,Gayet C,Ginsberg HN.Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents[J].The Journal of clinical investigation, 2008,118(1):316-332.

        [25]Ozcan U,Cao Q,Yilmaz E,et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes[J].Science,2004,306(5695):457-461.

        [26]Koo SH,Dutcher AK,Towle HC.Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver[J].The Journal of biological chemistry,2001,276(12):9437-9445.

        [27]Ishii S,Iizuka K,Miller BC,et al.Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15597-15602.

        [28]Ferre P,F(xiàn)oufelle F.SREBP-1c transcription factor and lipid homeostasis: clinical perspective[J]. Hormone research,2007,68(2):72-82.

        [29]Baranowski M.Biological role of liver X receptors[J].Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,2008,59 Suppl 7:31-55.

        [30]Cha JY,Repa JJ.The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR[J].The Journal of biological chemistry,2007,282(1):743-751.

        [31]Hegarty BD,Turner N,Cooney GJ,et al. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase[J].Acta physiologica,2009,196(1):129-145.

        [32]Yamauchi T,Kadowaki T.Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases[J]. International journal of obesity,2008,32 (Suppl 7):S13-18.

        [33]Yamauchi T,Kamon J,Minokoshi Y,et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J].Nature medicine,2002,8(11):1288-1295.

        [34]Fruebis J,Tsao TS,Javorschi S,et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J].Proceedings of the National Academy of Sciences of the United States of America, 2001,98(4):2005-2010.

        編輯/馮焱

        亚洲狠狠婷婷综合久久久久图片 | 国产麻豆久久av入口| 午夜精品久久久久久久无码| 国产精品igao视频| 亚洲精品成AV无在线观看| 亚洲一区二区女优av| 熟女人妻在线中文字幕| 免费看又色又爽又黄的国产软件| 亚洲av一宅男色影视| 国产精品白浆视频免费观看| 久久中文字幕av一区二区不卡| 人妻少妇偷人精品免费看| 亚洲av麻豆aⅴ无码电影| 久久精品国产亚洲av麻豆长发| 曰批免费视频播放免费直播| 国产成人精品三级在线影院 | 国产一区二区三免费视频| 亚洲精品无码av人在线观看| 曰本女人与公拘交酡免费视频| 国产精品女同久久免费观看| 人妻少妇偷人精品一区二区| 99无码熟妇丰满人妻啪啪| 粗了大了 整进去好爽视频| av无码电影一区二区三区| 水蜜桃男女视频在线观看网站| 国产人妻熟女高跟丝袜图片| 日产精品久久久久久久| 米奇亚洲国产精品思久久| 亚洲视频免费在线观看| 无码aⅴ免费中文字幕久久| 日韩久久一级毛片| 一级一片内射在线播放| 精品亚洲麻豆1区2区3区| 日本成本人三级在线观看| 亚洲精品成人国产av| 在线视频一区二区国产| 在线观看视频播放| 国产伦精品一区二区三区视| 在线精品亚洲一区二区三区| av无码精品一区二区三区| 亚洲色欲久久久久综合网|