張白雪,孫其信,李海峰,2
?
基因修飾技術(shù)研究進(jìn)展
張白雪1,孫其信1,李海峰1,2
1 西北農(nóng)林科技大學(xué)旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/農(nóng)學(xué)院,陜西 楊凌 712100 2 新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院,新疆 昌吉 831100
張白雪, 孫其信, 李海峰. 基因修飾技術(shù)研究進(jìn)展. 生物工程學(xué)報(bào), 2015, 31(8): 1162–1174.Zhang BX, Sun QX, Li HF. Advances in genetic modification technologies. Chin J Biotech, 2015, 31(8): 1162–1174.
基因修飾技術(shù)是用于基因組定點(diǎn)改造的分子工具,目前主要有鋅指核酸酶 (ZFN)技術(shù)、轉(zhuǎn)錄激活子樣效應(yīng)物核酸酶 (TALEN) 技術(shù)和CRISPR-Cas核酸酶 (CRISPR-Cas) 技術(shù)。這些核酸酶都可以在DNA靶位點(diǎn)產(chǎn)生雙鏈斷裂 (DSB),誘發(fā)細(xì)胞內(nèi)源性的修復(fù)機(jī)制,激活體內(nèi)非同源末端連接 (NHEJ) 或同源重組 (HR) 兩種不同的修復(fù)機(jī)制,從而實(shí)現(xiàn)內(nèi)源基因的敲除或外源基因的定點(diǎn)敲入。近年來,基因修飾技術(shù)已成功應(yīng)用到細(xì)菌、酵母、人類細(xì)胞、果蠅、斑馬魚、小鼠、大鼠、家畜、食蟹猴、擬南芥、水稻、煙草、玉米、高粱、小麥和大麥等多種生物,顯示了其強(qiáng)大的基因編輯優(yōu)勢(shì)。特別是新近出現(xiàn)的CRISPR-Cas9技術(shù),降低了成本,使基因編輯變得簡(jiǎn)潔、高效和易于操作,得到了很多研究人員的關(guān)注。本文系統(tǒng)介紹了以上3種技術(shù)的原理及最新研究進(jìn)展,并對(duì)未來的研究和應(yīng)用做出了展望。
基因修飾,鋅指核酸酶 (ZFN),轉(zhuǎn)錄激活子樣效應(yīng)物核酸酶 (TALEN),CRISPR-Cas核酸酶
隨著越來越多不同物種完成基因組測(cè)序,探索基因組的功能尤為重要。近年來,基因組靶向修飾技術(shù)逐漸成為基因組改造與基因功能研究的一個(gè)重要手段,并且于2012年被評(píng)為年度十大重要科學(xué)進(jìn)展之一。人工核酸內(nèi)切酶 (Engineered endonuclease,EEN) 是完成基因組定向修飾的重要工具[1]。自上世紀(jì)80年代末,基于人工核酸內(nèi)切酶的基因修飾技術(shù)開始發(fā)展,目前主要包括:第一代人工核酸內(nèi)切酶鋅指核酸酶 (ZFN) 技術(shù)、第二代人工核酸內(nèi)切酶轉(zhuǎn)錄激活子樣效應(yīng)物核酸酶 (TALEN) 技術(shù)、第三代人工核酸內(nèi)切酶CRISPR-Cas核酸酶 (CRISPR-Cas RGNs) 技術(shù)。人工核酸內(nèi)切酶能夠特異識(shí)別目的DNA序列,對(duì)靶標(biāo)單鏈或雙鏈進(jìn)行精準(zhǔn)切割,形成雙鏈斷裂 (DSB),誘發(fā)細(xì)胞內(nèi)源性的修復(fù)機(jī)制,激活體內(nèi)非同源末端連接修復(fù) (NHEJ) 或同源重組修復(fù) (HR),在該位點(diǎn)實(shí)現(xiàn)敲除、插入、堿基替換、點(diǎn)突變等定點(diǎn)修飾[2-3]。
T-DNA插入、轉(zhuǎn)座因子、化學(xué)誘變及輻射誘變等傳統(tǒng)技術(shù)早已被廣泛用于產(chǎn)生突變[4-8],但是這些技術(shù)除了不能特異地針對(duì)某個(gè)目的基因外,同時(shí)會(huì)引起多個(gè)基因突變,需要進(jìn)一步用互補(bǔ)方法驗(yàn)證表型和目的基因的連鎖關(guān)系;反向遺傳學(xué)方法如RNAi 技術(shù)可以對(duì)基因定點(diǎn)敲除[9],但無(wú)法徹底敲除基因的表達(dá)且無(wú)法在后代中恢復(fù)。與傳統(tǒng)轉(zhuǎn)基因技術(shù)相比,基因修飾技術(shù)具有針對(duì)性強(qiáng)、效率高、構(gòu)建時(shí)間短、應(yīng)用廣泛等特點(diǎn),顯示了極大的基因編輯優(yōu)勢(shì)。
近年來,基因修飾技術(shù)發(fā)展迅速,不斷得到改進(jìn),在細(xì)菌[10-11]、酵母[12-13]、人類細(xì)胞[13-20]、果蠅[16,21-22]、斑馬魚[16,23-31]、爪蟾[16,32]、小鼠[20,33-34]、大鼠[35-36]、豬、牛[37]、擬南芥[12,38-44]、水稻[42,44-47]、煙草[42-43,48-49]、玉米[50]、高粱[42]、小麥[47]、大麥[51]等多種生物體中得到了廣泛的研究和應(yīng)用。本文對(duì)基因修飾技術(shù)原理及取得的研究進(jìn)展作一總結(jié)和概述。
1983年,鋅指蛋白 (Zinc finger protein,ZFP) 首次在非洲爪蟾的轉(zhuǎn)錄因子IIIA中被發(fā)現(xiàn)[52]。第一種經(jīng)過改造的人工核酸內(nèi)切酶——鋅指核酸酶 (Zinc finger nueleases,ZFN) 在20世紀(jì)90年代末首次得到研究和應(yīng)用[53],實(shí)現(xiàn)了基因的高效定點(diǎn)修飾,具有劃時(shí)代的意義。
鋅指核酸酶 (ZFN) 由鋅指蛋白 (ZFP) 結(jié)構(gòu)域和切割結(jié)構(gòu)域 (Ⅰ) 兩部分構(gòu)成[54]。鋅指 (Zinc finger, ZF) 是構(gòu)成ZFP結(jié)構(gòu)域的DNA結(jié)合基序 (Motif),含有30個(gè)左右的氨基酸殘 基[55]。鋅指折疊形成 α-β-β (C端—N端) 類型的二級(jí)結(jié)構(gòu),α螺旋能夠插入到DNA雙螺旋結(jié)構(gòu)的大溝中。α螺旋的–1– + 6位的7個(gè)氨基酸殘基 (+ 4位通常固定為亮氨酸殘基) 決定靶標(biāo)序列的特異性識(shí)別,通過特異識(shí)別DNA雙螺旋中某一條單鏈上連續(xù)的3個(gè)核苷酸 (稱為一個(gè)三聯(lián)子,Triplet),完成靶標(biāo) (圖1A)。
多個(gè)鋅指結(jié)構(gòu)串聯(lián)可以識(shí)別更長(zhǎng)的DNA目標(biāo)片段,同時(shí)保證能夠精確地特異識(shí)別靶標(biāo)序列。因此,通常把3–6個(gè)C2H2類型的鋅指結(jié)構(gòu)域重復(fù)串聯(lián)構(gòu)成ZFP結(jié)構(gòu)域,它們?cè)贒NA上沿3′到5′的方向依次同其靶序列結(jié)合。Ⅰ核酸酶主要來源于海床黃桿菌,能夠通過二聚化發(fā)揮核酸內(nèi)切酶活性[56],同ZFP的C端融合構(gòu)成ZFN單體。靶標(biāo)DNA鏈分別由兩個(gè)ZFN單體的鋅指結(jié)構(gòu)域識(shí)別其5′到3′方向和3′到5′方向,兩個(gè)Ⅰ切割結(jié)構(gòu)域形成二聚體的活性形式發(fā)揮剪切作用 (圖1B)。因此,構(gòu)建識(shí)別不同堿基的ZFP只需要改變這些氨基酸的組成即可。
圖1 鋅指蛋白核酸酶定點(diǎn)突變示意圖[57]
將ZFN的質(zhì)?;騧RNA通過轉(zhuǎn)染或注射細(xì)胞后,核定位信號(hào)引導(dǎo)ZFN進(jìn)入細(xì)胞核,兩個(gè)ZFN分子的Ⅰ結(jié)構(gòu)域與目標(biāo)位點(diǎn)結(jié)合,于兩個(gè)結(jié)合位點(diǎn)的間隔區(qū)切割產(chǎn)生DSB切口。細(xì)胞可通過NHEJ或HR等方式可能出現(xiàn)錯(cuò)誤修復(fù)或者引入改變,造成DNA序列改變,從而實(shí)現(xiàn)基因的定向修飾操作。
ZFN的構(gòu)建包括:選擇靶位點(diǎn)、構(gòu)建ZFP結(jié)構(gòu)域、選擇Ⅰ切割域、優(yōu)化篩選等步驟。由于三聯(lián)子靶序列中的3個(gè)堿基同鋅指結(jié)構(gòu)的–1、+3、+6位氨基酸殘基能夠相互作用,而ZFP 的結(jié)合特性和效率同樣也會(huì)受到其他氨基酸殘基及相鄰串聯(lián)的鋅指結(jié)構(gòu)氨基酸序列的影響,這種上下文依賴效應(yīng) (Context dependent effects)有可能對(duì)ZFP與靶位點(diǎn)的結(jié)合產(chǎn)生增強(qiáng)或減弱作用。因此,ZFN應(yīng)用的關(guān)鍵技術(shù)是構(gòu)建篩選出能夠高效、特異結(jié)合靶標(biāo)位點(diǎn)的ZFP結(jié)構(gòu)。
除了根據(jù)已知的ZFP結(jié)合位點(diǎn)直接構(gòu)建ZFN外,Joung等成立的“鋅指聯(lián)合會(huì)”提供在線軟件ZiFiT (www.zincfinger.org) 用于開發(fā)易于操作的,標(biāo)準(zhǔn)化的ZFN構(gòu)建平臺(tái),主要包括:模塊組裝 (Modular assembly,MA),OPEN (Oligomerized pool engineering) 和CoDA (Context dependent assembly) 方法。除此之外,還有利用ZFN技術(shù)分析目標(biāo)基因的ZFN靶位點(diǎn)免費(fèi)的在線ZFN設(shè)計(jì)軟件ZiFiT:http://bindr.gdcb.iastate.edu/ZiFiT/;Zinc Finger Tools:http://www. zincfingertools.org[58]。
在醫(yī)學(xué)研究方面,Urnov等在人的體細(xì)胞基因組上利用ZFN技術(shù)對(duì)人內(nèi)源基因完成定點(diǎn)切割,同源重組效率達(dá)20%[14]。Perez等對(duì)CD4+ T細(xì)胞基因?qū)崿F(xiàn)定點(diǎn)敲除,獲得HIV抗性基因型細(xì)胞以抑制艾滋病毒的繁殖和傳播,達(dá)到了基因治療的目的[15]。在動(dòng)物基因組研究方面,Bibikova等利用ZFN技術(shù)對(duì)果蠅X性染色體的基因完成定點(diǎn)修飾,結(jié)果發(fā)現(xiàn)50%的雄性果蠅發(fā)生顏色的改變[21]。研究者通過向斑馬魚單細(xì)胞胚胎中注人不同目的基因設(shè)計(jì)的ZFN mRNA,特定基因位點(diǎn)實(shí)現(xiàn)突變并表現(xiàn)出預(yù)期的性狀。實(shí)驗(yàn)中突變存在一定的脫靶現(xiàn)象,但是實(shí)驗(yàn)結(jié)果表明通過構(gòu)建ZFN直接注射mRNA到動(dòng)物胚胎,能夠完成基因的定點(diǎn)修飾[23-25]。在植物體的研究中,研究者通過把ZFN基因及其靶位點(diǎn)轉(zhuǎn)入擬南芥、玉米,獲得了定點(diǎn)突變的突變體植株,并且證明了由ZFN介導(dǎo)的基因突變可以遺傳[38,50]。
ZFN技術(shù)優(yōu)勢(shì)明顯,可以應(yīng)用到很多種生物中定點(diǎn)修飾基因。然而,在ZF模塊設(shè)計(jì)中,由于上下文依賴效應(yīng)使得ZFNs特異識(shí)別任意靶標(biāo)序列的能力較差[59],導(dǎo)致一些ZF結(jié)構(gòu)域缺乏特異性,結(jié)果出現(xiàn)脫靶現(xiàn)象,引起其他目的基因突變和染色體畸變[60-61]。此外,ZFN的設(shè)計(jì)篩選耗時(shí)費(fèi)力,成本高,因此限制了其更加廣泛的應(yīng)用。
2007年,植物黃單胞菌分泌的轉(zhuǎn)錄激活子樣(Transcription activator-like effectors,TALEs) 被發(fā)現(xiàn)[62-63],同理構(gòu)建的轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶 (Transcription activator-like effector nucleases,TALENs) 脫靶幾率小,細(xì)胞毒性小,成為另一種能夠高效簡(jiǎn)便地靶向基因組的新技術(shù)[64-65]。
TALE由N端轉(zhuǎn)運(yùn)信號(hào)、中部DNA特異識(shí)別結(jié)合域、C端核定位信號(hào)和轉(zhuǎn)錄激活結(jié)構(gòu)域3部分構(gòu)成。其中,DNA特異識(shí)別結(jié)合域由一串連續(xù)排列、序列高度同源的重復(fù)單元組成,能夠識(shí)別特異的DNA序列。每個(gè)重復(fù)單元通常由33?35個(gè)氨基酸組成,第12、13位的氨基酸高度可變,被稱為重復(fù)序列可變的雙氨基酸殘基 (Repeat variable diresidues,RVD),并且能夠與A、T、C、G堿基相互對(duì)應(yīng),即:NI特異識(shí)別A,HD特異識(shí)別C,NG特異識(shí)別T,NH特異識(shí)別G,NN對(duì)應(yīng)G或A,NS可以識(shí)別A、T、G、C中的任一種[66-67]。此外,除了第12、13位氨基酸外,其余氨基酸序列高度保守。每個(gè)TALEN識(shí)別的靶標(biāo)序列長(zhǎng)度通常為14–20 bp[68]。因此,識(shí)別某一特定氨基酸序列,只需設(shè)計(jì)相應(yīng)TALE單元串聯(lián)克隆即可,其中RVD是TALEs特異識(shí)別DNA序列的關(guān)鍵。不同于存在上下文依賴效應(yīng)的ZFs,TALE構(gòu)成的重復(fù)氨基酸序列模塊具有蛋白與DNA識(shí)別碼和模塊自然屬性,可以和任何單堿基發(fā)生特異性結(jié)合,因此理論上可以設(shè)計(jì)并識(shí)別任意靶DNA的序列[69]。Ⅰ結(jié)構(gòu)域切割位點(diǎn)位于兩個(gè)靶標(biāo)序列的間隔區(qū),間隔距離一般在15–30 bp之間[70](圖2A)。
圖2 利用TALEN誘變目的基因[46]
將設(shè)計(jì)的特異識(shí)別靶標(biāo)序列的TALEs與Ⅰ結(jié)構(gòu)域融合,即構(gòu)建得到一對(duì)TALEN質(zhì)粒。將TALEN質(zhì)粒對(duì)共轉(zhuǎn)化到細(xì)胞中,表達(dá)的融合蛋白將分別和靶位點(diǎn)結(jié)合[71],再由二聚體化的Ⅰ對(duì)其進(jìn)行切割,形成DSB,誘發(fā)DNA損傷修復(fù)機(jī)制,細(xì)胞則激發(fā)體內(nèi)產(chǎn)生修復(fù)機(jī)制。若細(xì)胞內(nèi)不存在修復(fù)模板,可激發(fā)NHEJ方式修復(fù)DNA,可能發(fā)生敲除或者插入堿基等錯(cuò)配修復(fù),獲得基因敲除突變體;如果在DSB周圍存在同源DNA模板,細(xì)胞則采用HR方式進(jìn)行修復(fù),可能會(huì)發(fā)生堿基增加或者替換等 (圖2 B)。研究表明,NHEJ方式是高等植物進(jìn)行自發(fā)修復(fù)的主要方式[72]。
TALEN的構(gòu)建主要依靠分子克隆的手段,目前已形成了幾種快速有效的方法:Golden gate分子克隆法、連續(xù)克隆組裝法、高通量法、長(zhǎng)黏末端的LIC (Ligation-indepent cloning) 組裝法等。其中,連續(xù)克隆組裝法包括:限制性酶切-連接法 (Restriction enzyme and ligation, REAL)、單元組裝法 (Unit assembly, UA) 和idTALE一步酶切次序連接法;高通量法包括FLASH和ICA (Iterative capped assembly)[73]。為優(yōu)化設(shè)計(jì),一些實(shí)驗(yàn)室構(gòu)建了預(yù)測(cè)設(shè)計(jì)TALEN靶點(diǎn)的服務(wù)器可供使用,如TALENT (https://tale-nt.cac.cornell. edu)、ZiFiT (http://zifit.partners.org/ZiFiT) 和idTALE (http://idtate.kaust.edu.sa) 等。
在動(dòng)物方面,Sakuma等使用該項(xiàng)技術(shù)對(duì)HEK293T細(xì)胞、人類誘導(dǎo)性多功能干細(xì)胞 (iPS)、果蠅、斑馬魚以及非洲爪蟾等模式動(dòng)物中完成了基因突變[16]。Liu等利用TALEN技術(shù)在果蠅中對(duì)基因成功打靶,并得到了可以遺傳突變的種系[22]。Sander等利用TALEN技術(shù)在斑馬魚體細(xì)胞中成功對(duì)和兩個(gè)基因成功打靶,突變效率為11%–33%[26];Huang等利用UA法構(gòu)建TALEN在斑馬魚中分別得到了和兩個(gè)基因的突變,結(jié)果證明斑馬魚突變體可以穩(wěn)定遺傳[27]。Moore等利用TALEN技術(shù)在斑馬魚中進(jìn)行研究,結(jié)果表明TALEN產(chǎn)生突變的效率高于ZFN[28]。Zu等使用該技術(shù)對(duì)斑馬魚的7個(gè)內(nèi)源基因成功打靶,其中大部分基因的突變效率大于30%,有3個(gè)基因的突變效率接近100%[29]。Lei等通過構(gòu)建TALEN轉(zhuǎn)入兩種不同的爪蟾中進(jìn)行研究,結(jié)果表明TALEN技術(shù)都能完成基因定向敲除[32]。Sung等在小鼠中利用該技術(shù)對(duì)特定基因成功突變[33]。Tong等在大鼠細(xì)胞中通過構(gòu)建TALEN成功敲除了基因[35]。Carlson等利用TALEN技術(shù)對(duì)牛和豬的基因成功定點(diǎn)打靶[37]。
在植物中,Christian等首次運(yùn)用TALEN在擬南芥中實(shí)驗(yàn),組裝若干對(duì)針對(duì)At基因的TALENs,通過使用作為報(bào)告基因的酵母系統(tǒng)驗(yàn)證,結(jié)果表明構(gòu)建的TALENs能夠發(fā)揮功能[12]。Cermak等構(gòu)建了一種有自定義重復(fù)單元構(gòu)成的能夠高效組裝TALEN的方法——Golden gate分子克隆的方法,以At作為靶標(biāo),用擬南芥的原生質(zhì)體進(jìn)行驗(yàn)證[39]。Mahfouz等利用TALE-SRDX抑制擬南芥基因的表達(dá)[40]。Christian等在擬南芥中研究發(fā)現(xiàn)TALEN技術(shù)產(chǎn)生的突變體在下代的遺傳效率在1.5%–12%之間[41]。Li等首次運(yùn)用TALENs技術(shù)對(duì)水稻基因的啟動(dòng)子區(qū)域進(jìn)行插入修飾,獲得了抗白葉枯病的水稻株系[45]。Chen等利用TALEN技術(shù)定向敲除了水稻的52個(gè)基因,并且建立了一個(gè)大規(guī)模的TALEN突變體平臺(tái)。研究者通過運(yùn)用Golden Gate方法進(jìn)行TALEN組裝、構(gòu)建植物表達(dá)載體、在水稻原生質(zhì)體中進(jìn)行TALEN活性驗(yàn)證、TALEN轉(zhuǎn)化水稻、篩選基因敲出,最終得到轉(zhuǎn)基因植株,突變率達(dá)30%,并發(fā)現(xiàn)突變片段常包含小的刪除和插入,刪除長(zhǎng)度為1–20 bp,通常發(fā)生在TALEN結(jié)構(gòu)域的間隔區(qū)[46]。Zhang等在煙草原生質(zhì)體中利用TALEN技術(shù)成功進(jìn)行基因置換[48]。Wendt等運(yùn)用TALEN技術(shù)以大麥磷酸酶基因的啟動(dòng)子區(qū)域一組控制元件作為靶標(biāo)[51]。
1987年,Ishino等首次在大腸桿菌K12的堿性磷酸酶基因附近區(qū)域發(fā)現(xiàn)了成簇的規(guī)律間隔的短回文重復(fù)序 列[82]。隨著研究的不斷深入,2002年科學(xué)家將其正式命名為CRISPR (Clustered regularly interspaced short palindromic repeat)。2013年,人工改造的另外一種全新的人工核酸酶CRISPR-Cas系統(tǒng)迅速在更多的動(dòng)植物物種中得到廣泛應(yīng)用。基因編輯操作由于Ⅱ型CRISPR-Cas9系統(tǒng)的出現(xiàn)變得更加簡(jiǎn)便、高效,可同時(shí)沉默任意數(shù)量的基因,成本變得更低。
CRISPR是成簇的規(guī)律性間隔的短回文重復(fù)序列[75],其序列由一個(gè)前導(dǎo)區(qū) (Leader)、多個(gè)短而高度保守的重復(fù)序列區(qū) (Repeat) 和多個(gè)間隔區(qū) (Spacer) 組成[76]。前導(dǎo)區(qū)長(zhǎng)度一般為300–500 bp,富含A、T堿基,啟動(dòng)CRISPR序列轉(zhuǎn)錄[77]。重復(fù)序列通常是包含回文序列長(zhǎng)度為21–48 bp的區(qū)域,可以形成發(fā)卡結(jié)構(gòu)[78]。間隔序列將各個(gè)重復(fù)序列隔開[79-80],長(zhǎng)度一般是26–72 bp,它與一些質(zhì)?;蚴删w的序列存在同源性[81-82],使得宿主細(xì)胞能夠抵抗外源基因的入侵。
Cas (CRISPR associated) 位于CRISPR位點(diǎn)附近的保守區(qū)域,通常與CRISPR結(jié)構(gòu)的重復(fù)序列相連?;蚓幋a的蛋白具有核酸相關(guān)的結(jié)構(gòu)域,Cas蛋白能夠在向?qū)NA指導(dǎo)下通過位點(diǎn)特異性對(duì)靶位點(diǎn)進(jìn)行特異性切割,例如目前研究較為深入的Cas9。Cas9是一種多結(jié)構(gòu)域蛋白,由1 409個(gè)氨基酸組成,包含2個(gè)核酸酶結(jié)構(gòu)域:氨基末端的RuvC-1ike結(jié)構(gòu)域以及位于蛋白中間位置的HNH核酸酶結(jié)構(gòu)域。
在CRISPR-Cas9系統(tǒng)中,長(zhǎng)度約20 bp的外源DNA可以作為短的回文重復(fù)序列整合在CRISPR基因組中,轉(zhuǎn)錄加工成CRISPR RNA (crRNA)。這些crRNA會(huì)與trans-activating crRNA (tracrRNA) 形成一種雙鏈二級(jí)結(jié)構(gòu)[83]。在這兩種RNA的引導(dǎo)下,Cas9蛋白的HNH能夠特異性識(shí)別與crRNA互補(bǔ)配對(duì)的模板鏈并實(shí)現(xiàn)切割,切割位點(diǎn)位于原型間隔序列毗鄰基序 (Protospacer adjacent motif,PAM) 上游3 nt處;RuvC-1ike參與另一條鏈特定位點(diǎn)的切割,切割位點(diǎn)位于PAM上游3–8 nt處 (即NGG位點(diǎn))[84]。因此,可設(shè)計(jì)不同的crRNA使得 CRISPR-Cas9能夠剪切不同的DNA序列。Jinek等研究發(fā)現(xiàn),這兩種RNA可以被“改裝”成一個(gè)向?qū)NA (single-guide RNA, sgRNA)[85]。因此,設(shè)計(jì)不同的sgRNA足以指導(dǎo)Cas9內(nèi)切酶完成對(duì)DNA的定點(diǎn)切割,形成DSB (圖3)。
圖3 CRISPR-Cas9定點(diǎn)誘變示意圖[86]
在細(xì)菌方面,Jiang等利用CRISPR-Cas系統(tǒng)成功對(duì)細(xì)菌基因組進(jìn)行了定向改造,獲得了肺炎鏈球菌以及大腸桿菌的突變體,突變效率分別達(dá)到100%和65%[10]。在動(dòng)物方面,Hwang等利用構(gòu)建的sgRNA靶向的CRISPR/Cas9系統(tǒng)對(duì)斑馬魚胚胎、等基因?qū)崿F(xiàn)定點(diǎn)打靶,突變率與使用TALENs技術(shù)在該位點(diǎn)引起突變的效率相近。另外,利用sgRNA靶向的CRISPR-Cas9系統(tǒng)成功獲得了、基因的突變體[30]。Chang等在斑馬魚中分別完成了、和三個(gè)基因的靶向突變,結(jié)果表明突變效率約為35%[31]。Wang等利用CRISPR-Cas9系統(tǒng)已經(jīng)獲得了打靶的小鼠[34]。Li等利用CRISPR-Cas技術(shù)同時(shí)敲除大鼠、、基因,獲得了雙等位基因純合突變的單基因突變體和三基因同時(shí)敲除的突變體,突變效率分別為100%、60%;并且證明CRISPR-Cas系統(tǒng)引入的基因修飾可以通過生殖細(xì)胞傳遞到下一代[36]。
Cho等研究表明改造后的化膿性鏈球菌編碼的Cas9內(nèi)切酶可以在人類細(xì)胞的細(xì)胞核被活化,通過將構(gòu)建的特異性識(shí)別人體DNA序列的長(zhǎng)約20 bp的雙RNA復(fù)合體或者sgRNA導(dǎo)入到細(xì)胞中,實(shí)現(xiàn)對(duì)人體基因組定點(diǎn)打靶和修飾。該系統(tǒng)已經(jīng)在多種人體細(xì)胞包括誘導(dǎo)多能干細(xì)胞中完成對(duì)預(yù)定的DNA位點(diǎn)進(jìn)行基因組雙鏈DNA切割,突變率約為38%[17]。Ding等分別利用TALENs和CRISPR-Cas技術(shù)在人類多功能干細(xì)胞基因組中完成了一個(gè)基因的定點(diǎn)打靶,結(jié)果表明利用CRISPR-Cas技術(shù)的突變效率高,并且還更容易生成純合子突變克隆 (總克隆的7%–25%)[18]。Mali等通過構(gòu)建Ⅱ型CRISPR-Cas系統(tǒng)對(duì)多種人類細(xì)胞系中進(jìn)行基因定點(diǎn)突變,成功獲得了以NHEI方式修復(fù)的基因突變,突變效率為2%–38%,研究同時(shí)表明突變效率可能與細(xì)胞類型和RNA表達(dá)載體有關(guān)[19]。Cong等構(gòu)建了兩種不同類型的Ⅱ型CRISPR-Cas系統(tǒng),完成了Cas9核酸酶在短RNAs指導(dǎo)下對(duì)人類細(xì)胞及小鼠細(xì)胞基因組位點(diǎn)特異性切割。通過錯(cuò)配實(shí)驗(yàn)證明crRNA的5′端堿基錯(cuò)配對(duì)剪切效率影響不大;在基因位點(diǎn)CRISPR-Cas9引起的基因定點(diǎn)突變效率等于甚至高于TALENs在該位點(diǎn)引起突變的效率[20]。
同時(shí),CRISPR-Cas系統(tǒng)在植物基因修飾方面的應(yīng)用和研究也取得了重大突破。
Jiang等運(yùn)用Ⅱ型CRISPR-Cas系統(tǒng)成功利用農(nóng)桿菌將基因編碼的Cas9、sgRNA和一個(gè)突變的無(wú)功能的綠色熒光蛋白 (GFP) 轉(zhuǎn)入到擬南芥、煙草葉片細(xì)胞內(nèi)。突變的基因在其5′編碼區(qū)域內(nèi)存在靶標(biāo)位點(diǎn),Ⅱ型CRISPR-Cas系統(tǒng)成功完成定點(diǎn)切割,經(jīng)過編輯獲得了有功能的[42]。研究結(jié)果同時(shí)證實(shí)了CRISPR-Cas9用來定點(diǎn)誘變高粱和水稻基因的可行性[42]。其他研究人員也用CRISPR-Cas系統(tǒng)成功定點(diǎn)突變了擬南芥、水稻多個(gè)基因[43-46]。除此之外,該技術(shù)在編輯和定點(diǎn)突變小麥基因方面也取得了成功[87]。研究發(fā)現(xiàn)該系統(tǒng)還可以將單鏈寡核苷酸DNA (ssDNA) 轉(zhuǎn)入植物細(xì)胞中作為模板,通過同源重組DNA修復(fù)途徑在基因特定位點(diǎn)精確插入12 bp兩個(gè)限制性內(nèi)切酶識(shí)別序列[47]。
隨著多種生物基因測(cè)序的完成,利用基因定向修飾技術(shù)對(duì)目的基因進(jìn)行定點(diǎn)突變實(shí)現(xiàn)重要基因功能的鑒定越來越重要。與傳統(tǒng)的遺傳學(xué)方法相比,基因修飾技術(shù)能夠精確、高效地對(duì)特定基因?qū)崿F(xiàn)編輯修飾,必將得到越來越廣泛的應(yīng)用。ZFP構(gòu)建的復(fù)雜性使ZFN技術(shù)的應(yīng)用受到很大的限制。為提高效率,減少工作量,高特異性的ZFP篩選以及最優(yōu)的ZFP模塊組合應(yīng)該是將來ZFN的研究方向。TALEN技術(shù)效率高、細(xì)胞毒性小、脫靶率低、操作簡(jiǎn)便,一出現(xiàn)就得到了廣泛的研究和應(yīng)用。利用該技術(shù),科學(xué)家已經(jīng)成功地同時(shí)定點(diǎn)突變異源六倍體普通小麥中分別位于A、B、D基因組上的3個(gè)() 同源基因,創(chuàng)制了抗白粉病的轉(zhuǎn)基因小麥種質(zhì)資源[88]。而近年發(fā)展起來的CRISPR-Cas系統(tǒng)具有更加高效、操作簡(jiǎn)便、實(shí)驗(yàn)周期短、成本低,利于在實(shí)驗(yàn)室普遍發(fā)展等特點(diǎn),為基因工程提供了一個(gè)更加強(qiáng)有力的應(yīng)用新工具。2014年1月,在線報(bào)道利用CRISPR-Cas9系統(tǒng)首次在靈長(zhǎng)類動(dòng)物食蟹猴的單細(xì)胞階段的胚胎中獲得了兩個(gè)靶基因同時(shí)發(fā)生突變的株系,實(shí)現(xiàn)了精準(zhǔn)的基因修飾[89]。CRISPR-Cas系統(tǒng)將給基因組定向修飾的研究和應(yīng)用領(lǐng)域帶來突破性的技術(shù)革命,特別是在基因功能解析、人類疾病靶向治療、生物能源及生物制藥等應(yīng)用中具有巨大的潛力和廣闊的前景。同時(shí),CRISPR-Cas系統(tǒng)在水稻、小麥等農(nóng)作物的性狀改良與分子定向育種方面也將發(fā)揮重要的作用。
[1] Xiao A, Wu YD, Yang ZP, et al. EENdb: A database and knowledge base of ZFNs and TALENs for endonuclease engineer. Nucleic Acids Res, 2013, 41(D1): D415–D422.
[2] Sanjana NE, Cong L, Zhou Y, et al. A transcription activator-like effector toolbox for genome engineering. Nat Protoc, 2012, 7(1): 171–192.
[3] Wyman C, Kanaar R. DNA double–strand break repair: all’s well that ends well. Annu Rev Genet, 2006, 40: 363–383.
[4] Tzfwa T, White C. Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol, 2005, 23(12): 567–569.
[5] Sallaud C, Gay C, Larmande P, et al. High throughput T-DNA insertion mutagenesis in rice. Plant J, 2004, 39(3): 450–464.
[6] Jeon JS, Lee S, Jung KH, et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22(6): 561–570.
[7] Greco R, Ouwerkerk PB, Sallaud C, et al. Transposon insertional mutagenesis in rice. Plant Physiol, 2001, 125(3): 1175–1177.
[8] Till BJ, Cooper J, Tai TH, et al. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol, 2007, 7: 19.
[9] Mohr SE, Perrimon N. RNAi screening: new approaches understandings, and organisms. Wiley Interdiscip Rev RNA, 2012, 3(2): 145–158.
[10] Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31(3): 233–239.
[11] Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173–1183.
[12] Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757–761.
[13] Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442–451.
[14] Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005, 435(7042): 646–651.
[15] Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol, 2008, 26(7): 808–816.
[16] Sakuma T, Hosoi S, Woltjen K, et a1. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells, 2013, 18(4): 315–326.
[17] Cho SW, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31(3): 230–232.
[18] Ding Q, Regan SN, Xia Y, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4): 393–394.
[19] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826.
[20] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823.
[21] Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis inusing zinc-finger nucleases. Genetics, 2002, 161(3): 1169–1175.
[22] Liu J, Li C, Yu Z, et al. Efficient and specific modifications of thegenome by means of an easy TALEN strategy. J Genet Genomics, 2012, 39(5): 209–215.
[23] Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol, 2008, 26(6): 702–708.
[24] Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 2008, 26(6): 695–701.
[25] Foley JE, Yeh JR, Maeder ML, et al. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by oligomerized pool engineering (OPEN). PLoS ONE, 2009, 4(2): e4348.
[26] Sander JD, Cade L, Khader C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol, 2011, 29(8): 697–698.
[27] Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29(8): 699–700.
[28] Moore FE, Reyon D, Sander JD, et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE, 2012, 7(5): e37877.
[29] Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10(4): 329–331.
[30] Hwang WY, Fu Y, Reyon D, et a1. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(3): 227–229.
[31] Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23(4): 465–472.
[32] Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption inembryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA, 2012, 109(43): 17484–17489.
[33] Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol, 2013, 31(1): 23–24.
[34] Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas mediated genome engineering. Cell, 2013, 153(4): 910–918.
[35] Tong C, Huang G, Ashton C, et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. J Genet Genomics, 2012, 39(6): 275–280.
[36] Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013, 31(8): 684–686.
[37] Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA, 2012, 109(43): 17382–17387.
[38] Lloyd A, Plaisier CL, Carroll D, et al. Targeted mutagenesis using zinc-finger nucleases in. Proc Natl Acad Sci USA, 2005, 102(6): 2232–2237.
[39] Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82.
[40] Mahfouz MM, Li L, Piatek M, et al. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol, 2012, 78(3): 311–321.
[41] Christian M, Qi Y, Zhang Y, et al. Targeted mutagenesis ofusing engineered TAL effector nucleases. G3 (Bethesda), 2013, 3(10): 1697–1705.
[42] Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in, tobacco,and rice. Nucleic Acids Res, 2013, 41(20): e188.
[43] Li JF, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing inandusing guide RNA and Cas9. Nat Biotechnol, 2013, 31(8): 688–691.
[44] Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23(10): 1229–1232.
[45] Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease–resistant rice. Nat Biotechnol, 2012, 30(5): 390–392.
[46] Chen K, Shan Q, Gao C. An ef?cient TALEN mutagenesis system in rice. Methods, 2014, 69(1): 2–8.
[47] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(8): 686–688.
[48] Zhang Y, Zhang F, Li X, et al. Transcription activator-like effector nuclesses enable plant genome engineering. Plant Physiol, 2013, 161(1): 20–27.
[49] Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plantusing Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31(8): 691–693.
[50] Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop speciesusing zinc-finger nucleases. Nature, 2009, 459(7245): 437–441.
[51] Wendt T, Holm PB, Starker CG, et al. TAL effector nucleases induce mutation at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol, 2013, 83(3): 279–285.
[52] Mani M, Kandavelou K, Dy FJ, et al. Design, engineering and characterization of zinc finger nucleases. Biochem Biophys Res Commun, 2005, 335(2): 447–457.
[53] Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764.
[54] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions toⅠ cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156–1160.
[55] Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys, 2010, 43(1): 1–21.
[56] Palpant NJ, Dudzinski D. Zinc finger nucleases: looking toward translation. Gene Ther, 2013, 20(2): 121–127.
[57] Hauschild-Quintern J, Petersen B, Cost GJ, et al. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci, 2013, 70(16): 2969–2983.
[58] Zhang HY, Zhang XH, Zhang CJ. The use of zinc finger protein nucleases for plant site-directed mutagenesis and replacement. Chin Biotechnol, 2008, 28(11): 110–115 (in Chinese).張余洋, 張曉輝, 張嬋娟. 利用人工鋅指蛋白核酸酶進(jìn)行植物基因定點(diǎn)突變和置換. 中國(guó)生物工程雜志, 2008, 28(11): 110–115.
[59] Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc ?ngers. Nat Methods, 2008, 5(5): 374–375.
[60] Pattanayak V, Ramirez CL, Joung JK, et al. Revealing off-target cleavage speci?cities of zinc-?nger nucleases byselection. Nat Methods, 2011, 8(9): 765–770.
[61] Radecke S, Radecke F, Cathomen T, et al. Zinc-?nger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modi?cations. Mol Ther, 2010, 18(4): 743–753.
[62] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501.
[63] Boch J, Bonas U.family-type III effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419–436.
[64] Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12(2): 238–251.
[65] Mussolino C, Morbitzer R,Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res, 2011, 39(21): 9283–9293.
[66] Boch J, Scholze H, Schomack S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲeffectors. Science, 2009, 326(5959): 1509–1512.
[67] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501.
[68] Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol, 2012, 30(5): 460–465.
[69] Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng, 2013, 110(7): 1811–1821.
[70] Mahfouz MM, Li L, Shamimuzzama M, et al.-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double–strand breaks. Proc Natl Acad Sci USA, 2011, 108(6): 2623–2628.
[71] Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effeetor nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011, 39(14): 6315–6325.
[72] Lieberman-Lazarovich M, Levy AA. Homologous recombination in plants: an antireview. Methods Mol Biol, 2011, 701: 51–65.
[73] Zhang DB, Shi P, Pang XN. Research progress in engineered nucleases for genome site-specific editing. Basic Med Sci Clin, 2013, 33(12): 1634–1637 (in Chinese).張殿寶, 施萍, 龐希寧. 人工核酸酶用于基因組定點(diǎn)編輯的研究進(jìn)展. 基礎(chǔ)醫(yī)學(xué)與臨床, 2013, 33(12): 1634–1637.
[74] Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol, 2006, 62(6): 718–729.
[75] Mojica FJ,Diez-Villase?or C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of,and mitochondria. Mol Microbiol, 2000, 36(1): 244–246.
[76] Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi and hypothetical mechanisms of action. Biol Direct, 2006, 1: 7.
[77] Sorek R, Kunin V, Hugenholtz P. CRISPR: a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol, 2008, 6(3): 181–186.
[78] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8: 172.
[79] Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell, 2010, 37(1): 7–19.
[80] Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471(7340): 602–607.
[81] Villion M, Moineau S. The double-edged sword of CRISPR-Cas systems. Cell Res, 2013, 23(1): 15–17.
[82] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429–5433.
[83] Marraffini LA, Sontheinmer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010, 11(3): 181–190.
[84] Friedland AE, Tzur YB, Esvelt KM, et al. Heritable genome editing invia a CRISPR-Cas9 system. Nat Methods, 2013, 10(8): 741–743.
[85] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821.
[86] Barrangou R. RNA events. Cas9 targeting and the CRISPR revolution. Science, 2014, 344(6185): 707–708.
[87] Shan Q, Wang Y, Li J, et al. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 2014, 9(10): 2395–2410.
[88] Wang YP, Cheng X, Shan QW, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32(9): 947–951.
[89] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278.
(本文責(zé)編 陳宏宇)
Advances in genetic modification technologies
Baixue Zhang1, Qixin Sun1, and Haifeng Li1,2
1,,712100,,2,831100,,
Genetic modificationtechnology is anew molecular toolfortargeted genome modification. It includes zincfinger nucleases (ZFN) technology, transcription activator-like effectornucleases (TALEN) technologyand clusteredregularly interspaced short palindromic repeat (CRISPR)-associated (Cas) (CRISPR-Cas) nucleases technology. All of these nucleases create DNA double-strand breaks (DSB) at chromosomal targeted sites andinducecell endogenousmechanismsthat are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway, resulting in targeted endogenous geneknock-outorexogenous gene insertion. In recent years,genetic modificationtechnologies have been successfullyapplied to bacteria, yeast, human cells, fruit fly, zebra fish, mouse, rat, livestock, cynomolgus monkey,, rice, tobacco, maize, sorghum, wheat, barley and otherorganisms, showing its enormous advantage in geneeditingfield. Especially, the newly developed CRISPR-Cas9 system arose more attention because of its low cost, high effectiveness, simplicity and easiness. We reviewed theprinciples andthe latest research progressof these threetechnologies, as well as prospect of future researchand applications.
genetic modification, zincfinger nucleases, transcription activator-like effectornucleases, CRISPR-Cas nucleases
10.13345/j.cjb.140479
October 10, 2014; Accepted:November 26, 2014
Natural Science Foundation of Shaanxi (No. 2014JM3065), the Fundamental Research Funds for the Central Universities (No. 2014ZZ009).
Haifeng Li. E-mail: lhf@nwsuaf.edu.cn Qixin Sun. E-mail: qxsun@cau.edu.cn
陜西省自然科學(xué)基金(No. 2014JM3065),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(No. 2014ZZ009) 資助。
2015-01-15
http://www.cnki.net/kcms/detail/11.1998.Q.20150115.0924.002.html