亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氣泡微細(xì)化沸騰傳熱特性

        2015-12-23 07:04:34朱光昱于方小稚田齊偉
        核技術(shù) 2015年12期
        關(guān)鍵詞:氣膜關(guān)系式熱流

        朱光昱 高 力 于方小稚 田齊偉

        氣泡微細(xì)化沸騰傳熱特性

        朱光昱1高 力1于方小稚2田齊偉1

        1(中國核電工程有限公司 總體所 北京 100084)
        2(北京理工大學(xué) 自動(dòng)化學(xué)院 北京 100081)

        氣泡微細(xì)化沸騰(Micro-bubble Emission Boiling, MEB)是一種特殊的過冷沸騰現(xiàn)象,當(dāng)其發(fā)生時(shí)加熱面的熱流密度會(huì)遠(yuǎn)高于臨界熱流密度(Critical Heat Flux, CHF)。根據(jù)采集到的可視化沸騰資料,對(duì)MEB的傳熱機(jī)理進(jìn)行了分析。結(jié)果表明,MEB發(fā)生時(shí),加熱面上不穩(wěn)定氣膜的周期性破裂,破壞了過熱液層,導(dǎo)致了良好的氣液置換對(duì)流換熱??紤]MEB的特殊傳熱過程,對(duì)Rohsenow關(guān)系式中部分項(xiàng)進(jìn)行修正,并根據(jù)最小二乘法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,得到了適用于10 mm銅加熱面上的MEB沸騰關(guān)系式,誤差不超過±15%,可滿足一般的工程計(jì)算要求。

        氣泡微細(xì)化沸騰,臨界熱流密度,最小二乘法

        近幾十年內(nèi),很多核能裝置的發(fā)熱元件熱通量已經(jīng)遠(yuǎn)超1 MW·m-2,國際熱核聚變實(shí)驗(yàn)堆(International Thermonuclear Experimental Reactor, ITER)濾偏器上的最大熱負(fù)載達(dá)到了30 MW·m-2;在托卡馬克第一壁上,當(dāng)?shù)入x子體破滅時(shí),其局部功率也達(dá)到500 kW·m-2。

        常見的空冷、水冷技術(shù)已無法滿足這些設(shè)備的制造或改進(jìn)要求。由Suzuki等[1-2]發(fā)現(xiàn)了氣泡微細(xì)化沸騰(Micro-bubble Emission Boiling, MEB),因其可獲得遠(yuǎn)高于臨界熱流密度(Critical Heat Flux, CHF)的熱流,被認(rèn)為是換熱器設(shè)計(jì)優(yōu)化和提升換熱極限的理想手段之一。

        Zhu等[3]繪制了15-85 K過冷度下的池式沸騰特性曲線,分析了加熱面上的氣泡脫離和破裂頻率,總結(jié)了過冷度對(duì)MEB沸騰以及偏離泡核沸騰點(diǎn)(Departure from Nuclear Boiling, DNB)的影響。Shoji等[4]在過冷度高于40 K的鉑加熱絲的池沸騰實(shí)驗(yàn)中實(shí)現(xiàn)了MEB,他們獲得的最高熱流密度達(dá)到了10MW·m-2。Kumagai等[5]研究了15 mm×6 mm矩形管道內(nèi)的過冷流動(dòng)沸騰現(xiàn)象,并根據(jù)實(shí)驗(yàn)條件和現(xiàn)象將MEB區(qū)分為:(1) 壁面過熱度較低、過冷度較高、液體流速較高條件下的Stormy-MEB I;(2) 壁面過熱度較高、過冷度較低、液體流速較高條件下的Stormy-MEB II;(3) 壁面過熱度較高、熱流密度增長緩慢的Calm MEB。本文根據(jù)采集到的可視化資料,分析了MEB的傳熱機(jī)理,給出了MEB沸騰換熱關(guān)聯(lián)式。為MEB的工程化應(yīng)用和發(fā)生機(jī)理研究提供了基礎(chǔ)。

        1 實(shí)驗(yàn)裝置

        圖1所示為過冷池沸騰實(shí)驗(yàn)裝置,詳見文獻(xiàn)[6]。加熱元件為4個(gè)硅碳棒,導(dǎo)熱銅芯上部為直徑10mm的加熱面。導(dǎo)熱銅芯中軸上裝有3個(gè)直徑1mm的T分度號(hào)銅-康銅鎧裝熱電偶,距離加熱面分別為3 mm、5.75 mm和8 mm,并依次間隔30o,以減少熱電偶對(duì)銅芯導(dǎo)熱的影響。加熱面的壁溫?cái)?shù)據(jù)可以根據(jù)銅芯中軸的溫度通過Fourier導(dǎo)熱定律求得。水箱中的水溫由在加熱面上方5 mm處的熱電偶測(cè)量,水的過冷度由一個(gè)電加熱器和一個(gè)冷卻器共同控制。

        2 結(jié)果和分析

        圖2為30 K和50 K過冷度下熱流密度為6.3MW·m-2和5.7 MW·m-2時(shí)的MEB沸騰現(xiàn)象。當(dāng)MEB發(fā)生時(shí),加熱面上周期性的生成不穩(wěn)定氣膜,在氣膜完成生長后,由于氣液界面不穩(wěn)定而發(fā)生劇烈破碎。如圖2(a)中2.75 ms和圖2(b)中1.2 ms處所示,氣膜破損產(chǎn)生的沖擊橫掃加熱面,使加熱面可以直接與過冷水接觸,并迅速生成新的氣膜。整個(gè)變化周期約在3 ms,這種由氣膜破碎導(dǎo)致的氣液置換是MEB可以達(dá)到極高熱流密度的原因。而當(dāng)加熱面低于隔熱陶瓷0.5 mm時(shí),氣液置換過程受到阻礙,MEB不會(huì)發(fā)生[3]。

        圖1 過冷池沸騰實(shí)驗(yàn)裝置Fig.1 Experimental setup for subcooled pool boiling.

        圖2 30 K (a)和50 K (b)過冷度下熱流密度為6.3 MW·m-2(a)和5.7 MW·m-2(b)時(shí)的MEB 沸騰現(xiàn)象Fig.2 Bubble behavior of MEB at liquid subcooling of 30 K (a) and 50 K (b) with q=6.3 MW·m-2(a), 5.7 MW·m-2(b).

        式中,cpf為水的比熱容,J·kg-1·K-1;ΔTsat為壁面過熱度,K;hfg為水的汽化潛熱,J·kg-1;Csf為流體加熱面組合的特性函數(shù);μf為水的動(dòng)力粘度系數(shù),N·s·m-2;σ為水的表面張力系數(shù),N·m-1;g為重力加速度,m·s-2;ρf和ρg為水和蒸汽的密度,kg·m-3;Pr為普朗特?cái)?shù)。

        在大容積飽和沸騰過程中,水溫為飽和溫度,為防止達(dá)到CHF,壁溫通常也不會(huì)太高。而當(dāng)MEB發(fā)生時(shí),水的過冷度都在20 K以上,加熱面的過熱度可以超過180 K[1]。所以式(1)中等號(hào)左側(cè)項(xiàng)需要改寫將過冷水加熱至飽和,以及將蒸汽加熱至過熱兩個(gè)部分:

        式中,ΔTsub為水的過冷度;cpg為水蒸汽的比熱容,J·kg-1·K-1。

        在式(1)中,工質(zhì)為水時(shí)Pr數(shù)的系數(shù)m=1。而在MEB沸騰過程,需要考慮蒸汽過熱度和水的過冷度對(duì)Pr數(shù)的影響,所以需對(duì)Pr數(shù)進(jìn)行如式(3)修正并重新擬合其系數(shù)m。

        式中,Prf和Prg分別為過冷水和過熱蒸汽在物性溫度下的Pr數(shù)。

        對(duì)于核態(tài)沸騰來說,Csf一般在0.0027-0.013。對(duì)于MEB而言,流體與加熱面的相互作用方式與核態(tài)沸騰有一定差別,所以Csf需重新擬合。據(jù)實(shí)驗(yàn)數(shù)據(jù)使用最小二乘法擬合,可以得到Csf=0.0385,m=0.25,n=1.42。MEB換熱關(guān)聯(lián)式為:

        圖3為實(shí)驗(yàn)獲得的40 K、50 K和60 K過冷度下的沸騰特性曲線。圖4(a)、(b)、(c)分別為40 K、50 K、60 K過冷度下,熱流密度的實(shí)驗(yàn)值和計(jì)算值的對(duì)比??梢钥闯?,該關(guān)系式與實(shí)驗(yàn)值吻合較好,誤差不超過±15%。

        圖3 過冷度對(duì)MEB的影響Fig.3 Effect of subcooling on MEB.

        圖4 40 K (a)、50 K (b)和60 K (c)過冷度下實(shí)驗(yàn)結(jié)果與計(jì)算結(jié)果對(duì)比Fig.4 Comparison between experimental values and calculated values at liquid subcooling of 40 K (a), 50 K (b) and 60 K (c).

        3 結(jié)論

        本文研究了40-60 K過冷度下,10 mm銅加熱面上除氧水的MEB沸騰傳熱特性,根據(jù)MEB的特殊傳熱過程,修改了Rohsenow關(guān)系式中部分項(xiàng),并根據(jù)最小二乘法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,得到了適用于10 mm銅加熱面上的MEB沸騰關(guān)系式,誤差不超過±15%。

        1 Suzuki K, Inagaki F, Hong C. Subcooled boiling in the ultrasonic field-on the cause of microbubble emission boiling[J]. Heat Transfer Engineering, 2011, 32: 673-682. DOI: 10.1080/01457632.2010.509771

        2 Suzuki K, Oshima A, Hong C, et al. Subcooled flow boiling in a minichannel[J]. Heat Transfer Engineering, 2011, 32: 667-672. DOI: 10.1080/01457632.2010.509770

        3 Zhu G Y, Sun L C, Tang J G, et al. A visualized study of micro-bubble emission boiling[J]. International Communications in Heat and Mass Transfer, 2014, 59: 148-157. DOI: 10.1016/j.icheatmasstransfer.2014.10.003

        4 Shoji M, Yoshihara M. Burnout heat flux of water on a thin wire[C]. Proceeding of 28thNational Heat Transfer Symposium of Japan, 1991: 121-123

        5 Kumagai S, Kubo R, Kawasaki T. Microbubble emission boiling from horizontal and vertical surfaces to subcooled parallel flow water[J]. Heat Transfer-Asian Research, 2003, 32: 130-140. DOI: 10.1002/htj.10077

        6 朱光昱, 孫立成, 唐繼國. 氣泡微細(xì)化沸騰的沸騰現(xiàn)象與沸騰音特性[J]. 核技術(shù), 2014, 37(2): 020203. DOI: 10.11889/j.0253-3219.2014.hjs.37.020203

        ZHU Guangyu, SUN Licheng, TANG Jiguo. Characteristics of phenomenon and sound in microbubble emission boiling[J]. Nuclear Techniques, 2014, 37(2): 020203. DOI: 10.11889/j.0253-3219.2014.hjs.37.020203

        7 Rohsenow W M. Nucleate pool boiling[A]. Frost W. Heat transfer at low temperatures[C]. New York, US: Springer, 1975: 107-141. DOI: 10.1007/978-1-4899-1998-4_5

        Heat transfer property of micro-bubble emission boiling

        ZHU Guangyu1GAO Li1YU Fangxiaozhi2TIAN Qiwei1
        1(General Design Division, China Nuclear Power Engineering Co., Ltd., Beijing 100084, China) 2(School of Automation, Beijing Institute of Technology, Beijing 100081, China)

        Background:Micro-bubble Emission Boiling (MEB) is a special subcooling boiling phenomenon that the heat flux increases more highly than critical heat flux (CHF). Due to its extremely high heat transfer capability, many researchers have shown interest in it.Purpose:In this paper, we fit the heat transfer correlation of experimental data collected in visualized boiling experiments after deeply analyzing the heat transfer mechanism of MEB. Methods: Four Si-C heaters were employed for heating the copper block, which has a round heating surface with diameter of 10mm on its upper. Temperature data were measured by T-type sheathed thermocouples. The temperature of the heating surface was obtained by extrapolating the temperature distribution. Based on the heating surface temperature date in different subcoolings, least square method was used to fit Rohsenow relation to MEB. Bubble behaviors were captured by high-speed video camera with light system.Results:The experimental results showed that, when the subcooling exceeded 40 K, disturbance emerged at the liquid-vapor interface and the micro-bubble emission boiling occurred after the CHF was attained, thereafter the heat flux increased rapidly with the superheat increasing like that in typical nucleate boiling region. Based on Rohsenow relation, MEB heat transfer correlation is fitted according to the measured temperature data for heating surface of 10-mm copper in different subcoolings. The error of the relation is less than ±15%, which meets the requirement of general engineering. Conclusion: The efficient convective heat transfer of vapor-liquid replacement caused by periodic damage of the unsteady vapor film on the heating surface is the heat transfer mechanism of MEB.

        MEB, CHF, Least squares

        ZHU Guangyu, male, born in 1989, graduated from Harbin Engineering University in 2015, research areas is nuclear power plants operation and test technology

        TL334

        10.11889/j.0253-3219.2015.hjs.38.120602

        國家自然科學(xué)基金(No.51376052)資助

        朱光昱,男,1989年出生,2015年畢業(yè)于哈爾濱工程大學(xué),研究領(lǐng)域?yàn)楹穗娺\(yùn)行與調(diào)試技術(shù)

        Supported by the National Natural Science Foundation of China (No.51376052)

        2015-09-28,

        2015-11-02

        CLCTL334

        猜你喜歡
        氣膜關(guān)系式熱流
        T 型槽柱面氣膜密封穩(wěn)態(tài)性能數(shù)值計(jì)算研究
        例談同角三角函數(shù)基本關(guān)系式的應(yīng)用
        氣膜孔堵塞對(duì)葉片吸力面氣膜冷卻的影響
        靜葉柵上游端壁雙射流氣膜冷卻特性實(shí)驗(yàn)
        內(nèi)傾斜護(hù)幫結(jié)構(gòu)控釋注水漏斗熱流道注塑模具
        空調(diào)溫控器上蓋熱流道注塑模具設(shè)計(jì)
        速尋關(guān)系式巧解計(jì)算題
        聚合物微型零件的熱流固耦合變形特性
        中國塑料(2017年2期)2017-05-17 06:13:24
        躲避霧霾天氣的氣膜館
        明確關(guān)系式
        日韩AV无码一区二区三| 男女猛烈无遮挡免费视频| 女邻居的大乳中文字幕| 不卡视频一区二区三区| 偷拍av一区二区三区| 精品人妻久久一区二区三区| 丰满少妇呻吟高潮经历| 精品久久久久久久久久久aⅴ| 精品国产自拍在线视频| 偷拍一区二区三区四区视频| 国产精品成人va在线观看| 青青视频一区| 亚洲av精品一区二区三| 色熟妇人妻久久中文字幕| 国偷自产一区二区免费视频| 一级片久久| 亚洲综合色视频在线免费观看| 亚洲视频在线一区二区| 边做边流奶水的人妻| 女人体免费一区二区| 日本顶级片一区二区三区| 欧美xxxx做受欧美88| 欧美性猛交内射兽交老熟妇| 久久久高清免费视频| 青青久在线视频免费视频| 女女女女女裸体处开bbb| 欧美另类在线视频| 一个人的视频免费播放在线观看| 久久久99精品免费视频| 中文字幕精品久久久久人妻| 中日韩欧美成人免费播放| 蓝蓝的天空,白白的云| 免费无码av一区二区三区| 色丁香色婷婷| 亚洲女同性恋在线播放专区| 狠狠色狠狠色综合网| 最近免费中文字幕| 老肥熟女老女人野外免费区| 亚洲色图三级在线观看| 人人爽人人爱| 亚洲高清国产品国语在线观看|