廖麗萍,尹華,劉芷辰,葉錦韶,彭輝,劉則華
1. 暨南大學(xué)環(huán)境學(xué)院,廣東省高校水土環(huán)境毒害性污染物防治與生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510632;2. 華南理工大學(xué)環(huán)境與能源學(xué)院,工業(yè)聚集區(qū)污染控制與生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 5100062;3. 暨南大學(xué)化學(xué)系,廣東 廣州 510632
短短芽孢桿菌降解芘的細(xì)胞毒性分析
廖麗萍1,尹華2*,劉芷辰1,葉錦韶1,彭輝3*,劉則華2
1. 暨南大學(xué)環(huán)境學(xué)院,廣東省高校水土環(huán)境毒害性污染物防治與生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510632;2. 華南理工大學(xué)環(huán)境與能源學(xué)院,工業(yè)聚集區(qū)污染控制與生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 5100062;3. 暨南大學(xué)化學(xué)系,廣東 廣州 510632
近年來(lái)國(guó)內(nèi)外對(duì)芘微生物降解過(guò)程中的菌種選育、降解性能和降解產(chǎn)物分析等相關(guān)報(bào)道較多,但針對(duì)芘降解菌與芘的分子作用機(jī)制研究卻不多見(jiàn)。為了探明降解菌短短芽孢桿菌(Brevibacillus brevis)與芘的分子作用機(jī)制,考察了 B. brevis對(duì)質(zhì)量濃度為1.0 mg·L-1的芘的生物降解,分析了在無(wú)機(jī)鹽培養(yǎng)基中B. brevis與芘作用過(guò)程中,其細(xì)胞凋亡規(guī)律及膜電位的變化,以期從細(xì)胞毒性的角度揭示PAHs的微生物降解機(jī)理。實(shí)驗(yàn)結(jié)果顯示芘的降解率隨著處理時(shí)間的增加而呈上升趨勢(shì),B. brevis對(duì)芘的降解率在168 h達(dá)到56.5%。在芘的降解過(guò)程中,細(xì)胞出現(xiàn)顯著的凋亡現(xiàn)象,細(xì)胞總凋亡率與細(xì)胞早期凋亡率均在48 h時(shí)達(dá)到峰值,之后均隨時(shí)間的延長(zhǎng)而下降,168 h時(shí)細(xì)胞早期凋亡率與總凋亡率均小于0.5%,菌體依然對(duì)芘具有降解能力。隨著細(xì)胞凋亡的發(fā)生,細(xì)胞膜電位下降,即細(xì)胞膜電位發(fā)生去極化現(xiàn)象,說(shuō)明細(xì)胞外的芘與 K+共轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞內(nèi),從而有助于菌體對(duì)芘的吸收與降解。
芘;微生物降解;細(xì)胞凋亡;細(xì)胞膜電位
芘(pyrene)是多環(huán)芳烴(polycyclic aromatic hydrocarbons, PAHs)的四環(huán)代表物,屬難降解有機(jī)污染物(Lu等,2014),在環(huán)境中廣泛存在,可通過(guò)呼吸道、消化道、皮膚等途徑進(jìn)入人體,破壞人體的免疫系統(tǒng)(Song等,2012),已被列入具有致癌性的PAHs之列。
微生物降解被認(rèn)為是去除環(huán)境中PAHs的主要途徑,許多細(xì)菌、真菌、藻類及胞外聚合物具有降解PAHs的能力(Ashour等,2008;Chen 和Ding,2012;Whitman等,1997)。關(guān)于PAHs的微生物降解,目前主要側(cè)重于菌種選育、降解性能優(yōu)化和降解產(chǎn)物分析等方面(Balachandran等,2012;Chen等,2010;蔡翰等,2013)。對(duì)于PAHs微生物降解過(guò)程中降解菌與污染物的分子作用機(jī)制研究還有待深入。為了闡明PAHs微生物降解機(jī)理,對(duì)菌體降解PAHs過(guò)程細(xì)胞毒性的變化開展分析,有利于從生命代謝的角度揭示PAHs的降解機(jī)制。本研究利用課題組前期篩選的PAHs高效降解菌開展芘的微生物降解,考察降解菌與芘之間的相互作用,分析菌體降解芘過(guò)程中芘對(duì)菌體細(xì)胞毒性的影響,以期為更深入闡明PAHs微生物降解機(jī)理奠定基礎(chǔ)。
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)菌種:芘降解菌短短芽孢桿菌(Brevibacillus brevis)由本課題組于受多環(huán)芳烴污染的環(huán)境篩選獲得。
芘儲(chǔ)備液:用色譜純甲醇溶解芘,配制成 100 mg·L-1的儲(chǔ)備液,4 ℃保存待用。芘使用液:用儲(chǔ)備液配制成1.0 mg·L-1的使用液。
牛肉膏蛋白胨培養(yǎng)基(g·L-1):牛肉膏3,蛋白胨10,NaCl 5。pH7.2~7.4。固體培養(yǎng)基加瓊脂1.5%~2.0%,用于菌株的分離富集及擴(kuò)大培養(yǎng)。
無(wú)機(jī)鹽培養(yǎng)基(MSM)(mg·L-1):K2HPO450,KH2PO430,MgSO4·7 H2O 10,檸檬酸鈉50。
磷酸鹽緩沖液(PBS)(g·L-1):K2HPO40.24,Na2HPO41.44,NaCl 8.0,KCl 0.2,調(diào)節(jié)pH=7.4。
1.2 實(shí)驗(yàn)方法
1.2.1 芘降解實(shí)驗(yàn)
在滅菌無(wú)機(jī)鹽培養(yǎng)基中加入芘儲(chǔ)備液與菌液,配成20 mL降解體系,并使芘的濃度為1.0 mg·L-1,菌濃度為1.0 g·L-1。于30 ℃ 130 r·min-1避光處理,分別在第24、48、72、96、120、168 h取樣測(cè)定芘殘余量。以不加菌為空白對(duì)照。所有實(shí)驗(yàn)做3個(gè)平行,取平均值計(jì)算,并根據(jù)平均值計(jì)算標(biāo)準(zhǔn)偏差SD。
降解率=(對(duì)照組殘余量-樣品組殘余量)/對(duì)照組殘余量×100%
1.2.2 芘的分析方法
取出樣品后,用6.0 mol·L-1HCl調(diào)節(jié)pH至2,樣品轉(zhuǎn)入125 mL分液漏斗,加入等體積的乙酸乙酯萃取,充分混合后靜置分層,收集有機(jī)相。重復(fù)上述操作,萃取兩次,合并有機(jī)相,過(guò)無(wú)水硫酸鈉,收集于梨形瓶中,用旋轉(zhuǎn)蒸發(fā)儀于 35 ℃蒸干,最后用流動(dòng)相洗滌濃縮定容至 10 mL,利用 HPLC(LC-20A,日本島津)進(jìn)行芘檢測(cè)。檢測(cè)條件:分離柱為InertsilODSSP C18柱(5 μm、4.6×250 mm);使用紫外檢測(cè)器,檢測(cè)波長(zhǎng)254 nm;流動(dòng)相V甲醇∶V水=90∶10,流速為1 mL·min-1;保留時(shí)間為4.8 min;進(jìn)樣量20 μL。芘的檢測(cè)限為5 μg·L-1。
1.2.3 B. brevis 降解芘過(guò)程中細(xì)胞凋亡檢測(cè)
離心收集處理芘24、48、72、96、120、168 h的菌體,利用15.0 mg·L-1溶菌酶去除細(xì)胞壁,PBS重懸,離心收集原生質(zhì)體,通過(guò)稀釋使細(xì)胞濃度約為106個(gè)·mL-1。加入200 μL Binding Buffer重懸后用10 μL Annexin V-FITC染色,室溫避光反應(yīng)10 min;6000 r·min-1離心5 min收集沉淀,用200 μL Binding Buffer重懸后加入 10 μL 碘化丙啶(Propidium Iodide,PI)避光染色,用流式細(xì)胞儀檢測(cè)。流式細(xì)胞儀激發(fā)波長(zhǎng)為425 nm,異硫氰酸熒光素(Fluorescein isothiocyanate,F(xiàn)ITC)的熒光檢測(cè)波長(zhǎng)為525 nm,PI的檢測(cè)波長(zhǎng)為630 nm。以不加污染物為對(duì)照組,對(duì)照組菌體分出200 μL不染色作空白參照。
1.2.4 B. brevis 降解芘過(guò)程中細(xì)胞膜電位檢測(cè)
收集培養(yǎng)24、48、72、96、120、168 h的菌體,PBS重懸,稀釋樣品使細(xì)胞濃度約為106個(gè)·mL-1。加 入 200 μL Tetrechloro-tetraethylbenzimidazol carbocyanine iodide(JC-1)37 ℃避光染色15 min,用流式細(xì)胞儀檢測(cè)。流式細(xì)胞儀的激發(fā)波長(zhǎng)為 488 nm,JC-1的熒光檢測(cè)波長(zhǎng)為530和590 nm。以不加芘為對(duì)照組。
2.1 芘的降解
芘在MSM體系中的降解情況如圖1所示,在MSM 體系中,芘的降解率隨著處理時(shí)間的增加而呈上升趨勢(shì)。24 h時(shí),B. brevis對(duì)芘的降解率只有3.0%,這主要是由于菌體要通過(guò)細(xì)胞壁的吸附、跨膜運(yùn)輸?shù)茸饔貌拍馨衍欧e累到細(xì)胞內(nèi)(Ye等,2014),該運(yùn)輸過(guò)程緩慢,導(dǎo)致細(xì)胞內(nèi)降解酶與芘的接觸機(jī)會(huì)較少(葉錦韶等,2010)。當(dāng)降解時(shí)間為48~96 h時(shí),芘的降解速率較快,降解率顯著提高,胞內(nèi)酶在該階段起了主要的作用。120~168 h時(shí),菌體對(duì)芘的降解速率開始下降,但菌體對(duì)芘依然具有降解能力,168 h時(shí)芘的降解率達(dá)到56.5%。這個(gè)階段細(xì)胞壁和細(xì)胞膜的結(jié)構(gòu)因芘的作用而發(fā)生了改變,部分胞內(nèi)物質(zhì)流失(蔡翰等,2013),但細(xì)胞并未失去活性,細(xì)胞仍能產(chǎn)生相應(yīng)的酶對(duì)芘進(jìn)行分解利用。
圖1 B. brevis對(duì)芘的降解Fig. 1 Pyrene biodegradation by B. brevis
2.2 B. brevis 降解芘過(guò)程中細(xì)胞凋亡規(guī)律
為了進(jìn)一步研究在芘的降解過(guò)程中菌體活性的變化,運(yùn)用流式細(xì)胞術(shù)測(cè)定了菌體細(xì)胞的凋亡變化。細(xì)胞凋亡早期的變化發(fā)生在細(xì)胞膜表面,細(xì)胞膜表面的變化之一是磷脂酰絲氨酸(PS)從細(xì)胞膜內(nèi)側(cè)轉(zhuǎn)移到細(xì)胞膜外。Annexin V是一種分子量為35~36 kD的Ca2+依賴性磷脂結(jié)合蛋白,可通過(guò)細(xì)胞外側(cè)暴露的PS與凋亡早期細(xì)胞的胞膜結(jié)合。因此Annexin V被作為檢測(cè)細(xì)胞早期凋亡的靈敏指標(biāo)之一。將 Annexin V進(jìn)行 FITC標(biāo)記,以標(biāo)記了的Annexin V作為熒光探針,利用流式細(xì)胞儀可檢測(cè)細(xì)胞早期凋亡的發(fā)生。PI是一種核酸染料,它不能透過(guò)完整的細(xì)胞膜,但對(duì)凋亡中晚期的細(xì)胞和死細(xì)胞,PI能夠透過(guò)細(xì)胞膜而使細(xì)胞核染紅。因此將Annexin V與PI匹配使用,可將處于不同凋亡時(shí)期的細(xì)胞區(qū)分開來(lái)(Qin等,2015)。
圖2為菌體降解芘48 h時(shí)的細(xì)胞凋亡散點(diǎn)圖,其中Q1表示既與PI作用,也與Annexin V作用的粒子,主要指壞死細(xì)胞;Q2表示與PI作用,但不與 Annexin V作用的粒子,即晚期凋亡細(xì)胞;Q3表示既不與PI作用,也不與Annexin V作用的粒子,即活細(xì)胞;Q4表示不與PI作用,但與Annexin V作用的粒子,指早期凋亡細(xì)胞。從圖2可以看出,在芘的脅迫下,部分細(xì)胞處于Q2(晚凋)和Q4(早凋)區(qū),發(fā)生自身凋亡,細(xì)胞膜基團(tuán)發(fā)生改變。
圖3為芘降解過(guò)程中細(xì)胞早期凋亡率與細(xì)胞總凋亡率隨時(shí)間的變化情況。B. brevis降解芘20~48 h時(shí),細(xì)胞的早期凋亡率顯著增多,且明顯大于空白對(duì)照組。48 h達(dá)到峰值;隨后48~96 h,細(xì)胞的早期凋亡率顯著減少;96~168 h,凋亡速率放緩。該結(jié)果表明在降解過(guò)程中,芘能夠誘導(dǎo)菌體細(xì)胞的凋亡。在芘的脅迫下,菌體出現(xiàn)凋亡現(xiàn)象,細(xì)胞表面基團(tuán)發(fā)生了變化,表面疏水性增強(qiáng)(Li和 Zhu,2012),同時(shí)使細(xì)胞表面的芘進(jìn)入細(xì)胞內(nèi)。通過(guò)胞內(nèi)酶的作用,芘逐漸被降解。同時(shí),細(xì)胞的凋亡會(huì)造成胞內(nèi)核酸酶的釋放,核酸酶將遺傳物質(zhì)分解成小的片段,DNA的變化使得調(diào)控菌體降解的某些功能蛋白被表達(dá)或表達(dá)量增多(Wu等,2009),也促進(jìn)了菌體對(duì)芘的降解作用。故48~96 h時(shí),菌體對(duì)芘的降解速率較快。120 h時(shí),細(xì)胞早期凋亡率與總凋亡率均顯著減小,168 h時(shí)細(xì)胞早期凋亡率與總凋亡率均小于0.5%。該結(jié)果表明隨著菌體對(duì)環(huán)境的適應(yīng),菌體能夠利用凋亡細(xì)胞流出的離子、蛋白、糖類等胞內(nèi)物質(zhì)以及芘作為能源,進(jìn)行生長(zhǎng)代謝(Chen等,2010;葉錦韶等,2014),使活性菌體的比例逐漸增多,因此菌體依舊能夠產(chǎn)生與降解有關(guān)的酶,對(duì)殘留的芘進(jìn)行降解。
圖2 B. brevis降解芘48 h時(shí)的細(xì)胞凋亡散點(diǎn)圖Fig. 2 Cell apoptosis scatter plot of B. brevis after pyrene degradation for 48 h
圖3 B. brevis降解芘過(guò)程中細(xì)胞凋亡的變化Fig. 3 Change of bacterium apoptosis during pyrene degradation
2.3 B. brevis降解芘過(guò)程中細(xì)胞膜電位的變化
在細(xì)胞凋亡的過(guò)程中往往伴隨著跨膜電位的破壞,這被認(rèn)為是細(xì)胞凋亡過(guò)程中最早發(fā)生的現(xiàn)象之一。熒光探針 JC-1是一種陽(yáng)離子型的親脂性染料,能夠自由穿過(guò)細(xì)胞膜,與胞漿結(jié)合。膜電位高時(shí),JC-1通過(guò)細(xì)胞膜極性進(jìn)入細(xì)胞體內(nèi),并因濃度升高而形成發(fā)射紅色熒光的多聚體;膜電位降低時(shí),發(fā)生去極化現(xiàn)象,JC-1從細(xì)胞體內(nèi)釋放,濃度降低,逆轉(zhuǎn)為發(fā)射綠色熒光的單體形式。故而通過(guò)綠色和紅色熒光強(qiáng)度的比值可定量檢測(cè)細(xì)胞膜電位的變化(Qin等,2014)。
菌體降解芘過(guò)程中細(xì)胞膜電位隨時(shí)間的變化如圖4。從圖中可以看出,第24~96 h期間,細(xì)胞膜電位呈快速的下降趨勢(shì),且明顯小于對(duì)照組。該結(jié)果表明,在芘的降解過(guò)程,細(xì)胞膜電位發(fā)生去極化現(xiàn)象。研究表明,細(xì)胞膜電位的變化與細(xì)胞內(nèi)外Na+、K+的變化密切相關(guān)(Volkov等,2011)。細(xì)胞發(fā)生凋亡時(shí),細(xì)胞膜的完整性被破壞,細(xì)胞膜通透性增大(Chen等,2014),細(xì)胞內(nèi)的Na+逐漸釋放到細(xì)胞外,細(xì)胞外的K+不斷通過(guò)K+-ATP酶離子泵運(yùn)輸?shù)郊?xì)胞內(nèi),細(xì)胞內(nèi)高K+、低 Na+,造成細(xì)胞外環(huán)境為高Na+、低K+(何寶燕等,2007),從而導(dǎo)致細(xì)胞膜電位下降。芘是一個(gè)不帶電荷的分子,可與胞外K+共轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞內(nèi),因此,膜電位的去極化促進(jìn)細(xì)胞對(duì)芘的吸收與降解(Yin等,2014)。120 h后,細(xì)胞內(nèi)外的Na+、K+處于平衡狀態(tài),故膜電位去極化程度減弱,菌體對(duì)芘的吸收與降解速率也減緩。
圖4 B. brevis降解芘過(guò)程中細(xì)胞膜電位的變化Fig. 4 Change of membrane potential during pyrene degradation by B. brevis
(1)B. brevis對(duì)芘的降解率在168 h達(dá)到56.5%。
(2)在芘的降解過(guò)程中,細(xì)胞出現(xiàn)顯著的凋亡現(xiàn)象,促進(jìn)了菌體對(duì)芘的降解。168 h時(shí)細(xì)胞早期凋亡率與總凋亡率均小于0.5%,菌體依然對(duì)芘具有較強(qiáng)的降解能力。
(3)隨著細(xì)胞凋亡的發(fā)生,細(xì)胞膜電位發(fā)生去極化現(xiàn)象,促進(jìn)了細(xì)胞對(duì)芘的吸收與降解。
ASHOUR L, AL-RUB F A, SHEIKHA D, et al. 2008. Biosorption of naphthalene from refinery simulated waste-water on blank alginate beads and immobilized dead algal cells[J]. Separation Science and Technology, 43: 2208-2224.
BALACHANDRAN C, DURAIPANDIYAN V, BALAKRISHNA K, et al. 2012. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil[J]. Bioresource Technology, 112: 83-90.
CHEN B L, DING J. 2012. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 229-230: 159-169.
CHEN B L, WANG Y S, HU D F. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi[J]. Journal of Hazardous Materials, 179(1-3): 845-851.
CHEN S N, YIN H, YE J S, et al. 2014. Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation[J]. Bioresource Technology, 158: 181-187.
LI F, ZHU L Z. 2012. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01[J]. Bioresource Technology, 123: 42-48.
LU J, GUO C L, ZHANG M L, et al. 2014. Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14[J]. International Biodeterioration & Biodegration, 87: 75-80.
QIN Q P, CHEN Z F, QIN J L, et al. 2015. Studies on antitumor mechanism of two planar platinum(II) complexes with 8-hydroxyquinoline: Synthesis, characterization, cytotoxicity, cell cycle and apoptosis[J]. European Journal of Medicinal Chemistry, 92: 302-313.
QIN Q P, LI Y L, LIU Y C, et al. 2014. Synthesis, crystal structure, cytotoxicity and cell apoptosis induction of a copper(II)-based Schiff base complex[J]. Inorganica Chimica Acta, 421:260-266.
SONG M K, SONG M, CHOI H S, et al. 2012. Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs)[J]. Toxicology Letters, 212(1): 18-28.
VOLKOV E M, NURULLIN L F, VOLKOV M E, et al. 2011. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles[J]. Comparative Biochemistry and Physiology, Part A, 158(4): 520-524.
WHITMAN B E, MIHELEIE J R, LUEKING D R. 1997. Naphthalene biosorption in soil water systems of low or high sorptive capacity[J]. Applied Microbiology and Biotechnology, 43(3): 529-544.
WU Y R, HE T T, ZHONG M Q, et al. 2009. Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization[J]. Journal of Environmental Sciences, 21: 1446-1451.
YE J S, ZHAO H J, YIN H, et al. 2014. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis[J]. Chemosphere, 105: 62-67.
YIN X M, LIANG X, XU G H, et al. 2014. Effect of phenanthrene uptake on membrane potential in roots of soybean, wheat and carrot[J]. Environmental and Experimental Botany, 99: 53-58.
蔡瀚, 尹華, 葉錦韶, 等. 2013. 1株苯并[a]芘高效降解菌的篩選與降解特性[J]. 環(huán)境科學(xué), 34(4): 1937-1944.
何寶燕, 尹華, 彭輝, 等. 2007. 酵母菌吸附重金屬鉻的生理代謝機(jī)理及細(xì)胞形貌分析[J]. 環(huán)境科學(xué), 28(1): 194-198.
葉錦韶, 史一枝, 尹華等. 2010. 克雷伯氏菌對(duì)三苯基錫的酶促降解特性[J]. 環(huán)境科學(xué), 31(2): 459-464.
Cytotoxicity Assay of Pyrene Biodegradation by Brevibacillus brevis
LIAO Liping1, YIN Hua2*, LIU Zhichen1, YE Jinshao1, PENG Hui3*, LIU Zehua2
1. Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China; 2. Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; 3.Department of Chemistry, Jinan University, Guangzhou 510632, China
Although there have been many reports on the isolation of pyrene degrading stains, pyrene degradation characteristics and its catabolites, the information regarding molecular mechanism between degrading bacteria and pyrene is limited thus far. To explore the molecular mechanism between degrading bacterium Brevibacillus brevis and pyrene, the biodegradation of pyrene (1.0 mg·L-1) by B. brevis, as well as the cell apoptosis and changes of membrane potential of B. brevis under pyrene exposure in mineral salt medium (MSM) was conducted to reveal the mechanism of pyrene biodegradation from the perspective of cytotoxicity. The experimental results showed that pyrene degradation efficiency increased with time. And the biodegradation efficiency of pyrene by B. brevis reached 56.5% after 168 h. In the degradation process, pyrene significantly induced the cell apoptosis. Both the total percentage of apoptotic cells and the percentage of apoptotic cells in the early stage reached their peak values on the 48th h, and decreased thereafter with the extension of time. The total percentage of apoptotic cells and the percentage of apoptotic cells in the early stage were all less than 5% at 168 h, which revealed that B. brevis at this stage still had degradation capability for pyrene. Moreover, as the apoptosis occurred, cell membrane potential declined evidently, which meant that cell membrane potential was depolarized. This result implied that extracellular pyrene and K+co-transported into the cells, thus promoting the uptake and degradation of pyrene.
pyrene; biodegradation; cell apoptosis; membrane potential
10.16258/j.cnki.1674-5906.2015.03.020
X171.5
A
1674-5906(2015)03-0501-04
廖麗萍,尹華,劉芷辰,葉錦韶,彭輝,劉則華. 短短芽孢桿菌降解芘的細(xì)胞毒性分析[J]. 生態(tài)環(huán)境學(xué)報(bào), 2015, 24(3): 501-504.
LIAO Liping, YIN Hua, LIU Zhichen, YE Jinshao, PENG Hui, LIU Zehua. Cytotoxicity Assay of Pyrene Biodegradation by Brevibacillus brevis [J]. Ecology and Environmental Sciences, 2015, 24(3): 501-504.
國(guó)家自然科學(xué)基金委-廣東省聯(lián)合基金重點(diǎn)項(xiàng)目(U0933002);廣東省自然科學(xué)基金重點(diǎn)項(xiàng)目(S2013020012808)
廖麗萍(1988年生),女,碩士研究生,主要研究方向?yàn)樗廴究刂婆c修復(fù)。E-mail:feather66@126.com *通訊聯(lián)系人:尹華(1960年生),女,教授,博士生導(dǎo)師。研究方向:持久性有機(jī)污染物的治理與生物修復(fù)。E-mail:huayin@scut.edu.cn;tbpenghui@163.com
2015-01-22