賀建軍,付 玲,楊 川,陽(yáng) 鵬
(1.湘潭大學(xué) 機(jī)械工程學(xué)院,湖南 湘潭 411105;2.中聯(lián)重科股份有限公司,長(zhǎng)沙 410013;3.建設(shè)機(jī)械關(guān)鍵技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410013)
SVM和改進(jìn)的PSO在壓路機(jī)駕駛室結(jié)構(gòu)噪聲優(yōu)化中的應(yīng)用
賀建軍1,付 玲2,3,楊 川2,3,陽(yáng) 鵬2,3
(1.湘潭大學(xué) 機(jī)械工程學(xué)院,湖南 湘潭 411105;2.中聯(lián)重科股份有限公司,長(zhǎng)沙 410013;3.建設(shè)機(jī)械關(guān)鍵技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410013)
針對(duì)壓路機(jī)駕駛室結(jié)構(gòu)噪聲,將拉丁超立方試驗(yàn)設(shè)計(jì)、支持向量機(jī)近似模型、改進(jìn)的粒子群優(yōu)化算法相結(jié)合,通過(guò)修改駕駛室主要板件的板厚參數(shù)降低壓路機(jī)結(jié)構(gòu)噪聲。建立一套基于支持向量機(jī)和粒子群算法控制車(chē)內(nèi)結(jié)構(gòu)噪聲的設(shè)計(jì)流程。針對(duì)粒子群可能出現(xiàn)局部最優(yōu)解的問(wèn)題,對(duì)粒子群進(jìn)行了改進(jìn)。并利用改進(jìn)的粒子群優(yōu)化支持向量機(jī)參數(shù),構(gòu)建高擬合精度的支持向量機(jī)模型代替有限元模型。并用改進(jìn)的粒子群算法對(duì)該模型進(jìn)行板厚尋優(yōu),找到一組最佳的板厚參數(shù)使得參考點(diǎn)(駕駛員右耳處)聲壓級(jí)最小,減少計(jì)算工作量,提高優(yōu)化效率。
聲學(xué);壓路機(jī);支持向量機(jī);駕駛室;結(jié)構(gòu)噪聲
隨著人們對(duì)工作環(huán)境的要求不斷提高,在提高壓路機(jī)壓實(shí)性能的同時(shí),如何提高駕駛員乘坐舒適性成為產(chǎn)品研發(fā)的關(guān)鍵性問(wèn)題。在滿(mǎn)足工藝和經(jīng)濟(jì)條件下,修改車(chē)身結(jié)構(gòu)參數(shù)是控制與降低車(chē)內(nèi)噪聲的有效方法之一。
由于駕駛室噪聲有限元分析花費(fèi)時(shí)間長(zhǎng),基于有限元模型進(jìn)行優(yōu)化效率低。目前,對(duì)于大型模型,基本采用近似模型進(jìn)行優(yōu)化。將近似模型代替有限元模型能有效提高計(jì)算效率。常用的近似替代模型主要有:響應(yīng)面模型、Kriging模型、神經(jīng)網(wǎng)絡(luò)模型。響應(yīng)面模型對(duì)于高維非線(xiàn)性問(wèn)題在準(zhǔn)確度以及穩(wěn)定度上有所欠缺[1-3]。Kriging模型是估計(jì)方差的最小無(wú)偏估計(jì)模型,但在高維問(wèn)題上,Kriging模型需要對(duì)復(fù)雜的矩陣進(jìn)行求逆運(yùn)算,計(jì)算成本較高[4]。神經(jīng)網(wǎng)絡(luò)容易受到網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜性以及樣本數(shù)量等因素的影響,容易出現(xiàn)泛化能力不強(qiáng)等問(wèn)題[5]。支持向量機(jī)(Support Vector Machine,SVM)在統(tǒng)計(jì)學(xué)理論的基礎(chǔ)上提出的一種新的學(xué)習(xí)算法,支持向量機(jī)建立在統(tǒng)計(jì)學(xué)VC維和結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則的基礎(chǔ)上。支持向量機(jī)能夠有效地解決非線(xiàn)性、小樣本以及高維識(shí)別問(wèn)題,具有較好的泛化能力[6-8]。
粒子群優(yōu)化(Particle Swarm Optimization,PSO)算法是一種基于群體的智能尋優(yōu)算法,源于對(duì)鳥(niǎo)群的捕食行為的研究。粒子群算法具有高度并行、算法易理解且容易編程實(shí)現(xiàn),對(duì)目標(biāo)函數(shù)數(shù)學(xué)形式?jīng)]有特殊要求等特點(diǎn),近年來(lái)在許多領(lǐng)域得到廣泛應(yīng)用[9,10]。
本文將建立壓路機(jī)駕駛室板厚作為設(shè)計(jì)變量,駕駛室1階扭轉(zhuǎn)模態(tài)頻率、駕駛室設(shè)計(jì)變量總質(zhì)量為約束條件,車(chē)內(nèi)參考點(diǎn)聲壓響應(yīng)為目標(biāo)函數(shù)的數(shù)學(xué)優(yōu)化模型。將采用支持向量機(jī)近似模型,用以替代有限元模型,利用改進(jìn)的粒子群優(yōu)化算法對(duì)該優(yōu)化問(wèn)題進(jìn)行尋優(yōu)。另外由于支持向量機(jī)參數(shù)對(duì)模型預(yù)測(cè)精度有較大影響,利用改進(jìn)的粒子群算法對(duì)該參數(shù)進(jìn)行尋優(yōu),構(gòu)建高擬合精度的支持向量機(jī)近似模型。因此,將改進(jìn)粒子群優(yōu)化算法與支持向量機(jī)模型相結(jié)合,對(duì)壓路機(jī)駕駛室板厚進(jìn)行優(yōu)化,降低其駕駛室內(nèi)的結(jié)構(gòu)噪聲。
1.1 支持向量回歸機(jī)
假設(shè)訓(xùn)練集為{(xi,yi),i=1,2,…n},假設(shè)訓(xùn)練集數(shù)據(jù)在擬合精度為ε下利用回歸函數(shù) f(x)=ω·x+b對(duì)其擬合,式中 ω為權(quán)向量,b為偏差,ω∈Rn。考慮允許擬合誤差,引入懲罰因子C、松弛因子則函數(shù)擬合問(wèn)題轉(zhuǎn)化為
非線(xiàn)性回歸模型通過(guò)構(gòu)造一個(gè)非線(xiàn)性映射Φ(x),使得樣本點(diǎn)在高維特征空間里是線(xiàn)性的,上述映射主要是通過(guò)核函數(shù)來(lái)實(shí)現(xiàn)。則非線(xiàn)性回歸函數(shù)表示為
式中αi以及為拉格朗日乘子,其對(duì)應(yīng)樣本為支持向量,本文使用核函數(shù)為徑向基函數(shù)(RBF):
1.2 改進(jìn)粒子群優(yōu)化算法
粒子群算法首先在可解空間初始化一群粒子,每個(gè)粒子代表可解空間的一個(gè)可能最優(yōu)解,用位置、速度、適應(yīng)度值三個(gè)指標(biāo)來(lái)描述粒子的基本特征。其中適應(yīng)度決定解的優(yōu)劣程度,一般根據(jù)優(yōu)化目標(biāo)定義適應(yīng)度函數(shù)。假設(shè)在d維的搜索空間中有一個(gè)n個(gè)粒子組成的種群,第i個(gè)粒子在搜索空間中的位置為其速度決定它的方向和距離。整個(gè)粒子群每一次迭代粒子的速度和位置由以下方程進(jìn)行變化
式中ω為慣性權(quán)重系數(shù),c1、c2為學(xué)習(xí)因子,γ1、γ2為介于[0,1]之間的隨機(jī)數(shù)。為防止粒子速度過(guò)快錯(cuò)過(guò)最優(yōu)解,設(shè)定粒子飛行速度為-vdmin≤vi≤vdmax,搜索范圍設(shè)定為-xdmin≤xi≤xdmax,pbest為粒子自身最優(yōu)解的位置,gbest為整個(gè)種群的最優(yōu)解。
針對(duì)粒子群可能出現(xiàn)局部最優(yōu)解的問(wèn)題,本文提出采用非線(xiàn)性動(dòng)態(tài)改進(jìn)慣性權(quán)值以及非線(xiàn)性動(dòng)態(tài)調(diào)整學(xué)習(xí)因子對(duì)粒子群進(jìn)行改進(jìn)。
(1)非線(xiàn)性動(dòng)態(tài)改進(jìn)慣性權(quán)值
慣性權(quán)重起到平衡全局搜索和局部搜索能力的作用,本文提出隨粒子的適應(yīng)度值自動(dòng)調(diào)整慣性權(quán)值,每次慣性權(quán)值ω表示為
式中ωmax、ωmin分別為慣性權(quán)值ω最大值和最小值,f為粒子當(dāng)前適應(yīng)度值,favg、fmin分別為當(dāng)前所有粒子平均適應(yīng)度值和最小適應(yīng)度值。
(2)非線(xiàn)性動(dòng)態(tài)調(diào)整學(xué)習(xí)因子
從式(7)可以看出,隨著迭代不斷進(jìn)行學(xué)習(xí)因子在優(yōu)化過(guò)程中隨時(shí)間進(jìn)行不同變化,增強(qiáng)粒子早期迭代全局搜索能力、后期迭代局部搜索能力。
式中c1,ini、c2,ini為c1和c2的初始值,c1,fin、c2,fin為c1和c2的迭代終值,t為迭代次數(shù)。
基于SVM和PSO組合優(yōu)化駕駛室結(jié)構(gòu)噪聲設(shè)計(jì)流程,先建立駕駛室聲固耦合模型;再進(jìn)行拉丁超立方試驗(yàn)設(shè)計(jì),利用有限元計(jì)算在各個(gè)樣本點(diǎn)下駕駛室駕駛員右耳處聲壓響應(yīng)、駕駛室設(shè)計(jì)變量總質(zhì)量、一階扭轉(zhuǎn)模態(tài)頻率;然后建立基于支持向量機(jī)的駕駛室結(jié)構(gòu)噪聲優(yōu)化設(shè)計(jì)模型;最后通過(guò)改進(jìn)粒子群優(yōu)化算法優(yōu)化駕駛室板厚設(shè)計(jì)參數(shù),降低壓路機(jī)駕駛室結(jié)構(gòu)噪聲?;谥С窒蛄繖C(jī)和改進(jìn)粒子群算法優(yōu)化壓路機(jī)駕駛室結(jié)構(gòu)噪聲基本流程如圖1所示,基本步驟如下:
圖1 IPSO-SVM-IPSO流程圖
1)構(gòu)建駕駛室聲固耦合有限元模型,確定影響駕駛室結(jié)構(gòu)噪聲主要設(shè)計(jì)變量及其變化范圍并確定駕駛室噪聲主要評(píng)價(jià)標(biāo)準(zhǔn)。
2)拉丁超立方試驗(yàn)設(shè)計(jì)方法生成樣本點(diǎn),將樣本點(diǎn)代入有限元模型計(jì)算右耳處聲壓響應(yīng)、駕駛室設(shè)計(jì)變量總質(zhì)量、1階扭轉(zhuǎn)模態(tài)頻率,并將這些樣本點(diǎn)分為訓(xùn)練樣本和預(yù)測(cè)樣本。
3)用訓(xùn)練樣本訓(xùn)練支持向量機(jī)模型,同時(shí)用改進(jìn)的粒子群算法對(duì)支持向量機(jī)的不敏感系數(shù)ε、懲罰因子C、核寬度g這三個(gè)主要參數(shù)進(jìn)行尋優(yōu),找到最合適一組參數(shù)組合使得適應(yīng)度函數(shù)最小,獲取擬合精度較高的近似模型。
4)利用預(yù)測(cè)樣本檢測(cè)近似模型的泛化能力。
5)基于建立的支持向量機(jī)近似模型,在滿(mǎn)足約束條件的基礎(chǔ)上,利用改進(jìn)的粒子群計(jì)算最佳板厚使目標(biāo)函數(shù)最優(yōu)。
6)更新板件厚度為獲取最優(yōu)設(shè)計(jì)量,通過(guò)有限元計(jì)算,比較優(yōu)化前后效果。
本文以某款正處于研發(fā)階段的高頻雙鋼輪壓路機(jī)為研究對(duì)象,在壓路機(jī)產(chǎn)品正向設(shè)計(jì)階段,利用SVM和PSO組合優(yōu)化駕駛室結(jié)構(gòu)噪聲,減少樣機(jī)生產(chǎn)后試驗(yàn)次數(shù),提高效率。
3.1 有限元模型
建立駕駛室的結(jié)構(gòu)有限元模型和聲腔有限元模型,并以這兩個(gè)模型構(gòu)建聲固耦合模型(圖2)。有限元模型采用殼單元和實(shí)體單元進(jìn)行網(wǎng)格劃分,頂部與駕駛室骨架、門(mén)與門(mén)框的連接在連接點(diǎn)處采用剛性單元RBE2模擬;操縱臺(tái)及座椅與駕駛室底部的連接也采用剛性單元RBE2模擬。駕駛室聲腔有限元模型采用實(shí)體單元進(jìn)行劃分,所有單元節(jié)點(diǎn)均定義為流體節(jié)點(diǎn),單元材料為空氣,并由空氣密度及聲速確定其體積模量。
圖2 駕駛室聲固耦合模型(隱藏玻璃)
3.2 設(shè)計(jì)變量
壓路機(jī)駕駛室很多板件都具有對(duì)稱(chēng)性,考慮到工程要求不對(duì)壓路機(jī)玻璃厚度進(jìn)行改進(jìn),則本文將壓路機(jī)駕駛室的主要板件分成7個(gè)變量(如圖3),其取值范圍如表1所示。
3.3 樣本采集與預(yù)處理
為減少試驗(yàn)次數(shù),提高計(jì)算效率,采用拉丁超立方試驗(yàn)設(shè)計(jì)生成75個(gè)有限元模型樣本,其中前60組作為訓(xùn)練數(shù)據(jù),后15組為預(yù)測(cè)數(shù)據(jù)。將這些樣本帶入到駕駛室聲固耦合有限元模型中,在車(chē)身左前懸置施加20 Hz~200 Hz的垂向激勵(lì),幅值為10N。
圖3 設(shè)計(jì)變量示意圖
表1 設(shè)計(jì)變量取值范圍
選定駕駛員右耳處為車(chē)內(nèi)參考點(diǎn),利用有限元軟件基于模態(tài)頻響理論得到參考點(diǎn)聲壓,利用公式(8)計(jì)算得到該點(diǎn)A計(jì)權(quán)聲壓級(jí)均方根值,并以此作為衡量駕駛室結(jié)構(gòu)噪聲重要標(biāo)準(zhǔn)即本文所設(shè)定的目標(biāo)函數(shù)。然后分別計(jì)算各個(gè)樣本點(diǎn)1階扭轉(zhuǎn)模態(tài)頻率和駕駛室板件設(shè)計(jì)變量總質(zhì)量(約束條件),部分樣本數(shù)據(jù)如表2所示。
表2 部分樣本數(shù)據(jù)(前10組)
其中Pz為均方根聲壓級(jí),pi為i Hz處聲壓值,單位為Pa;
3.4 模型核函數(shù)參數(shù)選擇
將訓(xùn)練樣本數(shù)據(jù)帶入支持向量機(jī)模型中,并用前文提到的改進(jìn)粒子群優(yōu)化算法對(duì)支持向量機(jī)的主要參數(shù)C、g、ε進(jìn)行優(yōu)化。設(shè)定C∈[0.01,1000], g∈[0.0001,10],ε∈[0.001,0.1],粒子群種群規(guī)模為40,迭代次數(shù)為200,c1,ini=2.5、c1,fin=0.5、c2,ini=0.5、c2,fin=2.5、ωmax=1.2、ωmin=0.6,分別構(gòu)建聲壓級(jí)均方根值、1階扭轉(zhuǎn)模態(tài)頻率、駕駛室設(shè)計(jì)變量總質(zhì)量和板厚之間的支持向量機(jī)近似模型。經(jīng)計(jì)算可知,三個(gè)支持向量機(jī)模型主要參數(shù)的最優(yōu)值如表3所示。
表3 支持向量機(jī)主要參數(shù)值
3.5 支持向量機(jī)模型精度評(píng)價(jià)
為比較SVM預(yù)測(cè)模型的準(zhǔn)確性,本文將SVM和工程比較常用的2階響應(yīng)面法在擬合結(jié)果上進(jìn)行比較,從而證明SVM的準(zhǔn)確性。聲壓級(jí)均方根值、1階扭轉(zhuǎn)頻率預(yù)測(cè)樣本的SVM以及RSM擬合結(jié)果與有限元計(jì)算值比較如圖4、圖5所示。
圖4 駕駛室聲壓均方根預(yù)測(cè)樣本擬合精度比較
圖5 1階扭轉(zhuǎn)模態(tài)頻率預(yù)測(cè)樣本擬合精度比較
從圖4、圖5可以看出基于聲壓均方根值以及扭轉(zhuǎn)頻率的兩種近似模型都有較好的數(shù)據(jù)泛化能力,但PSO優(yōu)化的SVM比響應(yīng)面近似模型對(duì)于樣本點(diǎn)的響應(yīng)更接近于有限元仿真數(shù)據(jù)。聲壓均方根值SVM近似模型相對(duì)于有限元仿真值的相對(duì)誤差均在2%以?xún)?nèi),而1階扭轉(zhuǎn)模態(tài)頻率SVM近似模型相對(duì)于有限元仿真值的相對(duì)誤差均在0.5%以?xún)?nèi)。從而證明構(gòu)建的駕駛室支持向量機(jī)近似模型比響應(yīng)面近似模型有更高的擬合精度,本文將利用SVM近似模型代替原來(lái)的有限元模型。
3.6 基于支持向量機(jī)近似模型優(yōu)化
通過(guò)優(yōu)化駕駛室板厚降低壓路機(jī)車(chē)內(nèi)結(jié)構(gòu)噪聲,且由于駕駛室結(jié)構(gòu)的1階扭轉(zhuǎn)模態(tài)頻率是一個(gè)很重要技術(shù)指標(biāo),是衡量車(chē)內(nèi)結(jié)構(gòu)在低頻共振時(shí)抵抗扭轉(zhuǎn)的能力。將駕駛室設(shè)計(jì)變量總質(zhì)量以及1階扭轉(zhuǎn)模態(tài)頻率作為約束條件,在優(yōu)化過(guò)程中設(shè)定在一定變化范圍內(nèi)。因此使駕駛室車(chē)內(nèi)結(jié)構(gòu)噪聲最小的數(shù)學(xué)優(yōu)化模型如下:
式中pz為聲壓級(jí)均方根值,f為1階扭轉(zhuǎn)模態(tài)頻率,m為設(shè)計(jì)變量總質(zhì)量,m0為設(shè)計(jì)變量總質(zhì)量初始值,ti為設(shè)計(jì)變量,til、tih分別為設(shè)計(jì)變量下限和上限。
基于上述所建立SVM模型,利用改進(jìn)PSO對(duì)駕駛室板厚進(jìn)行尋優(yōu),使得駕駛室聲壓響應(yīng)最小。由于PSO屬于無(wú)約束優(yōu)化算法,本身不能處理約束條件,本文的優(yōu)化問(wèn)題將通過(guò)建立懲罰函數(shù)機(jī)制將約束問(wèn)題轉(zhuǎn)化為無(wú)約束問(wèn)題求解,優(yōu)化結(jié)果如表4所示。且由于優(yōu)化后的板厚參數(shù)小數(shù)點(diǎn)眾多,而工藝很難達(dá)到,一般選取板厚變量參數(shù)小數(shù)點(diǎn)后一位。
從表4可知,根據(jù)實(shí)際情況最終優(yōu)化的板厚與最初優(yōu)化結(jié)果有所差異,導(dǎo)致最終優(yōu)化的A計(jì)權(quán)聲壓級(jí)均方根值也有所區(qū)別。經(jīng)計(jì)算,駕駛室聲壓級(jí)均方根值下降2.7 dB,1階扭轉(zhuǎn)模態(tài)頻率為31.33 Hz,設(shè)計(jì)變量總質(zhì)量為179.8 kg均滿(mǎn)足約束條件要求。通過(guò)比較可知,結(jié)構(gòu)噪聲優(yōu)化達(dá)到理想效果。
表4 設(shè)計(jì)變量以及響應(yīng)優(yōu)化前后對(duì)比
為更直觀(guān)比較板厚改進(jìn)前后對(duì)駕駛室噪聲的控制效果,將有限元的模型中的板件厚度改為優(yōu)化的最終值,并在車(chē)身左前懸置施加20 Hz~200 Hz的垂向激勵(lì),幅值為10 N,重新計(jì)算駕駛室右耳處聲壓響應(yīng)值,并將其與優(yōu)化前的聲壓響應(yīng)比較如圖6所示。
圖6 優(yōu)化前后駕駛室聲壓響應(yīng)比較
從圖6可以明顯看出,按照最終取值修改駕駛室板厚,能明顯降低駕駛室結(jié)構(gòu)噪聲,其中壓路機(jī)主要工作頻率處50 Hz和67 Hz以及聲壓級(jí)峰值頻率點(diǎn)105 Hz、140 Hz、187 Hz處聲壓級(jí)分別下降1.4 dB、1.2 dB、3.1 dB、2.8 dB、9.7 dB,在整個(gè)頻率范圍內(nèi)聲壓級(jí)均方根值降低2.7 dB,降噪效果顯著。
本文針對(duì)壓路機(jī)駕駛室結(jié)構(gòu)噪聲,將試驗(yàn)設(shè)計(jì)、近似模型、粒子群優(yōu)化算法相結(jié)合對(duì)壓路機(jī)結(jié)構(gòu)噪聲進(jìn)行優(yōu)化設(shè)計(jì),得到如下結(jié)論:
(1)本文基于SVM和PSO,以板厚為設(shè)計(jì)變量,分別構(gòu)建場(chǎng)點(diǎn)A計(jì)權(quán)聲壓級(jí)均方根值、駕駛室設(shè)計(jì)變量總質(zhì)量、1階扭轉(zhuǎn)模態(tài)頻率的支持向量機(jī)近似模型,利用該模型替代有限元模型,并用改進(jìn)的PSO對(duì)其進(jìn)行優(yōu)化計(jì)算,減少計(jì)算工作量,提高優(yōu)化效率;
(2)基于PSO優(yōu)化的支持向量機(jī)近似模型預(yù)測(cè)精度能較好的滿(mǎn)足工程要求,為大型的結(jié)構(gòu)優(yōu)化問(wèn)題提供新的解決方法。
[1]Liang Xin-hua,Lin Zhong-qin,Zhu Ping.Acoustic analysis of damping structure with response surface method[J].Applied Caustics,2007,68:1036-1053.
[2]Li Zai-wei,Liang Xin-hua.Vibro-acoustic analysis and optimization of damping structure with response method [J].Materials&Design,2007,28:1999-2007.
[3]藏獻(xiàn)國(guó),于德介,姚凌云.響應(yīng)表面法在結(jié)構(gòu)噪聲優(yōu)化中的應(yīng)用研究[J].噪聲與振動(dòng)控制,2009,29(4):116-119.
[4]高云凱,張朋,吳錦妍,等.基于Kriging模型的大客車(chē)側(cè)翻安全性多目標(biāo)優(yōu)化[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(12):1882-1886.
[5]周禮輝,成艾國(guó),陳濤.基于BP神經(jīng)網(wǎng)絡(luò)的側(cè)碰多目標(biāo)優(yōu)化設(shè)計(jì)[J].中國(guó)機(jī)械工程學(xué)報(bào),2012,23(17):2122-2127.
[6]袁野,陳昌亞,王德禹.基于支持向量機(jī)的衛(wèi)星動(dòng)力學(xué)多目標(biāo)優(yōu)化[J].振動(dòng)與沖擊,2013,32(22):189-192.
[7]姚凌云,于德介.基于支持向量機(jī)響應(yīng)面的車(chē)身部件特性?xún)?yōu)化[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,11(35):21-25.
[8]Li Sun,Deyu Wang.Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA[J].Journal of Marine Science and Application, 2012,11(1):59-67.
[9]Fernandez Martinez J L,Garcia Gonzalo E,Fernandez Alvarez J P.Theoretical analysis of particle swarm trajectories through a mechanical analogy[J]. International Journal of Computational Intelligence Research,2008,4(2):93-104.
[10]向國(guó)齊,黃大貴,嚴(yán)志堅(jiān).支持向量機(jī)和粒子群算法在結(jié)構(gòu)優(yōu)化中的應(yīng)用研究[J].計(jì)算機(jī)應(yīng)用研究,2009,26(6):2059-2061.
[11]張學(xué)丘,陳劍.某礦車(chē)駕駛室內(nèi)結(jié)構(gòu)噪聲分析與控制[J].噪聲與振動(dòng)控制,2012,32(4):88-91.
[12]楊楠,左言言,陳冬冬.3 t叉車(chē)駕駛室聲學(xué)特性分析[J].噪聲與振動(dòng)控制,2012,32(5):88-91.
Application of SVM and Improved PSO in Structure Noise Optimization for the Road Roller Cab
HE Jian-jun1,FU Ling2,3,YANG Chuan2,3,YANG Peng2,3
(1.School of Mechanical Engineering,Xiangtan University,Xiangtan 411105,Hunan China; 2.Zoomlion Heavy Industry Science and Technology Co.Ltd.,Changsha 410013,China; 3.State Key Laboratory of Key Technology of Construction Machinery,Changsha 410013,China)
The Latin hypercube experimental design,support vector machine(SVM)approximation model and improved particle swarm optimization(PSO)algorithm were combined to reduce the structure noise of a road roller’s cab by modifying the thickness parameters of the main plates of the cab.The design process for controlling the interior structure noise based on the SVM and PSO was presented.The particle swarm was improved by the PSO which could lead to a local optimal solution.The SVM model with high fitting accuracy was built and the improved particle swarm was used to optimize the plate thickness parameters of the SVM model.A set of the best parameters of the thickness that could minimize the sound pressure level at the reference point(the driver’s right ear)was found.The process could save the computation workload and improve the efficiency of the optimization.
acoustics;road roller;support vector machine;cab;structure noise
33+.1
A
10.3969/j.issn.1006-1335.2015.03.027
1006-1355(2015)03-0124-06
2014-09-28
國(guó)家863計(jì)劃項(xiàng)目:工程機(jī)械共性部件再制造關(guān)鍵技術(shù)及示范(2013AA040203)
賀建軍(1989-),男,湖南岳陽(yáng)人,碩士研究生,主要研究方向:工程機(jī)械NVH性能研發(fā)。E-mail:hejianjun07@126.com