魏天雪 于鴻 何春瑩 劉玉俠
[摘要] 目的 建立標準化的實驗和分析方法,采用流式細胞術比較分析癌癥患者新鮮和凍存復蘇后的外周血淋巴細胞亞群的差異。 方法 于2014年6~12月收集肺惡性腫瘤患者靜脈血樣本(2 mL/樣本),每個樣本取300 μL全血用于淋巴細胞亞群分析;剩余全血經(jīng)裂解紅細胞后凍存 (40%或90%胎牛血清)。30 d后復蘇細胞,流式細胞術分析淋巴細胞亞群變化。 結果 復蘇并培養(yǎng)24 h后,癌癥患者PBMC的存活率分別為(67.70±2.80)%(90% FCS) 和(80.47±3.32)% (40% FCS,P=0.0069)。新鮮和凍存的的外周血CD3+、CD3+CD4+、CD3+CD8+、CD3-CD16+56+、CD3+CD16+56+和CD4+CD25+ T細胞的百分率之間無顯著差異(P>0.05,n=8,40%FCS)。 結論 短期凍存癌癥患者的PBMC可用于后續(xù)檢測T淋巴細胞亞群,尤其對于晚期癌癥患者而言,可避免多次采血造成的負擔同時提高實驗的一致性。此外,本實驗建立的方法也可用于臨床抗腫瘤免疫治療和其他免疫監(jiān)測。
[關鍵詞] PBMC;細胞凍存和復蘇;淋巴細胞亞群;流式細胞術
[中圖分類號] R329.2;R697.3 [文獻標識碼] A [文章編號] 1673-9701(2015)29-0029-03
Comparative analysis of lymphocyte subsets between fresh and frozen cancer patients PBMC by flow cytometry
WEI Tianxue YU Hong HE Chunying LIU Yuxia
Jilin Tumor Institute, Changchun 130012,China
[Abstract] Objective To develop a protocol to comparative analysis of lymphocyte subsets between fresh and cryopreserved cancer patients PBMC for immunological studies by flow cytometry. Methods Blood samples (2 mL/sample) from lung malignant tumor patients were collected by venipuncture from June to December 2014. For each sample, 300 μL of fresh whole blood was immediately used for lymphocyte subsets analysis. While the remaining were lysed and the isolated PBMC were cryopreserved with 40% or 90% FCS. Following storage for 30 days, the samples were removed and quickly thawed in 37℃ water bath. After cultured for 24 h, the cells were stained with antibodys. The analysis was performed using an Epics XL/MCL flow cytometry(Beckman Coulter). Results After separating, the cell recovery of PBMC was(67.70±2.80)% of 90% FCS vs (80.47±3.32)% of 40% FCS(P=0.0069). There were no significant differences in the frequencies of CD3+,CD3+CD4+,CD3+CD8+,CD3-CD16+56+,CD3+CD16+56+,and CD4+CD25+ T cells between the fresh and frozen PBMC(P>0.05,n=8,40% FCS). Conclusion The results of the present study suggest that frozen PBMC may be used to evaluate T cell subset frequencies and facilitate longitudinal assays on the same subject,especially in elderly frail malignant tumor patients. This protocol allows assays to be performed in batches with an adequate control. In addition, the approach we developed here can be further applied to clinical use involved in antitumor immunotherapy and immunosurveillance.
[Key words] Peripheral blood mononuclear cell; Cell cryopreservation and recovery; Lymphocyte subsets; Flow cytometry
惡性腫瘤患者常伴有免疫功能紊亂[1],臨床檢測患者的各淋巴細胞亞群的表型和功能,對于評估患者的自身免疫狀態(tài)、配合制定臨床治療方案,具有重要的實踐意義[2]。此外,檢測淋巴細胞亞群也可以幫助深入分析免疫細胞的分化途徑及其免疫反應中的作用,對于從基礎研究到臨床應用免疫治療也具有重要的指導作用[1]。本研究采用流式細胞技術檢測癌癥患者外周血中CD3+、CD4+、CD8+及NK細胞(自然殺傷細胞),調節(jié)性T細胞(CD4+ CD25+)的百分比,并與同一樣本經(jīng)凍存復蘇后的檢測結果進行比較,旨在建立簡便可行的方法動態(tài)監(jiān)測淋巴細胞亞群變化,進而將這一技術方法應用于臨床免疫治療中,以減輕腫瘤患者在接受治療和監(jiān)測過程中的負擔[3]。
1 材料與方法
1.1 實驗材料
IMDM培養(yǎng)基(Gibco)、DMSO (Gibco)、胎牛血清 (Hyclone)、CD45-FITC/CD4-RD1/CD8-ECD/CD3-PC5 (6607013)、CD3-FITC/CD16+56-PE(A07735)、CD4-FITC(A07750)、CD25-PE (A07774),OptiLyse@C Lysis Solution(A11895)均為Beckman Coulter公司產(chǎn)品。
1.2 標本采集和處理
血液樣本來自吉林省腫瘤醫(yī)院于2014年6~12月的住院患者,取經(jīng)診斷為肺腺癌的患者靜脈血2 mL,EDTA(乙二胺四乙酸)鉀鹽抗凝,立即送檢。實驗室做好樣本的登記和編號,在流式試管內加相應抗體10 μL,加入待測血100 μL,混勻后室溫避光20~30 min充分反應。加OptiLyse@C Lysis Solution震蕩混勻,加磷酸鹽緩沖液和甲醛固定液,震蕩混勻后上機檢測。采用Beckman Coulter Epics XL-MCL流式細胞儀檢測外周血中CD3+、CD3+CD4+、CD3+CD8+、CD3+CD16+56+、CD3-CD16+56+、CD4+ CD25+細胞的百分率。Expo32 ADC軟件獲取數(shù)據(jù),收集5000~10000個細胞,Expo32 V1.2軟件分析數(shù)據(jù)。
1.3 PBMC的凍存[4]
將上述每個樣本中剩余的外周血在無菌條件下,置于10 mL無菌離心管中,加入8 mL紅細胞裂解液 (自制),混勻待紅細胞裂解后,300×g離心5 min,棄上清,用生理鹽水洗1遍,計數(shù)并調整細胞濃度為5×106/mL,用配置好的凍存液(40%/90% FCS,10% DMSO)懸浮細胞,-20℃中放置4 h后,-80℃凍存?zhèn)溆谩?/p>
1.4 PBMC的復蘇
凍存1個月的外周血PBMC于37℃水浴迅速復蘇,生理鹽水洗一遍后,用含有10%胎牛血清的IMDM培養(yǎng)基懸浮細胞,37℃、5%CO2飽和濕度條件下培養(yǎng)24 h,300×g離心5 min,臺盼藍拒染法計數(shù)活細胞并調整細胞濃度為1×106/mL,按1.2所述方法標記細胞并上機檢測。
1.5 統(tǒng)計學方法
采用SPSS17.0統(tǒng)計學軟件分析采用,計量資料比較采用配對t檢驗,組間比較采用t檢驗,以(x±s)表示,P<0.05為差異有統(tǒng)計學意義。
2 結果
2.1 PBMC凍存前后細胞存活率的比較
本研究中凍存PBMC所用的FCS濃度分別為40%和90%,本實驗比較了含兩種濃度FCS的凍存液對PBMC的保護作用。表1總結了肺癌患者外周血凍存前后的有核細胞數(shù)變化情況。細胞復蘇并培養(yǎng)24 h后,癌癥患者PBMC的存活率分別為 (67.70±2.80)% (90% FCS)和(80.47±3.32)%(40% FCS),二者比較差異有統(tǒng)計學意義(P=0.0069),提示40℅FCS+10%DMSO+50%IMDM凍存液對于短期保存PBMC效果較好,可應用于后續(xù)的其他實驗。
表1 外周血凍存前后的有核細胞數(shù)比較(x±s,×106/mL,n=8)
2.2 PBMC凍存前后淋巴細胞亞群分布的比較
表2總結了新鮮和凍存復蘇后的肺癌患者外周血CD3+總T淋巴細胞、CD3+CD4+ T輔助/誘導細胞、CD3+CD8+ 抑制/細胞毒細胞、CD3-CD16+56+ NK細胞、CD3+CD16+56+ NK樣T淋巴細胞、調節(jié)性T細胞(CD4+ CD25+)的百分率,經(jīng)統(tǒng)計分析凍存前后各項檢測指標之間無顯著差異。各參數(shù)的平均熒光強度之間也沒有顯著差異 (圖1)。
表2 肺癌患者外周血凍存前后淋巴細胞亞群檢測結果
(x±s,%,n=8, 40%FCS)
3 討論
機體的免疫功能異常與惡性腫瘤的發(fā)生、發(fā)展、轉移及預后密切相關,在抗腫瘤免疫應答中也起著重要作用[5]。淋巴細胞亞群是反映細胞免疫功能的重要指標,其中T細胞起中心調控作用,CD3+總T細胞又分為CD4+輔助/誘導細胞和CD8+抑制/細胞毒細胞。此外,NK細胞、巨噬細胞等其他細胞也具有重要的免疫調節(jié)作用。臨床檢測癌癥患者各淋巴細胞亞群的表達水平,可以動態(tài)分析臨床治療過程中患者機體免疫功能的變化,尤其對于應用免疫療法的患者而言,客觀評價免疫治療的臨床療效一直是我們需要面對的關鍵問題[6]。
細胞凍存是細胞保存的主要方法之一,利用凍存技術可以使細胞保持生長活力和特性不變。已有的報道對于PBMC的凍存方法有多種,本實驗在查閱大量文獻的基礎上[7-10],采用90%FCS+10%DMSO和40%FCS+10%DMSO+50%IMDM這兩種不同的凍存液對外周血PBMC進行凍存,一個月后復蘇細胞,經(jīng)活細胞計數(shù)和流式檢測分析淋巴細胞亞群在凍存前后的變化,結果表明40℅FCS+10℅DMSO+50℅IMDM凍存液回收細胞效率較好,凍存對外周血細胞數(shù)沒有明顯影響,并且凍存前后CD3+、CD3+ CD4+、CD3+ CD8+和NK等細胞百分率也沒有明顯變化。說明我們建立的方法簡便易行,可后續(xù)用于實際臨床監(jiān)測和抗腫瘤免疫治療中。
近年來腫瘤生物治療研究得到廣泛關注,主要集中在樹突狀細胞、細胞因子誘導的殺傷細胞(CIK)、NK細胞、TIL細胞(腫瘤浸潤細胞)、CAR-T細胞(嵌合抗原受體T細胞)等抗腫瘤免疫效應細胞的誘導、擴增和回輸?shù)?。臨床治療能否有效首先在于獲得足量、高活性的免疫效應細胞。腫瘤患者往往免疫系統(tǒng)受到抑制,細胞免疫功能低下,尤其是晚期患者,自體的PBMC在數(shù)量和質量上都難以體外擴增免疫效應細胞,影響了生物治療的進行。本研究建立的方法可用于凍存患者PBMC,在患者狀況良好時采集和凍存PBMC,然后按照臨床治療方案,適時復蘇用于誘導擴增免疫效應細胞;也可以用此方法凍存經(jīng)誘導、擴增后的各種免疫效應細胞,擇機回輸,為腫瘤患者實施個體化治療[11]。本實驗在此基礎上檢測了腫瘤患者誘導培養(yǎng)的CIK細胞凍存前后表型和體外抗腫瘤活性變化,也獲得了預期實驗結果(另文報道)。
目前,臨床還沒有特定的預測免疫反應的參數(shù)和分析方法,根據(jù)SITC/FDA/NCI的推薦和共識,現(xiàn)在主要的免疫學評價包括評價抗原特異性T細胞的存在、頻率和功能;非抗原特異性淋巴細胞,如NK細胞的頻率和活化;調節(jié)性細胞,如Tregs和MDSCs的頻率和功能以及抗體的檢測等。具體指標包括T細胞亞群、T細胞分化狀態(tài)、T細胞浸潤的瘤內標記、免疫抑制分子(誘導型一氧化氮合酶、PD-L1/B7H1和STAT3等)、IFN-γ(γ干擾素)、VEGF(血管內皮生長因子)、LDH(乳酸脫氫酶)、趨化因子等[12-14]。本實驗只是檢測了各淋巴細胞亞群的相對比例,沒有分析其絕對值和功能,因此尚需進一步完善實驗設計、建立標準化操作規(guī)程、擴大檢測指標范圍、延長PBMC凍存時間、培訓出有經(jīng)驗的技術人員,以盡早為臨床免疫治療和免疫監(jiān)測提供方法和實驗依據(jù)。
[參考文獻]
[1] Shah W,Yan X,Jing L,et al. A reversed CD4/CD8 ratio of tumor-infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells are significantly associated with clinical outcome in squamous cell carcinoma of the cervix[J]. Cell Mol Immunol,2011,8(1):59-66.
[2] Chattopadhyay PK,Gierahn TM,Roederer M,et al. Single-cell technologies for monitoring immune systems[J]. Nat Immunol,2014,15(2):128-135.
[3] Aghaeepour N,F(xiàn)inak G,F(xiàn)lowCAP Consortium,et al. Critical assessment of automated flow cytometry data analysis techniques[J]. Nat Methods,2013,10(3):228-238.
[4] Stanke J,Hoffmann C,Erben U,et al. A flow cytometry-based assay to assess minute frequencies of CD8+ T cells by their cytolytic function[J]. J Immunol Methods,2010, 360(1-2):56-65.
[5] Domagala-Kulawik J. The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention[J]. Transl Lung Cancer Res,2015,4(2):177-190.
[7] Nishino M,Jagannathan JP,Krajewski KM,et al. Personalized tumor response assessment in the era of molecular medicine:Cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST[J]. AJR Am J Roentgenol,2012,198(4):737-745.
[8] Dey-Hazra E,Hertel B,Kirsch T,et al. Detection of circulating microparticles by flow cytometry:influence of centrifugation,filtration of buffer,and freezing[J]. Vasc Health Risk Manag,2010,6:1125-1133.
[9] Cao LF,Krymskaya L,Tran V,et al. Development and application of a multiplexable flow cytometry-based assay to quantify cell-mediated cytolysis[J]. Cytometry A,2010,77(6):534-545.
[10] Kalina T,F(xiàn)lores-Montero J,van der Velden VH,et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols[J]. Leukemia,2012,26(9):1986-2010.
[11] Wang WJ,Tao Z,Gu W,et al. Variation of blood T lymphocyte subgroups in patients with non- small cell lung cancer[J]. Asian Pac J Cancer Prev,2013,14(8):4671-4673.
[12] Zaritskaya L,Shafer-Weaver KA,Gregory MK,et al. Application of a flow cytometric cytotoxicity assay for monitoring cancer vaccine trials[J]. J Immunother,2009,32(2):186-194.
[13] Britten CM,Gouttefangeas C,Welters MJ,et al. The CIMT-monitoring panel:a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays[J]. Cancer Immunol Immunother,2008,57(3):289-302.
[14] Karag?觟z B,Bilgi O,Gümüs M,et al. CD8+CD28-cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients[J]. Med Oncol,2010,27(1): 29-33.
[15] Chen C,Chen D,Zhang Y,et al. Changes of CD4+CD25+FOXP3+ and CD8+CD28-regulatory T cells in non-small cell lung cancer patients undergoing surgery[J]. Int Immunopharmacol,2014,18(2):255-261.
(收稿日期:2015-06-26)