亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        利用煙道氣培養(yǎng)微藻的機(jī)制與應(yīng)用

        2015-10-26 08:51:13杜奎梁芳耿亞洪李夜光
        生物技術(shù)通報(bào) 2015年2期
        關(guān)鍵詞:藻液產(chǎn)油微藻

        杜奎梁芳耿亞洪李夜光

        (1. 中國科學(xué)院武漢植物園植物種質(zhì)創(chuàng)新與特色農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,武漢 430074;2. 中國科學(xué)院大學(xué),北京 100049;3. 鄭州師范學(xué)院,鄭州 450044)

        利用煙道氣培養(yǎng)微藻的機(jī)制與應(yīng)用

        杜奎1,2梁芳3耿亞洪1李夜光1

        (1. 中國科學(xué)院武漢植物園植物種質(zhì)創(chuàng)新與特色農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,武漢 430074;2. 中國科學(xué)院大學(xué),北京 100049;3. 鄭州師范學(xué)院,鄭州 450044)

        微藻生物柴油是唯一有潛力代替?zhèn)鹘y(tǒng)化石燃料解決交通用油問題的可再生生物能源,但其產(chǎn)業(yè)化主要受到微藻培養(yǎng)高成本的制約。工業(yè)廢氣(煙道氣)不僅含有大量CO2,還含有硫氧化物(SOx)和氮氧化物(NOx)。因此,利用煙道氣培養(yǎng)產(chǎn)油微藻既可以降低微藻生物柴油的生產(chǎn)成本,又可以減少溫室氣體和污染氣體的排放。綜述了微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化CO2、SOX和NOx的機(jī)理和利用煙道氣培養(yǎng)微藻的研究與實(shí)踐,基于微藻細(xì)胞具有高效吸收、轉(zhuǎn)化CO2、SO2和NOx的能力,提出了建立微藻產(chǎn)油、固碳、脫硫、除硝一體化模式來幫助解決當(dāng)前能源和環(huán)境問題的設(shè)想。

        微藻;煙道氣;生物柴油;固碳;脫硫;除硝

        微藻通常是指個(gè)體較?。?-200 μm)、能進(jìn)行光合作用(少數(shù)為異養(yǎng)生長)的、以單細(xì)胞或群體形式存在的水生(或陸生、氣生、共生)低等植物[1]。微藻不僅種類多、分布廣、繁殖快,而且光合效率和單位面積的產(chǎn)率高[2,3],多種微藻既能產(chǎn)油又能生產(chǎn)高附加值產(chǎn)品,因此,微藻具有很高的開發(fā)利用價(jià)值。

        碳元素是構(gòu)成微藻細(xì)胞的主要元素,含量占細(xì)胞干重的36%-65%[4,5],碳源成本在微藻的培養(yǎng)過程中占有比較大的比例。規(guī)?;囵B(yǎng)微藻,可以使用NaHCO3或CO2作為碳源。以NaHCO3為碳源培養(yǎng)螺旋藻,碳源成本約占培養(yǎng)基原料成本的60%,而以CO2代替NaHCO3,碳源成本可降低90%[6]。

        工業(yè)廢氣(煙道氣)是大氣中CO2的重要來源。以煙道氣中的CO2為碳源培養(yǎng)產(chǎn)油微藻不僅可以降低微藻生物柴油約15%的原料成本[7],而且固定了CO2,實(shí)現(xiàn)了微藻生物柴油的環(huán)境效益。因此,利用煙道氣中的CO2為碳源培養(yǎng)產(chǎn)油微藻,已經(jīng)成為微藻生物柴油研發(fā)的重要指導(dǎo)思想之一。

        煙道氣不僅含有大量CO2,還含有大氣污染物硫氧化物(SOx)和氮氧化物(NOx)[8-10]。本文綜述了微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化CO2、SOX和NOx的機(jī)理和利用煙道氣培養(yǎng)微藻的研究與實(shí)踐,基于微藻細(xì)胞具有高效吸收、轉(zhuǎn)化CO2、SO2和NOx的能力,提出了建立微藻產(chǎn)油、固碳、脫硫、除硝一體化模式來幫助解決當(dāng)前能源和環(huán)境問題的設(shè)想,以期為微藻研究同行提供參考。

        1 微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化CO2的機(jī)制與應(yīng)用

        微藻主要通過光合作用和鈣化作用兩種方式固定CO2[11]。如圖1所示,富含CO2的煙道氣被通入微藻生物反應(yīng)器后,部分CO2通過自由擴(kuò)散進(jìn)入藻細(xì)胞[12,13],部分溶解在藻液中的CO2,形成H2CO3,再轉(zhuǎn)化為碳酸氫根或(和)碳酸根離子被微藻吸收[12],某些藍(lán)藻還可吸收作為碳源[14],但是的吸收都需要轉(zhuǎn)運(yùn)分子和能量。經(jīng)碳酸酐酶(CA)轉(zhuǎn)化為CO2后被卡爾文循環(huán)的第一個(gè)酶Rubisco(核酮糖-1,5-二磷酸羧化酶/加氧酶)固定,形成3-磷酸甘油酸脂(3-phosphoglycerate,3-PGA)。

        圖1 微藻吸收、轉(zhuǎn)化CO2的模型[11]

        微藻還可以通過鈣化作用固定CO2,生成的CaCO3儲(chǔ)存于細(xì)胞壁中(方程1,2)[15,16]:

        CO2不僅可以作為碳源供微藻生長,還能在一定條件下影響微藻的生理結(jié)構(gòu)和生化組成。Tsuzuki等[17]研究表明,用含2% CO2的空氣培養(yǎng)小球藻Chlorella vulgaris比純空氣培養(yǎng)下不飽和脂肪酸含量低,油脂成分也發(fā)生了變化。徐敏等[18]報(bào)道,通入極高濃度CO2(20%、40%,空氣作平衡氣體)后,被甲柵藻Scenedesmus armatus細(xì)胞的光系統(tǒng)II(PSII)最大光化學(xué)效率(Fv/Fm)在24 h內(nèi)明顯下降;其后,隨培養(yǎng)時(shí)間的增長而逐漸恢復(fù)正常。極高CO2濃度下培養(yǎng)6 d后,藻細(xì)胞體積稍膨大、顆粒化,色素體結(jié)構(gòu)相對不完整,類囊體膜結(jié)構(gòu)略顯松散,蛋白核消失,細(xì)胞內(nèi)的液泡數(shù)目增多。Xia和Gao[19]的研究表明,碳酸酐酶活性隨著CO2濃度增加而下降;當(dāng)CO2充足時(shí),Chlamydomonas reinhardtii和Chlorella pyrenoidosa的硝酸還原酶活性降低,小球藻Chlorella pyrenoidosa的葉綠素a與葉綠素b比率增大。Ota等[20]的研究表明:當(dāng)CO2濃度從5%升至50%時(shí)(N2平衡),氮源充足時(shí),脂肪酸含量無變化,但當(dāng)?shù){迫時(shí),Chlorococcum littorale的總脂肪酸含量下降。對部分微藻,高濃度CO2(30%-50%)有利于總脂和不飽和脂肪酸的積累[21,22]。目前,CO2對微藻生物質(zhì)化學(xué)組成的影響尚不十分清楚。

        微藻對CO2的耐受程度受藻種[22-25]、光照[26]、pH值[24]、CO2補(bǔ)充速率[26]和細(xì)胞密度[21]等因素影響。微藻的固碳效率則受溫度[27,28]、光強(qiáng)[28,29]、光質(zhì)[30]、光暗周期[31]、通氣速率、CO2濃度[28,32]、細(xì)胞密度、反應(yīng)器類型[30,33]、培養(yǎng)基成分[34]、鼓氣孔徑[32]、藻液深度、碳源濃度和pH值、培養(yǎng)液運(yùn)動(dòng)狀態(tài)[35]等影響。CO2的低吸收率是微藻固碳的瓶頸,氣液接觸時(shí)間短、接觸面小是重要原因。如何在微藻培養(yǎng)中實(shí)現(xiàn)CO2的高效利用,一直是微藻規(guī)?;囵B(yǎng)的研究課題之一[35,36]。李夜光等[37]發(fā)明了微藻高效利用CO2的專利技術(shù),其裝置提高了藻液對CO2吸收率,該技術(shù)適合于跑道式培養(yǎng)池和環(huán)形培養(yǎng)池養(yǎng)殖各種微藻時(shí)補(bǔ)充CO2。微藻固碳是一個(gè)生物化學(xué)過程,無機(jī)碳濃縮機(jī)制(Carbon concentration mechanism,CCM)在固定CO2中發(fā)揮重要作用,其效率與藻的生長狀態(tài)和生長階段密切相關(guān),通常,在藻種生理適應(yīng)的范圍內(nèi),增加CO2充氣深度,保持較高的pH值,可以提高CO2吸收率。

        2 微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化SOx的機(jī)制與應(yīng)用

        SO2為無色氣體,是煙道氣中SOx的主要形式,在純水中溶解度極高[10]。如圖2所示,微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化SO2(脫硫)的主要化學(xué)和生物化學(xué)過程如下[11]:

        (1)SO2被堿性藻液吸收:

        (2)SO32-被藻細(xì)胞光合作用釋放的高濃度溶解氧氧化:

        硫元素是氨基酸和含硫類囊體脂質(zhì)的必須元素,因此微藻生長需要充足的硫源。SO2本身可以作為硫源而不影響微藻的生長[25],筆者向光生物反應(yīng)器中鼓入與BG11培養(yǎng)基等量的SO2(唯一硫源)后,與對照相比,小球藻生物量無明顯差異。然而,更多研究表明,SO2抑制微藻的生長,其原因?yàn)楦邼舛萐O2導(dǎo)致的基質(zhì)酸化(方程3)[8,23,25,38],這種抑制常被稱為毒性。SO2對微藻的毒性強(qiáng)弱因藻種[39]和SO2濃度而異[40]。一般認(rèn)為煙道氣需要脫硫后才能供微藻利用[40]。

        3 微藻液體懸浮培養(yǎng)系統(tǒng)吸收、轉(zhuǎn)化NOx的機(jī)制與應(yīng)用

        相對NO2而言,NO為無色較穩(wěn)定的氣體,在水中溶液度極低,在標(biāo)準(zhǔn)大氣壓下,25℃的純水中溶解度僅為0.032 g/L[10]。當(dāng)NO進(jìn)入藻液中后,分以下3種情況[41-43]:

        (1)部分NO逃逸出反應(yīng)體系。

        (2)溶解于藻液中的NO在被氧化為NO2和HNO3,反應(yīng)如下:

        圖2 微藻吸收、轉(zhuǎn)化硫氧化物(SOX)的模型[11]

        (3)NO被藻細(xì)胞表面吸附,并通過自由擴(kuò)散進(jìn)入細(xì)胞膜,在細(xì)胞內(nèi)被轉(zhuǎn)化為

        NOx可以作為氮源被利用而不影響藻的正常生長[25]。Nagase等[42]將NO通入2 m深的杜氏藻Dunaliella tertiolecta藻液中,在光照培養(yǎng)條件下杜氏藻能夠不斷地吸收利用NO,維持NO去除率50%-60%長達(dá)15 d,添加NO與否對微藻的脂類、淀粉和蛋白質(zhì)含量無影響。

        微藻對NOx的耐受性因細(xì)胞密度[47]、NOx濃度[8]、反應(yīng)器類型[43]和藻種[38,40,48,49]而異。

        藻細(xì)胞和氧氣的存在對NO的去除非常重要[42],但高溶氧濃度(如大于35 mg/L)則抑制微藻的生長[50]。NO在藻液中的低溶解度直接影響其去除效率,因此,NO的溶解是去除NO的關(guān)鍵。較小的鼓氣氣泡和合適的鼓氣速率不僅可以促進(jìn)NO的溶解,還能攪拌藻液,使藻細(xì)胞均勻地接收光照和營養(yǎng),防止沉積和結(jié)團(tuán)。Nagase等[51]采用小氣泡逆流型氣升式反應(yīng)器NO去除率最高可達(dá)96%,但此反應(yīng)器設(shè)計(jì)較復(fù)雜,不便于清洗。此外,添加螯合劑Fe(II)EDTA可顯著提高NO的去除率。Jin等[52]利用氣升式光反應(yīng)器培養(yǎng)柵藻Scenedesmus sp.,當(dāng)向培養(yǎng)基中添加5 mmol/L Fe(II)EDTA時(shí)提高了NO的溶解度,NO去除率維持在40%-45%長達(dá)12 d,但Fe(II)EDTA容易被氧化為不能螯合NO的Fe(III)EDTA,而且Fe(II)EDTA價(jià)格較貴,此法推廣將受到限制。參與形成氨基酸。NO可以經(jīng)自由擴(kuò)散進(jìn)入細(xì)胞,微藻

        圖3 微藻吸收轉(zhuǎn)化氮氧化物(NOX)的模型[11]

        藻液酸化是微藻生長受到抑制的主要原因[53]。為了克服由煙道氣引起的基質(zhì)酸化問題,人們篩選出耐受NOX和SOX或嗜酸性的藻種[23,38,54],但這些藻只能在SO2濃度不高于0.015%的條件下持續(xù)生長。此外,酸性基質(zhì)也不利于煙道氣的溶解,因此,嗜酸性藻種對煙道氣的去除效果是有限的。保持藻液合適的pH值是克服煙道氣對藻酸化抑制的有效途徑。向培養(yǎng)液中添加堿性化學(xué)物質(zhì),如NaOH、CaCO3,雖然可以避免基質(zhì)酸化,但是添加NaOH溶液,不僅導(dǎo)致高離子壓而抑制微藻的生長,而且增加了培養(yǎng)程序的復(fù)雜性和成本[39,55];若添加CaCO3,后續(xù)分離碳酸鈣、硫酸鈣沉淀較為麻煩[23]。較小的通氣量可以減弱或消除煙道氣對微藻生長的抑制作用[56],往往需要額外補(bǔ)充營養(yǎng)物質(zhì)才能滿足微藻的生長。目前,pH自動(dòng)反饋調(diào)節(jié)是克服煙道氣對藻酸化抑制的理想途徑[57],因?yàn)樗梢愿鶕?jù)藻的生長狀態(tài)靈活控制煙道氣的補(bǔ)充量,簡便快捷,同時(shí)節(jié)約了人工成本。

        4 利用煙道氣培養(yǎng)微藻的研究與實(shí)踐

        1993年,Negoro等[58]在跑道池中培養(yǎng)微綠球藻Nannochloropsis sp. NANNP-2和三角褐指藻Phaeodactylum sp. PHAEO-2,兩種微藻直接用煙道氣和CO2培養(yǎng)后生物質(zhì)產(chǎn)率均沒有顯著差異,Zeiler等[56]也得出了類似的結(jié)論。1995年,Maeda等[23]篩選出微藻Chlordu sp. T-l,該藻可以利用燃煤發(fā)電廠排放的煙道氣進(jìn)行生長。Lee等[8]研究了SO2和NO對小球藻Chlorella sp. KR-1生長的影響,結(jié)果表明:0.01% NO對Chlorella sp. KR-1的生長沒有影響,但SO2抑制Chlorella sp. KR-1的生長,當(dāng)通入0.006% SO2后,生物質(zhì)產(chǎn)率比對照降低了25%,而且隨著SO2的濃度增加,抑制作用更加明顯。Doucha等[59]利用天然氣燃燒后的煙道氣培養(yǎng)小球藻Chlorella sp.,4.4 kg CO2可生產(chǎn)1 kg小球藻(干重),CO2利用率約50%,但此煙氣中不含有硫氧化物。Douskova等[60]的研究表明,用煙道氣培養(yǎng)的小球藻的生長速率高于用純CO2和空氣混合的對照組。

        利用煙道氣大規(guī)模培養(yǎng)微藻也有少量報(bào)道。位于美國夏威夷的Cyanotech公司利用自身的發(fā)電廠培養(yǎng)螺旋藻,并商業(yè)化運(yùn)營。發(fā)電廠產(chǎn)生的電力為67個(gè)螺旋藻養(yǎng)殖池的葉輪攪拌器提供動(dòng)力,從發(fā)電廠分離收集的CO2作為螺旋藻生長所需的碳源[61]。

        之前的研究,大多從環(huán)境角度,強(qiáng)調(diào)對煙道氣的去除,微藻僅僅作為生物固碳和去除其他有害氣體的工具之一,然而,近年來能源危機(jī)日益凸顯。因此,利用微藻資源來幫助同步解決環(huán)境和能源問題備受矚目。

        1990-2000年,日本國際貿(mào)易和工業(yè)部就資助了一項(xiàng)名為地球研究更新技術(shù)計(jì)劃的項(xiàng)目,該項(xiàng)計(jì)劃共有20多家私人公司和政府的研究機(jī)構(gòu)參與,10年間共投資大約25億美元。他們利用微藻吸收火力發(fā)電廠煙道氣中的CO2以生產(chǎn)高附加價(jià)值的生物質(zhì)能源微藻,并著力開發(fā)密閉光合生物反應(yīng)器技術(shù)。最終分離出10 000多種微藻,篩選出多株耐受高CO2濃度和高溫、生長速度快、能形成高細(xì)胞密度的藻種,建立了光合生物反應(yīng)器的技術(shù)平臺,以及微藻生物質(zhì)能源開發(fā)的技術(shù)方案[61]。

        5 小結(jié)

        已有的研究表明,微藻細(xì)胞具有吸收、轉(zhuǎn)化CO2、SO2和NOx的代謝途徑,能夠?qū)煹罋庵蠧O2、SO2和NOx作為碳源、硫源和氮源供細(xì)胞生長繁殖。微藻光合自養(yǎng)液體懸浮培養(yǎng)系統(tǒng)是唯一有潛力實(shí)現(xiàn)高效產(chǎn)油、固碳、脫硫、除硝一體化的生物系統(tǒng)。與物理和化學(xué)脫硫、除硝工藝相比,這一生物系統(tǒng)具有變廢為寶,沒有二次污染的特點(diǎn);與微生物脫硫、除硝工藝相比,在脫硫、除硝的同時(shí),實(shí)現(xiàn)了生物固碳和微藻油脂的積累,為生物柴油提供了原料。

        我國近年來廢氣中SO2年均排放量約2×107t,NOX年均排放量超過1.5×107t,而且呈逐年增長趨勢。廢氣排放量巨大,其中工業(yè)廢氣占主導(dǎo)地位。以2012年為例,工業(yè)二氧化硫和氮氧化物的排放量分別占各自總量的70.9%和90.3%[62]。利用微藻光合自養(yǎng)液體懸浮培養(yǎng)系統(tǒng)建立產(chǎn)油、固碳、脫硫、除硝一體化工藝,不僅能解決利用煙道氣中的CO2為碳源培養(yǎng)產(chǎn)油微藻所面臨的關(guān)鍵科學(xué)問題和技術(shù)難題,還能有效抑制溫室氣體和污染氣體的排放,最大限度地實(shí)現(xiàn)微藻生物柴油的經(jīng)濟(jì)效益和環(huán)境效益,推動(dòng)微藻生物柴油的產(chǎn)業(yè)化進(jìn)程。因此,微藻光合自養(yǎng)液體懸浮培養(yǎng)系統(tǒng)在應(yīng)對能源危機(jī)和環(huán)境危機(jī)兩方面都具有廣闊的應(yīng)用前景。

        [1] Greenwell HC, Laurens LML, Shields RJ, et al. Placing microalgae on the biofuels priority list:a review of the technological challenges[J]. Journal of the Royal Society Interface, 2010, 7(46):703-726.

        [2] Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production[J]. Appl Microbiol Biotechnol, 2008, 80(5):749-756.

        [3] Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances,2007, 25(3):294-306.

        [4] Chae SR, Hwang EJ, Shin HS. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor[J]. Bioresource Technology, 2006, 97(2):322-329.

        [5] Sydney EB, Sturm W, de Carvalho JC, et al. Potential carbon dioxide fixation by industrially important microalgae[J]. Bioresource Technology, 2010, 101(15):5892-5896.

        [6] 李夜光, 胡鴻鈞, 張良軍, 等. 以CO2為碳源工業(yè)化生產(chǎn)螺旋藻工藝技術(shù)的研究[J]. 武漢植物學(xué)研究, 1996, 14(4):349-356.

        [7] Acien FG, Fernandez JM, Magan JJ, et al. Production cost of a real microalgae production plant and strategies to reduce it[J]. Biotechnology Advances, 2012, 30(6):1344-1353.

        [8] Lee JS, Kim DK, Lee JP, et al. Effects of SO2and NO on growth of Chlorella sp. KR-1[J]. Bioresource Technology, 2002, 82(1):1-4.

        [9] Pires JCM, Alvim-Ferraz MCM, Martins FG, et al. Carbon dioxide capture from flue gases using microalgae:Engineering aspectsand biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3043-3053.

        [10] Dora J, Gostomczyk MA, Jakubiak M, et al. Parametric studies of the effectiveness of No oxidation of process by ozone[J]. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, 2009, 30(4):621-633.

        [11] Hende SVD, Vervaeren H, Boon N. Flue gas compounds and microalgae:(bio-)chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances,2012, 30(6):1405-1424.

        [12] Giordano M, Beardall J, Raven JA. CO2concentrating mechanisms in algae:mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56:99-131.

        [13] Badger MR, Price GD. CO2concentrating mechanisms in cyanobacteria:molecular components, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383):609-622.

        [14] Mikhodyuk OS, Zavarzin GA, Ivanovsky RN. Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp.[J]. Microbiology, 2008, 77(4):412-418.

        [15] Jansson C, Northen T. Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology, 2010, 21(3):365-371.

        [16] Obst M, Wehrli B, Dittrich M. CaCO3nucleation by cyanobacteria:laboratory evidence for a passive, surface-induced mechanism[J]. Geobiology, 2009, 7(3):324-347.

        [17] Tsuzuki M, Ohnuma E, Sato N, et al. Effects of CO2concentration during growth on fatty-acid composition in microalgae[J]. Plant Physiology, 1990, 93(3):851-856.

        [18] 徐敏, 陳珊, 劉國祥, 等. 極高CO2脅迫對被甲柵藻(Scenedesmus armatus)生理活性和細(xì)胞結(jié)構(gòu)影響[J]. 武漢植物學(xué)研究,2004, 22(5):439-444.

        [19] Xia JR, Gao KS. Impacts of elevated CO2concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae[J]. Journal of Integrative Plant Biology, 2005, 47(6):668-675.

        [20]Ota M, Kato Y, Watanabe H, et al. Fatty acid production from a highly CO2tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate[J]. Bioresource Technology, 2009, 100(21):5237-5242.

        [21] Chiu SY, Kao CY, Chen CH, et al. Reduction of CO2by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor[J]. Bioresource Technology, 2008, 99(9):3389-3396.

        [22] Tang D, Han W, Li P, et al. CO2biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2levels[J]. Bioresource Technology,2011, 102(3):3071-3076.

        [23] Maeda K, Owada M, Kimura N, et al. CO2Fixation from the flue gas on coal-fired thermal power plant by microalgae[J]. Energy Conversion and Management, 1995, 36(6-9):717-720.

        [24] Olaizola M. Microalgal removal of CO2from flue gases:changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures[J]. Biotechnology and Bioprocess Engineering, 2003, 8(6):360-367.

        [25] Matsumoto H, Hamasaki A, Sioji N, et al. Influence of CO2, SO2and NO in flue gas on microalgae productivity[J]. Journal of Chemical Engineering of Japan, 1997, 30(4):620-624.

        [26] Soletto D, Binaghi L, Binaghi L, et al. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor[J]. Biochemical Engineering Journal, 2008, 39(2):369-375.

        [27] Chinnasamy S, Ramakrishnan B, Bhatnagar A, et al. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2and temperature[J]. International Journal of Molecular Sciences, 2009, 10(2):518-532.

        [28] Jacob-Lopes E, Scoparo CHG, Franco TT. Rates of CO2removal by a aphanothece microscopica Nageli in tubular photobioreactors[J]. Chemical Engineering and Processing, 2008, 47(8):1371-1379.

        [29] Li FF, Yang ZH, Zeng R, et al. Microalgae capture of CO2from actual flue gas discharged from a combustion chamber[J]. Industrial & Engineering Chemistry Research, 2011, 50(10):6496-6502.

        [30] Fan LH, Zhang YT, Cheng LH, et al. Optimization of carbon dioxide fixation by Chlorelia vulgaris cultivated in a membranephotobioreactor[J]. Chemical Engineering & Technology, 2007, 30(8):1094-1099.

        [31] Jacob-Lopes E, Scoparo E, Queiroz CHG, et al. Biotransformations of carbon dioxide in photobioreactors[J]. Energy Conversion and Management, 2010, 51(5):894-900.

        [32] Ryu HJ, Oh KK, Kim YS. Optimization of the influential factors for the improvement of CO2utilization efficiency and CO2mass transfer rate[J]. Journal of Industrial and Engineering Chemistry, 2009,15(4):471-475.

        [33] Kumar K, Dasgupta CN, Nayak B, et al. Development of suitable photobioreactors for CO2sequestration addressing global warming using green algae and cyanobacteria[J]. Bioresource Technology,2011, 102(8):4945-4953.

        [34] Jin HF, Lim BR, Lee K. Influence of nitrate feeding on carbon dioxide fixation by microalgae[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2006, 41(12):2813-2824.

        [35] 李夜光, 胡鴻鈞. 螺旋藻培養(yǎng)液吸收CO2特性的研究[J]. 武漢植物學(xué)研究, 1996, 14(3):253-260.

        [36] 李夜光, 胡鴻鈞, 龔小敏. 螺旋藻培養(yǎng)液pH值變化的機(jī)理和碳源利用率的研究[J]. 生物工程學(xué)報(bào), 1996, 12(增刊):242-248.

        [37] 李夜光, 耿亞紅, 殷大聰, 等. 微藻養(yǎng)殖池補(bǔ)充二氧化碳的裝置:中國, CN 100419066C[P].2008-09-17.

        [38] Hauck JT, Olson GJ, Scierka SJ, et al. Effects of simulated flue gas on growth of microalgae[J]. Abstracts of Papers of the American Chemical Society, 1996, 212:1391-1396.

        [39] Lee JH, Lee JS, Shin CS, et al. Effects of NO and SO2on growth of highly-CO2-tolerant microalgae[J]. Journal of Microbiology and Biotechnology, 2000, 10(3):338-343.

        [40] Negoro M, Shioji N, Miyamoto K, et al. Growth of Microalgae in high CO2gas and effects of SOx and NOx[J]. Applied Biochemistry and Biotechnology, 1991, 28-29(1):877-886.

        [41] Miller Y, Finlayson-Pitts BJ, Gerber RB. Ionization of N2O4in contact with water:mechanism, time scales and atmospheric implications[J]. Journal of the American Chemical Society,2009, 131(34):12180-12185.

        [42] Nagase H, Yoshihara K, Eguchi K, et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae[J]. Biochemical Engineering Journal, 2001, 7(3):241-246.

        [43] Nagase H, Yoshihara K, Eguchi K, et al. Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system[J]. Journal of Fermentation and Bioengineering,1997, 83(5):461-465.

        [44] Vermeiren J, Van de Wiele T, Verstraete W, et al. Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium[J]. Journal of Biomedicine and Biotechnology, 2009, 2009:1-10.

        [45] Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii:an alternative NO production pathway in photosynthetic organisms[J]. Plant and Cell Physiology, 2002, 43(3):290-297.

        [46] Mallick N, Rai LC, Mohn FH, et al. Studies on nitric oxide(NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum[J]. Chemosphere, 1999, 39(10):1601-1610.

        [47] Yoshihara KI, Nagase H, Eguchi K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J]. Journal of Fermentation and Bioengineering, 1996, 82(4):351-354.

        [48] Radmann EM, Costa JAV. Lipid content and fatty acids compostition variation of microalgae exposed to CO2, SO2and NO[J]. Quimica Nova, 2008, 31(7):1609-1612.

        [49] Yanagi M, Watanabe Y, Saiki H. CO2fixation by Chlorella sp. HA-1 and its utilization[J]. Energy Conversion and Management,1995, 36(6-9):713-716.

        [50] Singh UB, Ahluwalia AS. Microalgae:a promising tool for carbon sequestration[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1):73-95.

        [51] Nagase H, Eguchi K, Yoshihara K, et al. Improvement of microalgal NOx removal in bubble column and airlift reactors[J]. Journal of Fermentation and Bioengineering, 1998, 86(4):421-423.

        [52] Jin HF, Santiago DEO, Park J, et al. Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp.[J]. Biotechnology and Bioprocess Engineering,2008, 13(1):48-52.

        [53] Wang X, Hao CB, Zhang F, et al. Inhibition of the growth of two blue-green algae species(Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide[J]. Bioresource Technology, 2011, 102(10):5742-5748.

        [54] Kurano N, Ikemoto H, Miyashita H, et al. Fixation and utilization of carbon dioxide by microalgal photosynthesis[J]. EnergyConversion and Management, 1995, 36(6-9):689-692.

        [55] Westerhoff P, Hu Q, Esparza-Soto M, et al. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors[J]. Environmental Technology,2010, 31(5):523-532.

        [56] Zeiler KG, Heacox DA, Toon ST, et al. The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel fired power plant flue gas[J]. Energy Conversion and Management,1995, 36(6-9):707-712.

        [57]Jiang Y, Zhang W, Wang J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus[J]. Bioresource Technology, 2013, 128:359-364.

        [58] Negoro M, Hamasaki A, Ikuta Y, et al. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler[J]. Applied Biochemistry and Biotechnology, 1993, 39:643-653.

        [59] Doucha J, Straka F, Lívansky K. Utilization of flue gas for cultivation of microalgae(Chlorella sp.) in an outdoor open thinlayer photobioreactor[J]. Journal of Applied Phycology, 2005,17(5):403-412.

        [60] Douskova I, Doucha J, Livansky K, et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs[J]. Applied Microbiology and Biotechnology, 2009, 82(1):179-185.

        [61] Pedroni P, Davison J, Beckert H, et al. A proposal to establish an international network on biofixation of CO2and greenhouse gas abatement with microalgae[R]. Proceedings of 1st National Conference on Carbon Sequestration, Washington DC, USA. 2001.

        [62] 中華人民共和國環(huán)境保護(hù)部. 2013年環(huán)境統(tǒng)計(jì)年報(bào) [ED/OL]. 2014-11-24, http://zls.mep.gov.cn/hjtj/nb/2013tjnb/201411 /t20141124_291867.htm.

        (責(zé)任編輯 狄艷紅)

        Cultivation of Microalgae with Flue Gas:Mechanism and Application

        Du Kui1,2Liang Fang3Geng Yahong1Li Yeguang1
        (1. Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture,Wuhan Botanical Garden,Chinese Academy of Sciences,Wuhan 430074;2. University of Chinese Academy of Sciences,Beijing 100049;3. Zhengzhou Normal University,Zhengzhou 450044)

        Biodiesel from microalgae is considered as the only renewable biofuel that has the potential to displace traditional petroleumderived transport fuels and meet the global demand for transport fuels. However, its more widespread use is limited by high cost of microalgal cultivation. Industrial waste gas(flue gas) contains not only a lot of CO2, but also considerable sulfur oxides(SOx) and nitrogen oxides(NOx),so utilization of flue gas for microalgal cultivation to reduce the cost of microalgal biodiesel has atracted more and more attention. In this paper,the mechanism of absorption and metablization of CO2, SO2and NOx by microalgae and the applications of flue gas in cultivation of microalgae were reviewed. Based on the unique capacity of microalgal suspention culture system in utilization of CO2, SO2and NOx, the idea of simultaneous lipid production, CO2fixation, SO2and NOx removal by microalgae was established.

        microalgae;flue gas;biodiesel;CO2fixation;SO2removal;NOx removal

        10.13560/j.cnki.biotech.bull.1985.2015.02.001

        2014-07-09

        國家自然科學(xué)基金項(xiàng)目(31272680),國家高技術(shù)發(fā)展計(jì)劃(“863計(jì)劃”)(2013AA065803,SS2014AA022001)

        杜奎,男,博士研究生,研究方向:植物生物技術(shù);E-mail:dukui@wbgcas.cn

        李夜光,男,研究員,研究方向:植物生物技術(shù);E-mail:yeguang@wbgcas.cn

        猜你喜歡
        藻液產(chǎn)油微藻
        代食品運(yùn)動(dòng)中微藻的科研與生產(chǎn)
        塔爾油對富營養(yǎng)化水體混合藻的抑制效果研究
        天津造紙(2021年2期)2021-11-29 11:50:08
        靖邊畔溝長6油層采油制度效益研究
        NS-ZS602 沉入式濁度數(shù)字傳感器在微藻智能定量中的應(yīng)用
        亞洲陸上最深油氣田累計(jì)產(chǎn)油突破200萬噸
        椰子油提取物在絮凝收集柵藻中的應(yīng)用
        絮凝法采收生物燃料微藻的研究進(jìn)展
        曝氣間隔對普通小球藻生物質(zhì)積累的影響
        微藻對低溫響應(yīng)的Ca2+信號傳導(dǎo)途徑研究進(jìn)展
        檸檬酸在產(chǎn)油酵母油脂積累過程中的中心作用
        中文人妻av久久人妻水蜜桃| 91精品国产91久久久无码色戒| 素人激情福利视频| 亚洲小少妇一区二区三区| 成人永久福利在线观看不卡| 波多野结衣一区二区三区免费视频| 二区三区亚洲精品国产| 自拍偷拍一区二区三区四区| 粉嫩的极品女神尤物在线| 4455永久免费视频| 国产成人精品综合在线观看| 久久亚洲国产精品成人av秋霞| 久久无码人妻一区=区三区| 无码av一区在线观看| 亚洲第一页在线观看视频网站| 青青草在线免费观看在线| 亚洲综合色区一区二区三区| 天天爽夜夜爱| 国产高清在线精品一区| 妞干网中文字幕| 成人在线视频亚洲国产| 极品粉嫩小仙女高潮喷水操av| 亚洲成av人在线播放无码| 日本三级欧美三级人妇视频| 亚洲免费毛片网| 国产成人高清精品亚洲一区| 日本超级老熟女影音播放| 先锋影音人妻啪啪va资源网站| 内射干少妇亚洲69xxx| 国产精成人品| 久久与欧美视频| 国产精品女丝袜白丝袜美腿| 中文字幕一区二区三区四区五区 | 99在线精品免费视频九九视| 亚洲18色成人网站www| 久久亚洲午夜牛牛影视| 亚洲另类国产精品中文字幕| 色呦呦九九七七国产精品| 看黄a大片日本真人视频直播| 熟妇无码AV| 亚洲中文字幕乱码在线视频|