江蘇金湖縣實驗小學(xué)(211600) 王正義
除法是在學(xué)生掌握三位數(shù)除以一位數(shù)的基礎(chǔ)上,進一步學(xué)習(xí)三位數(shù)除以兩位數(shù)的筆算。由于除數(shù)是兩位數(shù)的除法在除的順序、商的定位和試商方法上具有代表性,所以除數(shù)是兩位數(shù)的除法是教學(xué)的重點,掌握試商方法是教學(xué)的難點。只有有效突破試商難點,才能提高試商的準確性與速度,增強學(xué)生的計算能力。
小學(xué)數(shù)學(xué)整數(shù)除法的教學(xué),分表內(nèi)除法、除數(shù)是一位數(shù)的除法以及除數(shù)是兩位數(shù)的除法三個內(nèi)容進行。其中,除數(shù)是兩位數(shù)的除法既是教學(xué)的重點,又是教學(xué)的難點。這一內(nèi)容教材共編制三個層次五組例題:第一層次,除數(shù)是整十數(shù)的除法。(1)商是一位數(shù),側(cè)重口算試商;(2)商是兩位數(shù),側(cè)重估商。第二層次,除數(shù)是兩位數(shù)的除法(不需要調(diào)商),注重商的定位、“四舍法”與“五入法”試商、兩位數(shù)除多位數(shù)的法則。第三層,除數(shù)是兩位數(shù)的除法(需要調(diào)商)。(1)“四舍法”試商,初商偏大要調(diào)??;(2)“五入法”試商,初商偏小要調(diào)大。先由第二層例題學(xué)會“四舍五入”試商法,再通過第三層例題得出調(diào)商規(guī)律。由此可以看出,兩位數(shù)除多位數(shù)的法則(是指導(dǎo)求商的理論依據(jù))和“四舍五入”試商法貫穿五組例題的始終。所以,在教學(xué)兩位數(shù)除多位數(shù)時,只有抓住計算法則和試商方法,才能有效提高學(xué)生的計算能力。
為幫助學(xué)生順利學(xué)習(xí)新知,在教學(xué)兩位數(shù)除多位數(shù)的試商前,可通過多種形式引導(dǎo)學(xué)生復(fù)習(xí)鞏固基礎(chǔ)知識,如一位數(shù)乘兩位數(shù)的口算等。其中,兩位數(shù)包括整十數(shù)和幾十幾兩種情況。除數(shù)是整十數(shù)的除法可以直接運用乘法口訣求商,而除數(shù)是幾十幾的除法要把除數(shù)轉(zhuǎn)化為和它接近的整十數(shù)試商。所以,除數(shù)是整十數(shù)的除法,既是除數(shù)是兩位數(shù)除法的簡單形式,又是聯(lián)系已學(xué)知識的紐帶。因此,課堂教學(xué)中,教師應(yīng)注重引導(dǎo)學(xué)生自主探索口算和筆算方法,讓學(xué)生能直接用乘法口訣求商,并熟練掌握除數(shù)是整十數(shù)的試商技能,為學(xué)生在復(fù)習(xí)中順利遷移學(xué)習(xí)除數(shù)是幾十幾的試商做好過渡。
在本單元中,從除數(shù)是整十數(shù)的口算、筆算到除數(shù)不是整十數(shù)的筆算,從試商后不需要調(diào)商到試商后需要調(diào)商,教材編寫遵循循序漸進的原則,使學(xué)生的學(xué)習(xí)拾級而上。教材充分考慮到學(xué)生探索學(xué)習(xí)的難點及實際情況,把用“四舍法”“五入法”不需要調(diào)商的內(nèi)容集中在一課時內(nèi)教學(xué),把需要調(diào)商的內(nèi)容分成兩課時教學(xué)。課堂教學(xué)中,教師應(yīng)誘發(fā)學(xué)生產(chǎn)生新的認知沖突,激發(fā)學(xué)生探究算法的欲望。兩位數(shù)共九十個,其中有八十一個非整十數(shù),把這些非整十數(shù)轉(zhuǎn)化為整十數(shù)試商時,初商合格率較高,但估出的初商仍然有偏差。“四舍法”用小于除數(shù)的整十數(shù)去試商,初商往往偏大而需要調(diào)??;“五入法”用大于除數(shù)的整十數(shù)去試商,初商則可能偏小而需要調(diào)大。用“四舍五入法”試商的規(guī)律如下:一看,即看除數(shù)和被除數(shù),確定商的最高位的位置;二找,用“四舍五入法”把除數(shù)看作和它接近的整十數(shù),并用乘法口訣找出初商是幾;三試,將試商與除數(shù)相乘,用乘積與被除數(shù)的相應(yīng)部分比較,考慮試商是否合適,然后進行調(diào)商;四定,即定商,除到被除數(shù)的哪一位,就把商寫在哪一位的上面,一直除到被除數(shù)的個位為止。以“四舍五入法”為試商重點的同時,可適當讓學(xué)生了解和熟記數(shù)據(jù)口算法、“除數(shù)折半商四、五”及“同頭無除商八、九”等特殊試商法,以解決特殊的問題。
計算教學(xué)需要適度的練習(xí),因為技能的形成需要一定量的訓(xùn)練。除了按照教材編排,由易到難進行五組例題的學(xué)習(xí)外,教師還應(yīng)設(shè)計一些練習(xí),突破“試商”這個教學(xué)難點。如下:
1.下列各式的除數(shù)可看作幾?
2.括號里最大能填幾。
3.說一說,商的最高位是幾,商是幾位數(shù)。
5.看看下面各題如何調(diào)商,為什么?
……
練習(xí)的設(shè)計應(yīng)注意針對性、層次性、思考性、綜合性。教師只有提供充足和適合的練習(xí),才能豐富計算教學(xué)的內(nèi)涵,使學(xué)生有效突破試商難點,提升學(xué)生的除法技能。