亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高電化學(xué)性能聚苯胺納米纖維/石墨烯復(fù)合材料的合成

        2015-07-20 18:21:35鐘文斌李士超
        關(guān)鍵詞:氧化石墨烯超級電容器

        鐘文斌 李士超

        摘要:聚苯胺納米纖維(PANIF)與氧化石墨烯(GO)經(jīng)組裝后,進(jìn)行水熱反應(yīng),制備了PANIF/rGO (還原的氧化石墨烯)復(fù)合材料.利用掃描電子顯微鏡(SEM),傅立葉紅外光譜儀(FTIR),X射線粉末衍射儀(XRD)對樣品形貌和結(jié)構(gòu)進(jìn)行表征;同時,借助循環(huán)伏安(CV),恒電流充放電(GCD),交流阻抗(EIS)對樣品的電化學(xué)性能進(jìn)行了測試.結(jié)果表明:rGO均勻包裹在PANIF表面,在1 M H2SO4的電解液中,當(dāng)電流密度為1 A/g時,PANIF比電容為378 F/g,而PAGO10(PANI與GO 的質(zhì)量比為10∶1),比電容達(dá)517 F/g;且當(dāng)電流密度10 A/g時,PAGO10的比電容為356 F/g,而PANIF的比電容僅為107 F/g.

        關(guān)鍵詞:自組裝;聚苯胺纖維;氧化石墨烯;水熱反應(yīng);超級電容器

        中圖分類號:O631 文獻(xiàn)標(biāo)識碼:A

        Abstract:A polyaniline fibers (PANIF)/ reduced graphene oxide (rGO) composite was synthesized by using selfassembly of PANIF and GO followed by hydrothermal reaction. The morphology and structure of samples were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR)and Xray diffraction (XRD).The electrochemical properties were characterized with cyclic voltammetry (CV), galvanostatic charge/discharge(GCD) and electrochemical impedance spectrum(EIS). It showed that the rGO was homogeneously coated on the surfaces of PANIF, and a high specific capacitance of 517 F/g (based on PAGO10 composite) was obtained at a current density of 1 A/g, compared with 378 F/g for PANIF. Most of all, a high specific capacitance of 356 F/g was obtained at a current density of 10 A/g, compared with 107 F/g for PANIF.

        Key words:selfassembly process; polyaniline fiber; graphene oxide; hydrothermal reaction; supercapacitors

        石墨烯是一種二維單原子層碳原子SP2雜化形成的新型碳材料,因其非凡的導(dǎo)電性和導(dǎo)熱性[1-2]、極好的機(jī)械強(qiáng)度、較大的比表面積[3]等特性,引起了國內(nèi)外研究者極大的關(guān)注.石墨烯已經(jīng)被探索應(yīng)用在電子和能源儲存器件[4]、傳感器[5]、透明導(dǎo)電電極[6]、超分子組裝[7]以及納米復(fù)合物[8]等領(lǐng)域中.而rGO因易聚集或堆疊而導(dǎo)致電容量較低(101 F/g)[9],這限制了其在超級電容器電極材料領(lǐng)域的應(yīng)用.

        另一方面,PANI作為典型的導(dǎo)電高分子之一,由于合成容易,環(huán)境穩(wěn)定性好和導(dǎo)電性能可調(diào)等特性備受關(guān)注.具有納米結(jié)構(gòu)的導(dǎo)電材料,由于納米效應(yīng)不但能提高材料固有性能,并開創(chuàng)新的應(yīng)用領(lǐng)域.PANI納米結(jié)構(gòu)的合成取得了許多的成果.PANI作為超級電容器電極材料因具有高的贗電容,其電容量甚至可高達(dá)3 407 F/g[10];然而,當(dāng)經(jīng)過多次充放電時PANI鏈因多次膨脹和收縮而降解導(dǎo)致其電容損失較大.碳材料具有高的導(dǎo)電性能和穩(wěn)定的電化學(xué)性能,為了提高碳材料的電化學(xué)電容和PANI電化學(xué)性能的穩(wěn)定性,人們把納米結(jié)構(gòu)的PANI與碳材料復(fù)合以期獲得電容較高且穩(wěn)定的超級電容器電極材料[11].

        作為新型碳材料的石墨烯和PANI的復(fù)合引起了極大的關(guān)注[12].但是用Hummers法合成的GO直接與PANI復(fù)合構(gòu)建PANI/GO復(fù)合電極因?qū)щ娐实投仨氝€原GO,化學(xué)還原劑的加入雖然還原了部分GO而提高了導(dǎo)電性能,但也在一定程度上鈍化了PANI [13],另外排除還原劑又對環(huán)境造成一定程度的污染.因而開拓一條簡單且環(huán)境友好的制備PANI/rGO復(fù)合材料作為超級電容器的電極路線仍然是一個難題.

        基于以上分析,首先使PANI和GO相互分散和組裝,借助水熱反應(yīng)這一綠色環(huán)境友好的還原方法制備PANI/rGO復(fù)合材料,以期獲得高性能的超級電容器電極材料.

        1實驗部分

        1.1原材料

        苯胺(AR, 國藥集團(tuán)),經(jīng)減壓蒸餾后使用;氧化石墨烯(自制);過硫酸銨(APS, AR, 湖南匯虹試劑);草酸(OX, AR, 天津市永大化學(xué)試劑);十六烷基三甲基溴化銨(CTAB, AR, 天津市光復(fù)精細(xì)化工研究所).

        1.2PANIF的制備

        PANIF的制備按我們先前提出的方法 [14],制備過程如下:把250 mL去離子水加入三口燒瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上攪拌8 h;隨后,往上述溶液中一次性加入20 mL含苯胺等量的過硫酸銨水溶液,同樣條件下使反應(yīng)保持7 h.所制備的樣品用大量去離子水洗滌至濾液為中性,隨后30 ℃真空干燥24 h.

        1.3GO的制備

        采用Hummers法制備GO,具體過程如下:向干燥的2 000 mL三口燒瓶(冰水浴)中加入10 g天然鱗片石墨(325目),加入5 g硝酸鈉固體,攪拌下加入220 mL濃硫酸,10 min后邊攪拌邊加入30 g高錳酸鉀,在冰水浴下攪拌120 min,再將三口燒瓶移至35 ℃水浴中攪拌180 min,然后向瓶中滴加460 mL去離子水,同時將水浴溫度升至95 ℃,保持95 ℃攪拌60 min,再向瓶中快速滴加720 mL去離子水,10 min后加入80 mL雙氧水,過10 min后趁熱抽濾.將抽干的濾餅轉(zhuǎn)移到燒杯中,加大約800 mL熱水及200 mL濃鹽酸,趁熱抽濾,隨后用大量去離子水洗滌直至中性.所得產(chǎn)品邊攪拌邊超聲12 h后5 000 r/min下離心10 min,得氧化石墨烯溶液.

        1.4PANIF/rGO復(fù)合材料制備

        按照一定比例將含一定量的PANIF液與一定量的6.8 mg/mL 的GO溶液混合,使混合液總體積為30 mL, GO在混合液中的最終濃度為0.5 mg/ mL,磁力攪拌10 min后,將混合液轉(zhuǎn)移到含50 mL聚四氟乙烯內(nèi)襯的反應(yīng)釜中進(jìn)行水熱反應(yīng),在180 ℃保溫3 h;待反應(yīng)釜自然冷卻至室溫后取出,用去離子水洗滌產(chǎn)物直至洗液無色后,于60 ℃真空干燥24 h,待用.按照上述步驟制備的PANIF與GO的質(zhì)量比分別為5,10以及15,相應(yīng)命名為PAGO5,PAGO10和PAGO15,對應(yīng)的PANIF質(zhì)量為75 mg,150 mg和225 mg.

        1.5儀器與表征

        用日本日立公司S4800場發(fā)射掃描電鏡(SEM)分析樣品的形貌;樣品經(jīng)與KBr混合壓片后,用Nicolet 5700傅立葉紅外光譜儀進(jìn)行紅外分析;用德國Siemens公司Xray衍射儀進(jìn)行XRD分析;電化學(xué)性能測試使用上海辰華CHI660c電化學(xué)工作站.

        電極制備和電化學(xué)性能測試:將活性物質(zhì)(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照質(zhì)量比85∶10∶5混合形成乳液,將其均勻地涂在不銹鋼集流體上,在10 MPa壓力下壓片,之后烘干得工作電極.在電化學(xué)性能測試過程中,使用飽和甘汞電極(SCE)作為參比電極,鉑片(Pt)作為對電極,在三電極測試體系中使用1 M H2SO4作為電解液進(jìn)行電化學(xué)測試,電勢窗為-0.2~0.8V.

        比電容計算依據(jù)充放電曲線,按式(1)[15]計算:

        Cs=iΔtΔVm.(1)

        式中:i代表電流,A;Δt代表放電時間,s;ΔV代表電勢窗,V;m代表活性物質(zhì)質(zhì)量,g.

        2結(jié)果與討論

        2.1形貌表征

        圖1為PANIF和PAGO10形貌的SEM圖.低倍的SEM(圖1(a))顯示所制備PANIF為大面積的納米纖維網(wǎng)絡(luò);高倍的圖1(b)清晰地顯現(xiàn)該3D納米纖維網(wǎng)絡(luò)結(jié)構(gòu)含許多交聯(lián)點.PANIF和PAGO10混合液經(jīng)過水熱反應(yīng)后,從低倍的SEM(圖1(c))可以看出,PAGO10復(fù)合物具有交聯(lián)孔狀結(jié)構(gòu);提高觀察倍數(shù)(圖1(d)和圖1(e))后可以發(fā)現(xiàn)樣品中rGO 與PANIF共存;而高倍的圖1(d)清晰地顯示出了rGO與PANIF緊密結(jié)合,且合成的褶皺rGO因?qū)訑?shù)較少而能觀察到其遮蓋的PANIF.從圖1可知:成功合成了大面積的PANIF以及互相均勻分散的PANIF/rGO復(fù)合材料.

        2.2FTIR分析

        圖2為PANIF,GO以及PAGO10 3種樣品的FTIR圖.圖2中a曲線在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波數(shù)處展現(xiàn)的尖銳峰為PANI的特征峰,它們分別對應(yīng)醌式結(jié)構(gòu)中C=C雙鍵伸縮振動、苯環(huán)中C=C雙鍵伸縮振動、C-N伸縮振動峰、共軛芳環(huán)C=N伸縮振動、對位二取代苯的C-H面外彎曲振動.圖2中b曲線為GO的紅外譜圖,在3 390 cm-1, 1 700 cm-1的峰分別對應(yīng)-COOH中的O-H,C=O鍵振動,1 550~1 050 cm-1范圍內(nèi)的吸收峰代表COH/ COC中的C-O振動[16],可以看出,GO中存在大量的含氧官能團(tuán).圖2中c曲線為PAGO10復(fù)合物紅外吸收譜圖,與GO,PANIF譜圖比較, 可以發(fā)現(xiàn)PAGO10中的GO特征峰不太明顯而PANI的特征峰全部出現(xiàn),這個結(jié)果歸結(jié)于GO含量少以及GO經(jīng)水熱反應(yīng)后形成了rGO,另外也表明水熱反應(yīng)對PANI品質(zhì)無大的影響.

        2.4電化學(xué)性能分析

        圖4為樣品的CV曲線,其中圖4(a)為不同樣品在1 mV/s掃描速率下的CV圖,可以看出,4個樣品均出現(xiàn)明顯的氧化還原峰,這歸因于PANI摻雜/脫摻雜轉(zhuǎn)變,表明PANIF以及復(fù)合物顯示出優(yōu)良的法拉第贗電容特性.圖4(b)為PAGO10在不同掃描速率下的CV曲線,由圖可知PAGO10電極的比電容隨著掃描速率減小而穩(wěn)步增加,在掃描速率為1 mV/s時,PAGO10電極的比電容為521.2 F/g.

        圖5為PANI,PAGO5,PAGO10和PAGO15的充放電曲線以及交流阻抗圖.圖5(a)為電流密度為1 A/g時樣品的放電曲線圖,由圖可知:4種樣品均有明顯的氧化還原平臺,這與前述CV分析中的結(jié)果相吻合.根據(jù)充放電曲線,借助式(1),計算了4種樣品在不同電流密度下的比電容,結(jié)果如圖5(b)所示,很明顯,相同電流密度下PAGO10比電容最大,當(dāng)電流密度為1 A/g時,其比電容為517 F/g,這個結(jié)果表明PAGO10的電化學(xué)性能明顯優(yōu)于PANI/石墨烯微球和3D PANI/石墨烯有序納米材料(電流密度為0.5 A/g時,比電容分別為 261和495 F/g)[18-19], 而PANIF比電容最小,僅為378 F/g;且在10 A/g電流密度下PAGO10的比電容仍保持在356 F/g 左右,這表明PAGO10電極具有優(yōu)異的倍率性能.該復(fù)合材料比電容以及倍率性能得到極大提高源于rGO與PANIF兩組分間的協(xié)同效應(yīng).在充放電過程中連接在PANIF間的rGO為電子轉(zhuǎn)移提供了高導(dǎo)電路徑;同時,緊密連接在rGO上的PANIF有效阻止水熱還原過程中石墨烯的團(tuán)聚,增加了電極/電解質(zhì)接觸面積,從而提高了PANIF的利用率而使得容量增加.

        為了更清晰地了解所制備材料的電子轉(zhuǎn)移特點以及離子擴(kuò)散路徑,對樣品進(jìn)行了交流阻抗測試,圖5(c)為4個樣品的Nyquist圖.從圖5(c)可知:在高頻區(qū)、低頻區(qū)均分別具有阻抗弧半圓、頻響直線.在高頻區(qū),電荷轉(zhuǎn)移電阻Rct大小順序為RPAGO5

        值說明rGO的加入提高了電極材料的導(dǎo)電性.在低頻區(qū),直線形狀反映了樣品電化學(xué)過程均受擴(kuò)散控制,并且PAGO5所展現(xiàn)的直線斜率最大,說明其電容行為最接近理想電容,即頻響特性最好,這也是源于rGO的加入提高了材料導(dǎo)電性以及復(fù)合物的獨特微觀結(jié)構(gòu).

        氧化還原反應(yīng)的發(fā)生,導(dǎo)致PANIF具有十分高的贗電容,但由于在大電流充放電過程中高分子鏈重復(fù)膨脹和收縮,導(dǎo)致其循環(huán)穩(wěn)定性差而限制了其實際應(yīng)用.為此,對ANIF和PAGO10進(jìn)行循環(huán)穩(wěn)定性分析.圖6顯示,PAGO10在5 A/g電流密度下經(jīng)過1 000次充放電后,電容保持率為77%,而不含rGO的PANIF電極在2 A/g電流密度下充放電1 000次電容保持率僅為54.3%,這個結(jié)果表明PANIF循環(huán)穩(wěn)定性較差;另外,rGO的加入形成的PANIF/rGO緊密的連接,降低了PANI鏈在充放電過程中的膨脹與收縮,使得鏈段不容易脫落或者斷裂,從而PAGO10具有出色的循環(huán)穩(wěn)定性.

        3結(jié)論

        采用自組裝的方法,經(jīng)水熱反應(yīng),制備了PANIF/rGO復(fù)合電極材料.研究發(fā)現(xiàn),rGO與PANIF緊密連接;而且,當(dāng)PANIF與GO質(zhì)量比為10∶1時,復(fù)合材料展現(xiàn)了最佳的電化學(xué)性能,當(dāng)電流密度為1和10 A/g時,其比電容分別為517, 356 F/g.從上可知:合成的PAGO10具有高的比電容、較好的倍率性能和穩(wěn)定性能,從而有望作為超級電容器電極材料在實踐中應(yīng)用.

        參考文獻(xiàn)

        [1]GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

        [2]BALANDIN A A, GHOSH S. Superior thermal conductivity of singlelayer graphene[J]. Nano Lett, 2008, 8(3): 902-907.

        [3]MEYER J C, GEIM A K, KATSNLSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7173):60-63.

        [4]TSAI W Y, LIN R, MURALI S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80 °C[J]. Nano Energy, 2013, 2(3): 403-411.

        [5]YAN G H W, HUA M Y, CHEN S L, et al. Reusable sensor based on high magnetization carboxylmodified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection[J]. Biosens Bioelectron, 2013, 41: 172-179.

        [6]VOLLMER A,F(xiàn)ENG X L, WANG X, et al. Electronic and structural properties of graphenebased transparent and conductive thin film electrodes[J]. Appl Phys A: Mater Sci Process, 2009, 94(1):1-4.

        [7]XU Y,BAI H,LU G, et al. Flexible graphene films via the filtration of watersoluble noncovalent functionalized graphene sheets[J]. J Am Chem Soc, 2008, 130(18):5856-5857.

        [8]PENG L, PENG X, LIU B, et al. Ultrathin twodimensional MnO2/Graphene hybrid nanostructures for highperformance, flexible planar supercapacitors[J]. Nano let, 2013,13(5):2151-2157.

        [9]STOLLER M D, PARK S, ZHU Y, et al. Graphenebased ultracapacitors[J]. Nano Lett, 2008, 8(10):3498-3502.

        [10]KUILA B K, NANDAN B, BOHME M, et al. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties[J]. Chem Commun, 2009(38):5749-5751.

        [11]LIU J, SUN J, GAO L. A promising way to enhance the electrochemical behavior of flexible singlewalled carbon nanotube/ polyaniline composite films[J]. J Phys Chem C, 2010, 114(46):19614-19620.

        [12]KUMAR N A, CHOI H J, SHIN Y R, et al. Polyanilinegrafted reduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano, 2012, 6(2):1715-1723.

        [13]LIU Y,DENG R,WANG Z, et al. Carboxylfunctionalized graphene oxidepolyaniline composite as a promising supercapacitor material[J]. J Mater Chem, 2012, 22(27):13619-13624.

        [14]ZHONG W, DENG J, YANG Y, et al. Synthesis of largearea threedimensional polyaniline nanowire networks using a “Soft Template”[J]. Macromol Rapid Commun, 2005, 26(15):395-400.

        [15]ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chem Mater, 2010, 22(4):1392-1401.

        [16]TITELMAN G I, GELMAN V, BRON S, et al. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide[J]. Carbon, 2005, 43(3): 641-649.

        [17]WANG H, HAO Q, YANG X, et al. Graphene oxide doped polyaniline for supercapacitors[J]. Electrochem Commun, 2009, 11(6):1158-1161.

        [18]CAO H,ZHOU X, ZHANG Y, et al. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors[J]. J Power Sources, 2013, 243:715-720.

        [19]LI L, QIU J, WANG S. Threedimensional ordered nanostructures for supercapacitor electrode[J]. Electrochim Acta 2013, 99: 278-284.

        猜你喜歡
        氧化石墨烯超級電容器
        石墨烯/氧化錫復(fù)合透明導(dǎo)電薄膜的制備及性能
        聚乙烯醇/氧化石墨烯復(fù)合薄膜的制備及阻隔性能研究
        聚苯胺/碳球復(fù)合材料的制備及其電化學(xué)性能研究
        氧化石墨烯在純棉織物上的抗菌應(yīng)用
        高電化學(xué)性能三維網(wǎng)狀氮摻雜石墨烯的制備
        Co2SnO4的合成及電化學(xué)性能研究
        車載空氣凈化裝置的儲能結(jié)構(gòu)研究
        考試周刊(2016年24期)2016-05-27 10:03:01
        不同尺寸的氧化石墨烯液晶性能的研究
        科技視界(2016年12期)2016-05-25 20:00:06
        新能源材料超級活性炭市場營銷戰(zhàn)略淺析
        電泳沉積金/石墨烯的表面拉曼增強(qiáng)效應(yīng)
        国语精品视频在线观看不卡| 曰本大码熟中文字幕| 91盗摄偷拍一区二区三区| 中文字幕日本在线乱码| 蜜桃av在线播放视频| 蓝蓝的天空,白白的云| 精品视频一区二区三区日本| av免费不卡一区二区| 最新国产熟女资源自拍| 国精产品一区一区二区三区mba| 绝顶高潮合集videos| 国产精品乱码一区二区三区| 97人人模人人爽人人喊电影| 真人与拘做受免费视频| 亚洲精品久久久久久动漫| 国产内射合集颜射| 亚洲V在线激情| 久久国产精品免费一区二区| 视频二区 无码中出| 日本一区二区三区一级免费| 日本一区不卡在线观看| 日韩激情视频一区在线观看| 日本强伦姧人妻一区二区| 玩弄少妇人妻中文字幕| 少妇高潮无套内谢麻豆传 | 亚洲国产成人av在线观看| 欧洲熟妇色 欧美| а√天堂资源8在线官网在线| 毛片免费全部无码播放| 北岛玲日韩精品一区二区三区| 精品蜜桃在线观看一区二区三区| 国产精品国产传播国产三级| 97精品人妻一区二区三区在线| 国产日韩av在线播放| 西西大胆午夜人体视频| 国产福利酱国产一区二区| 国产精品每日更新在线观看| 一区二区三区在线视频免费观看| 国产一区二区av在线观看| 亚洲人成综合第一网站| 欧美大屁股xxxx高潮喷水|