劉鵬等
摘要:針對建筑環(huán)境中的揮發(fā)性有機(jī)化合物甲醛,在原有管狀反應(yīng)器內(nèi)增設(shè)帶有工藝缺口的直肋片,并在密閉循環(huán)系統(tǒng)中對其凈化效果進(jìn)行分析,又利用計(jì)算流體力學(xué)(CFD)的方法得到了反應(yīng)器內(nèi)部的流速和光強(qiáng)分布.同時(shí),基于模型計(jì)算的方法,建立了污染物循環(huán)降解模型.結(jié)果表明: 改進(jìn)后的管狀反應(yīng)器,反應(yīng)面積增加,氣體停留時(shí)間延長,平衡了傳質(zhì)-反應(yīng)能力,反應(yīng)速率提高了約1倍;增設(shè)肋片后,內(nèi)壁面光強(qiáng)有所減弱,反應(yīng)器中間段光強(qiáng)與流速耦合較好,而兩端由于氣流擾動(dòng)大且光強(qiáng)較弱,反應(yīng)速率會受影響;另外,降解模型的預(yù)測值稍高于實(shí)測值,但兩者變化趨勢相同,該模型能較準(zhǔn)確的預(yù)測甲醛的反應(yīng)速率.
關(guān)鍵詞:光催化氧化; 降解模型; 管狀反應(yīng)器; CFD模擬; 甲醛
中圖分類號:O643 文獻(xiàn)標(biāo)識碼:A
Abstract: A new annular photocatalytic reactor was designed for the removal of indoor formaldehyde. Three fins were added to the reactor and each fin had a triangular gap at one end, making this type reactor continuous and singlepass. The influence of fins on formaldehyde removal was examined in an airtight environmental chamber. The radiation and velocity fields of the reactors were simulated by using computational fluid dynamics (CFD) methods. A theoretical model for the degradation of formaldehyde in a recirculating system was proposed. When adding fins in the annular reactor, the reaction area and residence time were greatly increased, and the degradation rate was, therefore, obviously enhanced. The CFD simulation results showed that the radiation intensity on the internal surfaces of the exterior cylinder was nearly uniform except for the two ends and it decreased slightly for the reactor with fins. The velocity distribution was uniform in the first tube pass and became actually higher near the elbows. The UV intensity was weak while the velocity was large near the elbows, which had a negative effect on degradation efficiency there. The results obtained from the kinetic model were in agreement with experimental data. So the degradation behavior of formaldehyde could be predicted by using this kinetic model.
Key words: photocatalytic oxidation; degradation model; annular reactor; CFD simulation; formaldehyde
甲醛是室內(nèi)普遍存在的揮發(fā)性有機(jī)化合物(VOCs),是造成室內(nèi)空氣品質(zhì)下降的主要原因之一[1],會對人體健康造成危害,甚至具有致癌作用[2].光催化氧化(PCO)技術(shù)節(jié)能環(huán)保,催化活性高,降解無選擇性,是去除室內(nèi)VOCs的有效手段[3-5].目前,隨著模型預(yù)測[6]以及計(jì)算流體力學(xué)(CFD)模擬[7]的廣泛應(yīng)用,它們已成為研究PCO反應(yīng)的重要工具.現(xiàn)有報(bào)道中,PCO技術(shù)常與空調(diào)系統(tǒng)結(jié)合,且多采用負(fù)載網(wǎng)[8]或蜂窩型媒介[9]作為光催化劑載體,此結(jié)構(gòu)對提高氣固間的傳質(zhì)作用有一定效果.但實(shí)際運(yùn)行的空調(diào)系統(tǒng)中,流速一般為2~3 m/s,上述載體不僅增大流動(dòng)阻力,而且傳質(zhì)作用的提升也非常有限.因此,本研究設(shè)計(jì)改進(jìn)了傳統(tǒng)的管狀反應(yīng)器,通過增大反應(yīng)面積和氣體停留時(shí)間來提高其在實(shí)際空調(diào)運(yùn)行條件下的凈化效果.并在實(shí)驗(yàn)分析的基礎(chǔ)上,建立了循環(huán)降解模型來預(yù)測反應(yīng)器的降解性能,又利用CFD的方法對反應(yīng)器內(nèi)的流速和光強(qiáng)分布進(jìn)行了模擬和可視化處理,以期為光催化反應(yīng)器的實(shí)際應(yīng)用提供幫助.
1材料與方法
1.1實(shí)驗(yàn)系統(tǒng)
實(shí)驗(yàn)過程的氣體流程如圖1(a)所示.干潔空氣(VN2/VO2×100=79∶21)分為兩條氣路,一條通入增濕瓶內(nèi)加濕,另一條經(jīng)流量計(jì)計(jì)量后流入甲醛發(fā)生器內(nèi).兩條氣路形成的濕空氣和甲醛氣體在緩沖瓶中充分混合,得到具有一定初始濃度和濕度的污染氣體.該氣體又在循環(huán)泵的作用下,反復(fù)流經(jīng)反應(yīng)器內(nèi)發(fā)生光催化反應(yīng),直至降解結(jié)束.反應(yīng)器的入口處設(shè)有采樣口,甲醛濃度由INTERSCAN 4160甲醛分析儀測得.反應(yīng)溫度T和相對濕度RH由KANOMAX生產(chǎn)的CLIMOMASTER 6531測試儀測定, T精度±0.5 ℃, RH精度±5%.
1.2管狀反應(yīng)器
本實(shí)驗(yàn)設(shè)計(jì)的管狀反應(yīng)器共有兩種,結(jié)構(gòu)示意圖如圖1(b)和圖1(c)所示,尺寸參數(shù)如表1所示.圖1(b)是傳統(tǒng)型管狀反應(yīng)器,在圓管內(nèi)壁涂敷光催化劑,它的反應(yīng)表面紫外光輻射較強(qiáng)且均勻,但有限的反應(yīng)面積制約了其進(jìn)一步發(fā)展[10].圖1(c)是改進(jìn)后的管狀反應(yīng)器,通過在傳統(tǒng)管狀反應(yīng)器內(nèi)壁與燈管之間添加多個(gè)直肋片得到.肋片沿管軸方向布置,且每個(gè)肋片的一端帶有工藝缺口,在管內(nèi)形成若干條連通的氣道,使氣體在進(jìn)口和出口間呈多管程流動(dòng).該類型反應(yīng)器的內(nèi)壁面和直肋片正反表面均涂有光催化劑.所用光催化劑為Degussa P25型TiO2,負(fù)載量為1.2 mg/cm2.紫外光源選擇功率20 W,波長254 nm的紫外殺菌燈.
1:干潔空氣; 2:增濕瓶; 3: 甲醛發(fā)生器; 4: 恒溫水浴箱;
5: 緩沖瓶; 6: 流量計(jì); 7: 采樣口; 8: 管狀反應(yīng)器; 9: 密閉艙;
10:紫外燈; 11:工藝缺口; 12: 進(jìn)氣口; 13:出氣口
從圖3中可以看出,反應(yīng)器增設(shè)肋片后,各工況下t90%的值減少了約50%左右,反應(yīng)速率基本提高1倍.對比工況1,工況3和工況4,工況4的相對濕度較高,t90%的值也明顯大于工況1和工況3.這與Assadi [11]等研究管狀反應(yīng)器時(shí)的結(jié)論一致.過多的水分子會與甲醛分子在TiO2表面競爭吸附點(diǎn)位,且水分子會加速TiO2的電子空穴對復(fù)合,導(dǎo)致高相對濕度下單位時(shí)間內(nèi)的降解效率降低.
2.2循環(huán)流速對反應(yīng)速率的影響
為研究不同循環(huán)流速下反應(yīng)速率的變化,選擇工況5和工況6進(jìn)行分析,結(jié)果如圖4所示.其中, 20 m3/h和30 m3/h的循環(huán)流速分別對應(yīng)2.1 m/s和3.2 m/s的面速度.
初始濃度C0/(mg·m-3)
從圖4中可以看出,在兩種反應(yīng)器內(nèi),較高流速下的t90%值較大,反應(yīng)速率較低.一般來說,提高流速會引起兩種不同的結(jié)果:提高表面?zhèn)髻|(zhì)效果,對反應(yīng)速率提升有利;減少氣體停留時(shí)間,對反應(yīng)速率提升不利.一般的空調(diào)系統(tǒng)中,面速度通常為2~3 m/s,在這種較大的流速范圍內(nèi),傳質(zhì)作用并無明顯變化[6],可以通過增加停留時(shí)間來提高氣體分子與TiO2表面的接觸概率,從而提高反應(yīng)速率.因此,本實(shí)驗(yàn)中20 m3/h的循環(huán)流速對應(yīng)的氣體停留時(shí)間更長,反應(yīng)速率更高.
為進(jìn)一步分析流速對降解性能的影響,根據(jù)CFD的方法,利用Fluent 6.3軟件模擬了反應(yīng)器內(nèi)的流速分布.圖5為帶肋片的管狀反應(yīng)器,在工況1時(shí)的徑向剖面及軸向剖面速度分布云圖.
從圖5中可以看出, 軸向剖面上的流速分布較為均勻, 在氣體通過三角形工藝缺口時(shí)出現(xiàn)明顯擾動(dòng),此擾動(dòng)可使反應(yīng)氣體充分混合.另外,各管程的中心區(qū)域流速相對較大,而內(nèi)壁面和肋片表面附近由于阻力作用而流速較小,結(jié)合前面的分析,這種分布有利于提高反應(yīng)速率.
2.3光強(qiáng)測定與模擬分析
表面光強(qiáng)在光催化反應(yīng)之前測定,測試儀為UVC紫外輻照計(jì).根據(jù)反應(yīng)器內(nèi)部空間的對稱性,取如圖6所示的單元體對反應(yīng)表面光強(qiáng)I進(jìn)行分析.圖7為單元體內(nèi)光強(qiáng)沿管軸方向的測定結(jié)果.
圖8中的模擬分布與圖7中實(shí)測光強(qiáng)基本相同.經(jīng)計(jì)算,增加肋片后,內(nèi)壁面光強(qiáng)減少了約35%,但從圖3中得到的反應(yīng)速率卻提升了1倍左右,紫外光的利用效率明顯提高.
當(dāng)光強(qiáng)較強(qiáng)區(qū)域的流速較大時(shí),該區(qū)域的傳質(zhì)反應(yīng)更加平衡,降解效率也會較高[13].對比圖5和圖8中的流速與光強(qiáng)分布,反應(yīng)器的中間段光強(qiáng)與流速耦合較好,降解效率將會較高,而反應(yīng)器的前后兩端由于氣流擾動(dòng)大且光強(qiáng)較弱,降解效率會受影響.
2.4循環(huán)降解模型
假設(shè)催化劑表面只吸附目標(biāo)污染物和水,且氧化時(shí)無副產(chǎn)物生成,則反應(yīng)物遵循單一組分的LangmuirHinshelwood (LH)降解模型:
從圖9中可知,模型數(shù)據(jù)與實(shí)驗(yàn)結(jié)果基本相符,該降解模型基本可以反映甲醛降解的實(shí)際情況. 另外,模型計(jì)算值均處于實(shí)測濃度值的上方,這可能是因?yàn)楸灸P蜕婕暗膯我唤M分LH方程沒考慮反應(yīng)過程產(chǎn)生的副產(chǎn)物,導(dǎo)致光催化劑表面的實(shí)際與理論吸附量有所差別[16],從而產(chǎn)生一定誤差.
3結(jié)論
1)通過增設(shè)帶有工藝缺口的直肋片,使得管狀反應(yīng)器內(nèi)的反應(yīng)面積增大且氣體停留時(shí)間延長,從而平衡了傳質(zhì)反應(yīng)能力,反應(yīng)速率提高了約1倍.
2)內(nèi)壁面光強(qiáng)分布較均勻,而肋片表面分布極不均勻,且增加肋片后內(nèi)壁面光強(qiáng)有所衰減. 反應(yīng)器中間段光強(qiáng)與流速耦合較好,兩端的氣流擾動(dòng)大且光強(qiáng)較弱,反應(yīng)速率會受影響;
3)循環(huán)降解模型的預(yù)測值要稍高于實(shí)測結(jié)果,但兩者變化趨勢相同,該模型能較準(zhǔn)確的預(yù)測甲醛的反應(yīng)速率.
參考文獻(xiàn)
[1]PASSALA C, ALFANO O M, BRANDI R J. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters[J]. Journal of Hazardous Materials, 2012, 211/212:357-365.
[2]BARAN T, MACYK W. Photocatalytic oxidation of volatile pollutants of air driven by visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 241:8-12.
[3]DERICHTER R K, MING T, CAILLOL S. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors[J]. Renewable and Sustainable Energy Reviews, 2013, 19:82-106.
[4]WU Yiting, YU Yihui, NGUYEN V H, et al. Enhanced xylene removal by photocatalytic oxidation using fiberilluminated honeycomb reactor at ppb level[J]. Journal of Hazardous Materials, 2013, 262:717-725.
[5]FARHANIAN D, HAGHIGHAT F, LEE C S, et al. Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner[J]. Building and Environment, 2013, 66: 148-157.
[6]ZHONG Lexuan, HAGHIGHAT F, BLONDEAU P, et al. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications[J]. Building and Environment, 2010, 45(12): 2689-2697.
[7]余健, 王宏濤, 廖永浩,等. 氣液兩相在多孔介質(zhì)內(nèi)同向向上流動(dòng)的CFD研究[J]. 湖南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2012, 39(8): 67-72.
YU Jian, WANG Hongtao, LIAO Yonghao, et al. CFD simulation of gasliquid two phase cocurrent upflow through porous media[J]. Journal of Hunan University: Natural Sciences, 2012, 39(8): 67-72.(In Chinese)
[8]DESTAILLATS H, SLEIMAN M, SULLIVAN D P, et al. Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions[J]. Applied Catalysis B: Environmental, 2012, 128: 159-170.
[9]TARANTO J, FROCHOT D, PICHAT P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO2coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 closeloop reactor[J]. Separation and Purification Technology, 2009, 67(2): 187-193.
[10]MO Jinhan, ZHANG Yinping, XU Qiujian, et al. Photocatalytic purification of volatile organic compounds in indoor air: A literature review [J]. Atmospheric Environment, 2009, 43(14):2229-2246.
[11]ASSADI A A, BOUZAZA A, WOLBERT D. Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236: 61-69.
[12]MO Jinhan, ZHANG Yinping, YANG Rui, et al. Influence of fins on formaldehyde removal in annular photocatalytic reactors[J]. Building and Environment, 2008, 43(3):238-245.
[13]ZHONG Lexuan, HAGHIGHAT F, LEE C, et al. Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation[J]. Journal of Hazardous Materials, 2013, 261:130-138.
[14]HOSSAIN M M, RAUPP G B, HAY S O, et al. Threedimensional developing flow model for photocatalytic monolith reactors[J]. AICHE Journal, 1999, 45(6):1309-1321.
[15]OBEE T N, BROWN R T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3butadiene[J]. Environ Sci Technol, 1995, 29(5): 1223-1231.
[16]MO Jinhan, ZHANG Yinping, XU Qiujian. Effect of water vapor on the byproducts and decomposition rate of ppblevel toluene by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2013, 132/133:212-218.