陳學斌,王國春
(中日友好醫(yī)院 a.醫(yī)學工程處,b.風濕免疫科,北京 100029)
miRNA在特發(fā)性炎性肌病中的作用
陳學斌a,王國春b
(中日友好醫(yī)院 a.醫(yī)學工程處,b.風濕免疫科,北京 100029)
皮肌炎、多發(fā)性肌炎和散發(fā)型包涵體肌炎是臨床較為常見的炎性肌病,其發(fā)病過程涉及不同的免疫過程。目前的研究認為皮肌炎的發(fā)病與補體介導的免疫過程相關,多發(fā)性肌炎和包涵體肌炎的是T細胞介導的細胞毒免疫過程,除此之外由于MHCI高表達所造成的內質網(wǎng)應激也與多發(fā)性肌炎和包涵體肌炎的發(fā)病密切相關。miRNA是在基因轉錄后水平起調控作用的長度約為21~25 nt的非編碼小RNA,miRNA能夠調節(jié)機體的多種生理過程,其與疾病發(fā)生過程有密切相關。本文總結了皮肌炎、多發(fā)性肌炎和散發(fā)型包涵體肌炎中miRNA的特異性表達情況,并分析了不同miRNA對三種特發(fā)性炎性肌病發(fā)病過程中重要蛋白的調控作用,為臨床進一步探討miRNA在炎性肌病中的診斷和治療提供幫助。
特發(fā)性炎性肌??; miRNA;發(fā)病機制
特發(fā)性炎性肌病(idiopathic inflamamatory myopathies,IIMs)臨床上主要包括皮肌炎(dermatomyositis,DM)、多發(fā)性肌炎(polymyositis,PM)和散發(fā)型包涵體肌炎(sporadic inclusion body myositis,sIBM)等亞型。DM是一類亞急性發(fā)作的IIMs,其臨床表現(xiàn)為近端肌無力且常常伴有皮膚的病理性改變,該疾病的發(fā)病人群包括成人和兒童。目前認為DM是一種補體系統(tǒng)調控的微血管疾病,患者的肌肉組織的毛細血管表現(xiàn)為內皮性增生,毛細血管形成網(wǎng)狀結構,空泡化并發(fā)生壞死,導致肌肉局部缺血和肌纖維的損傷。參與DM炎癥反應的細胞主要位于肌纖維血管周圍的區(qū)域,或者位于叢生隔膜的束間區(qū)域,而不是位于肌纖維束當中。PM也是一種亞急性發(fā)作為主的疾病,主要在成人中發(fā)病,在兒童中鮮有發(fā)病,表現(xiàn)為近端肌肉無力。sIBM發(fā)病緩慢,是年齡超過50歲的患者中最常出現(xiàn)的一類肌炎,sIBM能影響患者近端和遠端的肌肉,因為與PM的發(fā)病機制相似,因此它的診斷常常與PM相混。PM和sIBM都是T細胞介導的細胞毒免疫過程。兩種疾病的肌肉纖維細胞都表達MHCI類分子和共同刺激因子,這些分子與侵潤在肌細胞周圍的CD8+T細胞的表面受體TCR結合,促進細胞毒性CD8+T細胞的增殖及激活。激活的細胞毒T細胞向肌纖維中釋放穿孔素顆粒,通過穿孔素信號通路促使肌纖維細胞的凋亡。除了T細胞介導的細胞毒作用外,內質網(wǎng)應激在PM和sIBM發(fā)病過程中也發(fā)揮著作用。在患者的肌肉纖維中有空泡的形成,空泡內的包含物含有15~21nm的微管纖維絲的聚集物,以及細胞質中淀粉樣蛋白與其抗體發(fā)生免疫反應的沉積物。出現(xiàn)空泡化的肌肉細胞雖然有MHCI抗原表達,但是幾乎不出現(xiàn)T細胞的侵潤,這暗示MHCI分子誘發(fā)內質網(wǎng)應激介導的非炎癥過程可能與T細胞介導的細胞毒作用是影響PM和sIBM的兩個相對獨立的過程[1,2]。
微小RNA(miRNA)是一類具有轉錄后調控作用的內源性小分子RNA,它可以與靶基因的3’UTR區(qū)域相結合,通過降解靶基因mRNA或抑制mRNA轉錄等方式調控靶基因的表達。miRNA的成熟需要經(jīng)歷兩個過程,首先在細胞核內RNaseIII Droasha和RNA結合蛋白DGCR8將miRNA的初始轉錄產(chǎn)物primiRNA剪切成60~70 nt的premiRNA。當premiRNA被轉運到細胞質以后被另一種RNase Dicer剪切成21~25 nt的成熟的miRNA,成熟的miRNA與Argonaute2(Ago2)等蛋白構成能與靶基因miRNA結合的RNA沉默復合體,進而從轉錄后水平對靶基因進行調節(jié)。研究表明miRNA在生物體的很多生理過程中發(fā)揮著作用,特異性表達的miRNA可以控制細胞的增殖、分化、凋亡。一些miRNA的表達與疾病的發(fā)生和發(fā)展也有著密切的關系,例如癌癥的發(fā)生以及免疫系統(tǒng)失調等等[3]。目前雖然關于miRNA與IIMs的報道較少,但已有的研究顯示miRNA與IIMs的發(fā)生發(fā)展有著密切的關系。
特異性表達的miRNA與疾病的發(fā)病過程中有密切的聯(lián)系,IIMs中特異性表達的miRNA可能對IIMs的發(fā)病起重要的調控作用。根據(jù)文獻報道我們總結了目前在幾種IIMs中表達較為特異性表達的miRNA(表1)。在Eisenberg等的研究中研究者分析了428種miRNA在十種肌肉疾病(包括DM、PM和sIBM)中的表達情況。與正常組織相比,DM中有35個miRNA發(fā)生變化,PM中有37個發(fā)生變化,sIBM中有20個發(fā)生變化。在這些發(fā)生變化的miRNA中,有七個miRNA在DM、PM和IBM當中的表達均增多,分別是hsa-miR-146b、hsa-miR-221、hsa-miR-155、hsa-miR-214、 hsa-miR-222、hsa-miR-34a 和hsa-miR-21[4]。Zhu等用芯片技術比較了淋巴細胞侵潤的IIMs患者的肌肉組織與正常的肌肉組織miRNA的表達譜,結果顯示有69個miRNA出現(xiàn)表達差異,其中5個miRNA表達增多,分別是miR-146a/b、 miR-155、 miR-21和miR-432,剩余的64個miRNA的表達下降,其中下降比較明顯的miRNA是miR-133a/b、miR-1、miR-29c[5]。已有報道顯示miR-146a和miR-155在淋巴細胞有較高的表達,在免疫應答中有重要的調節(jié)作用[6~8]。在另一篇報道中,Robert等也比較了DM、PM和sIBM患者肌肉活檢組織與正常對照組的miRNA表達情況。結果發(fā)現(xiàn)了25個差異表達的miRNA,其中有8個表達增高的miRNA,17個表達下降的miRNA,作者發(fā)現(xiàn)控制肌肉分化的幾個miRNA,如miR-146、miR-221、miR-378是幾種組織與對照組表達差異最明顯的幾個miRNA;與肌肉分化和維持相關的幾個miRNA如miR-133a/b、miR-1的表達在幾種疾病的組織樣本中都明顯下降。同時研究者還發(fā)現(xiàn)在DM患者的肌肉中miR-206的表達也明顯下降[9]。作者發(fā)現(xiàn)腫瘤壞死因子(TNF)的表達與幾種表達下降的miRNA如miR-133a/b、miR-1及miR-206的表達呈負相關性。TNF能夠通過NF-κB依賴途徑抑制C2C12細胞向肌肉細胞的分化,而在C2C12細胞中過表達miR-133a/b、miR-1及miR-206這幾種miRNA,能夠逆轉TNF的這種作用。
表1 IIMs中常見的miRNA表達情況及功能
除此之外,有研究比較了DM患者皮膚組織與正常組皮膚組織中miRNA的表達差異,發(fā)現(xiàn)在DM患者中有5種過表達的miRNA和27種表達降低的miRNA。作者重點觀察了下降很明顯的miR-7的表達情況,發(fā)現(xiàn)在DM組織和血清的檢測中miR-7的表達都明顯下降,作者認為miR-7可能成為檢測DM的一種血清學的標志物[10]。Kim等分析了青少年DM患者肌肉活檢組織中841個miRNA的表達情況,共檢測到195個有變化的miRNA,其中miR-126是下降最明顯的miRNA。作者發(fā)現(xiàn)在青少年DM患者發(fā)病早期,miR-126的表達明顯下降,而血管粘附因子I(VACM-I)的表達增高,在長病程的患者中miR-126的表達回升,而VACM-I的表達也下降。這提示miR-126的表達負向調控了VACM-I的表達[11]。Tang等研究發(fā)現(xiàn)miR-206在DM患者發(fā)病過程中的表達下降,同時患者肌肉中會有TH17細胞的侵潤。KLF4是TH17細胞的正向調控因子,同時KLF4是miR-206的一個多位點靶基因,作者認為miR-206通過影響KLF4的表達而對TH17起負向調控作用,進而對DM的發(fā)病起作用[12]。Shimada等分析了30位DM患者血清中miR-21的表達情況,結果顯示miR-21在DM患者血清中的表達增加,因此作者認為miR-21可能成為DM的診斷分子[13]。
目前關于miRNA在IIMs中的功能的報道還相對較少,本文將分別從目前公認的IIMs的免疫過程中來探索miRNA在DM、PM和sIBM中的功能。
3.1 DM的免疫病理學發(fā)病的過程 當前研究認為DM的發(fā)病機理是由C3補體系統(tǒng)介導的。在該過程中C3被針對內皮細胞的抗體通過經(jīng)典補體系統(tǒng)或補體旁路系統(tǒng)激活,導致C3b的形成,C3b新抗原和補體膜溶攻擊復合物圍繞在毛細血管的內皮細胞層的周圍,補體膜溶攻擊物的沉積導致毛細血管的解體和減少,導致肌纖維束周圍局部缺血或形成微小血栓。最終肌纖維束周圍毛細血管數(shù)量減少,管徑增大,引發(fā)肌纖維束的萎縮。在此過程中內皮細胞受外圍細胞因子調控而使得VCAM-1和ICAM-1表達增多,這些表達增多的分子能與淋巴細胞的表面分子intergrin結合激活LFA-4和LFA-1,促進B細胞、CD4+T細胞以及吞噬細胞等淋巴細胞從體循環(huán)向肌纖維束部位遷移。激活的T細胞和B細胞分泌的細胞因子又進一步促進了這個過程。在此過程中有多種蛋白分子參與,目前已有研究證實miRNA對該過程的一些重要蛋白有調控作用,如miRNA能調控該免疫過程的C3,LFA-1和ICAM-1等蛋白分子(圖1)。
圖1 DM發(fā)病過程參與調控免疫過程的miRNA[1]
DM是受C3調控的一種免疫性疾病,C3的激活對該疾病的發(fā)生起重要的作用。Yang等的研究顯示miR-92d[14]能通過靶向抑制C3的表達而對免疫過程其調控作用。同時miR-3021也能夠調控C3的表達[15],miR-221和 miR-222的表達與血清中C3的含量有相關性[16]。LFA-1的表達水平與CD4+T細胞向內皮細胞遷移過程相關,研究證實miR-21、miR-148a的高表達能夠通過調控甲基化酶的活性來調控LFA-1的表達[17]。研究表明miR-221[18]、miR-222[19]、miR-21[20]、miR-146a[21]、miR-29b[22]、miR-320b[23]等miRNA能夠靶向調控ICAM-1的表達,ICAM-1在DM發(fā)病過程中與CD4+T細胞的激活相關,這提示這些miRNA可能通過調控ICAM-1的表達參與到疾病的發(fā)病過程。
3.2 PM和sIBM的免疫病理學發(fā)病過程 目前認為PM和sIBM的免疫學發(fā)病機理相似。在此過程中肌肉纖維的壞死是由激活的自身侵蝕T細胞釋放的穿孔素介導的,同時T細胞分泌的interferon-γ、interleukin-1和TNF-α的釋放也能促進這種作用。CD8+T細胞表達的LFA-1與ICAM-1的結合促進了肌肉纖維與抗原接受的T細胞之間免疫突觸的形成,激活CD8+T細胞。CD80、ICOS和CD40等共刺激因子與其相應的配體CD28,CTLA4(細胞毒T細胞相關蛋白4)、ICOSL和CD40L等結合能夠促進和增強T細胞的激活效應。金屬蛋白酶能夠促進了T細胞的遷移以及其與肌肉細胞表面受體的結合。在PM和sIBM中CD8+T細胞介導的細胞毒過程中的多種蛋白的表達受到了miRNA水平的調控(圖2)。
圖2 PM和IBM發(fā)病過程中參與調控免疫過程的miRNA[1]
CD8+T細胞的LFA-1和VLA-4分子能分別與肌肉纖維細胞表達的ICAM-1和VCAM-1結合促進免疫突出的形成,進而促進細胞毒性CD8+T細胞的激活。miRNA對LFA-1和ICAM-1的調控在DM發(fā)病過程中已闡述,研究證實VLA-4分子與miR-17-92家族miRNA有密切關系[24],而VCAM-1蛋白的表達受到了miR-126的負向調控[25]。在激活細胞毒CD8+T細胞的過程中,CTLA4、CD40、ICOS等的信號分子與其配體結合能增強這種激活作用。研究顯示CTLA4、ICOS以及CD40的配體CD40L都受到了miRNA水平的調控。MiR-15b、miR-16[26]、miR-145[27]及miR-155[28]都能夠負向調控CTLA-4的表達。Yu等的研究發(fā)現(xiàn)miR-101能與ICOS蛋白mRNA的3’UTR靶向結合,ICOS表達受到了miR-101的靶向調控[29]。同時有研究也證實CD40L的表達受到miR-155[30]和miR-146a[31]的靶向調控。激活的CD8+T細胞能分泌一些細胞因子,如TNF-α、IL-1、IFN-γ等,這些細胞因子也受到了相關miRNA的調控。目前文獻報道m(xù)iR-149[32]能夠靶向調控TNF-α和IL-1的表達,miR-146a[33]、miR-223[34]等能抑制IL-1的表達,而miR-155[35]能促進IL-1的表達。MiR-524-5P的高表達能夠促進IFN-γ的表達[36],而miR-24、miR-181[37]、miR-29家族[38]、miR-155[39]等都可以抑制IFN-γ的表達。在T細胞的遷移并與肌纖維細胞結合的過程中,金屬蛋白酶發(fā)揮著重要的作用。目前已知有較多的miRNA能夠靶向調節(jié)金屬蛋白酶的表達,如miR-520[40]、miR-29[41]、miR-21[42]等,這些miRNA可能通過對金屬蛋白酶的抑制,進而調控了免疫過程中T細胞的遷移。miR-155對該過程的很多蛋白有調控作用,這也提示miR-155可能在PM和IBM的發(fā)病過程中發(fā)揮著重要的作用。
3.3 內質網(wǎng)應激對多發(fā)性肌炎和包涵體肌炎的影響 除了CD8+T細胞介導的細胞毒作用外,內質網(wǎng)應激導致的細胞凋亡也被認為是多發(fā)性肌炎和包涵體肌炎的一個重要的非免疫學發(fā)病過程。在包涵體肌炎患者的肌肉纖維中會有空泡的結構,空泡中含有15~21 nm的微管纖維絲的聚集物以及細胞質中淀粉樣蛋白與其抗體發(fā)生免疫反應的沉積物,這些沉積的蛋白能引發(fā)內質網(wǎng)應激。在肌肉纖維細胞內質網(wǎng)中MHCI分子的重鏈相關的分子calnexin和β2 microglobulin能和5種分子伴侶蛋白(ERp57,glucose-regulated proteins GRP78 and GRP94,calreticulin,transporterassociated protein and tapasin),形成MHCI載肽復合物。細胞質中降解的蛋白,以及由免疫蛋白酶體合成的MHCI編碼的亞單位、LMP2及LMP7通過轉運自相關蛋白被轉運到內質網(wǎng)中并與MHCI肽遞呈復合物結合。高親和性抗原肽誘發(fā)了MHCI分子構象的改變,促進了它們從遞呈復合物上的釋放。組裝的MHCI分子被轉運到肌肉纖維細胞的表面,使得及纖維細胞成為CD8+T細胞能夠識別的抗原遞呈細胞。如果當MHCI合成過多而缺少合適的抗原肽或者抗原肽的構象無法結合到MHCI復合物上時,MHCI抗原遞呈復合物就變得不穩(wěn)定,MHCI分子的重鏈會發(fā)生錯誤折疊,并且會從ER中轉運到細胞質中被分解。當過多的沉積物發(fā)生時就會引起內質網(wǎng)應激,促使細胞的凋亡。
影響PM和IBM發(fā)病的內質網(wǎng)應激中的多種蛋白也受到miRNA的調控(圖3)。MHCI的組成分子calnexin和β2 microglobulin都受到了miRNA的調控。研究表明miR-455的過表達能夠導致calnexin的表達下降,而抑制miR-455的表達能夠增加calnexin的表達[43]。β2 microglobulin的表達受到miR-320a/b[44]、miR-204/miR-211[45]、miR-21[46]的負向調控。內質網(wǎng)的分子伴侶GRP78能夠促進miR-335和miR-363[47]的表達,而miR-30能夠通過靶向抑制GRP78的表達降低ER效應[48]。
圖3 PM和IBM發(fā)病過程中參與調控內質網(wǎng)應激過程的miRNA[1]
雖然目前關于miRNA在IIMs方面的研究較少,但是越來越多的證據(jù)顯示miRNA通過調控其靶基因的表達參與了對DM、PM和IBM免疫病理過程的調控。但miRNA能否作為一種分子標記物或干預措施對疾病進行診斷和治療,需要進一步深入的研究。
[1] Dalakas MC.Mechanisms of disease:signaling pathways and immunobiology of inflammatory myopathies[J].Nat Clin Pract Rheumatol,2006,2(4):219-227.
[2] Dalakas MC.Inflammatory,immune and viral aaspects of inclusion body myositis[J].Neurology,2005,66(Suppl):S33-S38.
[3] Kim DH,Behlke MA,Rose SD,et al.Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy[J].Nat Biotechnol,2005,23(2):222-226.
[4] Eisenberg I,Eran A,Nishino I,et al.Distinctive patterns of microRNA expression in primary muscular disorders[J].Proc Natl Acad Sci USA,2007,104(43):17016-17021.
[5] Zhu W,Streicher K,Shen N,et al.Genomic signatures characterize leukocyte infiltration in myositis muscles[J].BMC Med Genomics,2012,5:53.
[6] Pauley KM,Cha S,Chan EK.MicroRNA in autoimmunity and autoimmune diseases[J].J Autoimmun,2009,32:189-194.
[7] Dai R,Ahmed SA.MicroRNA,a new paradigm for understanding immunoregulation,inflammation,and autoimmune diseases[J].Transl Res,2011,157:163-179.
[8] Furer V,Greenberg JD,Attur M,et al.The role of microRNA in rheumatoid arthritis and other autoimmune diseases[J].Clin Immunol,2010,136:1-15.
[9] Georgantas RW1,Streicher K,Greenberg SA.et al.Inhibition of myogenic microRNAs 1,133,and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies[J].Arthritis Rheumatol,2014,66(4):1022-1033.
[10]Oshikawa Y1,Jinnin M,Makino T,et al.Decreased miR-7 expression in the skin and sera of patients with dermatomyositis[J].Acta Derm Venereol,2013,93(3):273-276.
[11]Kim E,Cook-Mills J,Morgan G,et al.Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126[J].Arthritis Rheum,2012,64(11):3809-3817.
[12]Tang X,Tian X,Zhang Y,et al.Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis[J].Clin Dev Immunol,2013,2013:345-347.
[13]Shimada S,Jinnin M,Ogata A,et al.Serum miR-21 levels in patients with dermatomyositis[J].Clin Exp Rheumatol,2013,31(1):161-162.
[14]Yang R,Zheng T,Cai X,et al.Genome-wide analyses of amphioxus microRNAs reveal an immune regulation via miR-92d targeting C3[J].J Immunol,2013,190(4):1491-1500.
[15]Cui G,Li Z,Li R,et al.A functional variant in APOA5/A4/C3/A1 gene cluster contributes to elevated triglycerides and severity of CAD by interfering with microRNA 3201 binding efficiency[J].J Am Coll Cardiol,2014,64(3):267-277.
[16]Guan J1,Wang G,Tam LS,et al.Urinary sediment ICAM-1 level in lupus nephritis[J].Lupus,2012,21(11):1190-1195.
[17]Pan W,Zhu S,Yuan M,et al.MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting dna methyltransferase 1[J].J Immunol,2010,184(12):6773-6781.
[18]Hu G,Gong AY,Liu J,et al.miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes[J].Am J physiol Gastrointest Liver Physiol,2010,298(4):542-550.
[19]Duan M,Yao H,Hu G,et al.HIV Tat Induces Expression of ICAM-1 in HUVECs:implications for miR-221/-222 in HIV-associated cardiomyopathy[J].PLoS One,2013,8(3):60170.
[20]Terao M,F(xiàn)ratelli M,Kurosaki M,et al.Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells:biological correlates and molecular targets[J].J Biol Chem,2011,286(5):4027-4042.
[21]Wang Q,Bozack SN,Yan Y,et al.Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina[J].Invest Ophthalmol Vis Sci,2014,55(6):3986-3994.
[22]Zhu HQ,li Q,Dong LY,et al.MicroRNA-29b promotes high-fat diet-stimulated endothelial permeability and apoptosis in ApoE knock-out mice by down-regulating MT1 expression[J].Int J Cardiol,2014,176(3):764-770.
[23]Gidl?f O,van der Brug M,Ohman J,et al.Platelets activated during myocardial infarction release functional miRNA,which can be taken up by endothelial cells and regulate ICAM1 expression[J].Blood,2013,121(19):3908-3917.
[24]Sasaki K,Kohanbash G,Hoji A,et al.miR-17-92 expression in differentiated T cells-implications for cancer immunotherapy[J].J Transl Med,2010,8:17.
[25]Angel-Morales G,Noratto G,Mertens-Talcott SU.Standardized curcuminoid extract(curcuma longa l.)decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells(HUVEC)[J].Food Funct,2012,3(12):1286-1293.
[26]Liu X,Robinson SN,Setoyama T,et al.FOXP3 is a direct target of miR15a/16 in umbilical cord blood regulatory T cells[J].Bone Marrow Transplant,2014,49(6):793-799.
[27]Fayyad-Kazan H,Rouas R,F(xiàn)ayyad-Kazan M,et al.MicroRNA profile of circulating CD4-positive regulatory T cells in human adults and impact of differentially expressed microRNAs on expression of two genes essential to their function[J].J Biol Chem,2012,287(13):9910-9922.
[28]Sonkoly E,Janson P,Majuri ML,et al.MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4[J].J Allergy Clin Immunol,2010,126(3):581-589.
[29]Yu D,Tan AH,Hu X,et al.Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA[J].Nature,2007,450(7167):299-303.
[30]Cui B,Chen L,Zhang S,et al.MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia[J].Blood,2014,124(4):546-554.
[31]Chen T,Li Z,Jing T,Zhu W,et al.MicroRNA-146a regulates the maturation process and pro-inflammatory Cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells[J].FEBS Lett,2011,585(3):567-573.
[32]Santini P1,Politi L,Vedova PD,et al.The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis[J].Rheumatol Int,2014,34(5):711-716.
[33]Comer BS,Camoretti-Mercado B,Kogut PC,et al.MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle[J].Am J Physiol Lung Cell Mol Physiol,2014,307(9):L727-734.
[34]Haneklaus M1,Gerlic M,Kurowska-Stolarska M,et al.Cutting edge:miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production[J].J Immunol,2012,189(8):3795-3799.
[35]Li X,Tian F,Wang F.Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-α and IL-1β in PBMCs[J].Int J Mol Sci,2013,14(12):23910-23921.
[36]Lu MC,Yu CL,Chen HC,et al.Aberrant T cell expression of Ca2+influx-regulated miRNAs in patients with systemic lupus erythematosus promotes lupus pathogenesis[J].Rheumatology(Oxford),2014,pii:keu322.
[37]Fayyad-Kazan H,Hamade E,Rouas R,et al.Downregulation of microRNA-24 and-181 parallels the upregulation of IFN-γ secreted by activated human CD4 lymphocytes[J].Hum Immunol,2014,75(7):677-685.
[38]Yi ZJ1,F(xiàn)u YR,Li JH,Zhang B.Expression and bioinformatic analysis of miR-29 Family,target gene IFN-γ in CD4(+)T cells from subjects with latent tuberculosis infection[J].Zhonghua Yu Fang Yi Xue Za Zhi,2013,47(7):632-636.
[39]Sullivan RP,F(xiàn)ogel LA,Leong JW,et al.MicroRNA-155 tunes both the threshold and extent of NK Cell activation via targeting of multiple signaling pathways[J].J Immunol,2013,191(12):5904-5913.
[40]Lu S,Zhu Q,Zhang Y,et al.Dual-functions of miR-373 and miR-520c by differently regulating the activities of MMP2 and MMP9.J Cell Physiol.2014 Dec 24.doi:10.1002/jcp.24914.[Epub ahead of print]
[41]Cai J,Yin G,Lin B,Wang X,et al.Roles of NFκB-miR-29s-MMP-2 circuitry in experimental choroidal neovascularization[J].J Neuroinflammation,2014,11:88.
[42]Fan X1,Wang E2,Wang X,et al.MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with kazal motifs[J].Exp Mol Pathol,2014,96(2):242-249.
[43]Belmont PJ,Chen WJ,Thuerauf DJ,et al.Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response[J].J Mol Cell Cardiol,2012,52(5):1176-1182.
[44]Kubiczkova-Besse L1,Sedlarikova L,Kryukov F,et al.Combination of serum microRNA-320a and microRNA-320b as a marker for waldenstr?m macroglobulinemia[J].Am J Hematol,2014,26.doi:10.1002/ajh.23910.[Epub ahead of print]
[45]Li XY,Zhang K,Jiang ZY,et al.MiR-204/miR-211 downregulation contributes to candidemia-induced kidney injuries via derepression of Hmx1 expression[J].Life Sci,2014,102(2):139-144.
[46]Zhang TL1,Sun L,Wang SM,et al.Expression of miR-21 in multiple myeloma and its clinical significance[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2012,20(3):616-619.
[47]Qiao J,Lee S,Paul P,Theiss L,et al.miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis[J].Surgery,2013,154(2):226-233.
[48]Chen M,Ma G,Yue Y,et al.Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells[J].Int J Cardiol,2014,173(1):65-73.
The role of miRNA in inflamamatory myopathies
CHEN Xue-bin,WANG Guo-chun
(a.Department of Clinical Engineering,b.Department of Rheumatology & Immunology,China-Japan Friendship Hospital,Beijing 100029,China)
WANGGuo-chun
Dermatomyositis,polymyositis and sporadic inclusion body myositis are the most common subtypes of idiopathic inflamamatory myopathies(IIMs),which are underlying different inflammatory processes.Although the pathogenesis of IIM,the occurrence and development of dematomyositis is associated with complement-mediated immunologicprocess,Polymyositis and inclusion-body myositis are T-cell-mediated cytotoxic processes,and ER stress due to upregulation of MHC class I antigen expression is also involved in the progresses.MiRNAs,a class of 21~25 nt noncoding small RNAs,can regulate gene expression at post-transcriptional level.Dyregulated miRNAs may play important roles in the development of many diseases.In this review we summerized the specific expressed miRNAs in different subtypes of inflamamatory myopathies and analyzed the relationships between miRNAs and key proteins in the processes of these muscular disorders,which may be useful in clinical diagnosis and therapeutic strategies for inflamamatory myopathies.
Inflamamatory myopathies; miRNA; Pathogenesis
王國春,男,主任醫(yī)師,教授,博士研究生導師。中華醫(yī)學會風濕病分會委員。主要研究方向:特發(fā)性炎性肌病的臨床及基礎研究。
R593.2
A
1672-6170(2015)05-0017-06
2015-07-08)