亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Resultant matrices and Bezoutians under the polynomial bases generated by a bilinear transformation function

        2015-05-04 07:32:08WUHuazhang
        安徽大學學報(自然科學版) 2015年6期
        關(guān)鍵詞:結(jié)式安徽大學合肥

        WU Hua-zhang

        (School of Mathematical Sciences, Anhui University, Hefei 230601, China)

        ?

        Resultant matrices and Bezoutians under the polynomial bases generated by a bilinear transformation function

        WU Hua-zhang

        (School of Mathematical Sciences, Anhui University, Hefei 230601, China)

        bilinear transformation function; companion matrix; resultant matrix; Bezout matrix; Barnett’s formula

        0 Introduction

        whichestablishatransformationbetweentheupperhalfandthelowerhalfcomplexplanes.Ontheotherhand,thematrixcorrespondingtothebilineartransformationfunctionaboveisaMobiustransformationmatrixwhichcanbeusedtoestablishaone-to-onecorrespondencebetweenHankelandToeplitzmatrices[5].

        Itiswellknown[6]thatthereexistcloserelationsbetweenresultantmatrixandBezoutmatrix(orsimplyBezoutian).TheBezoutianshavemanyimportantapplicationsinnumericalcomputing,controltheory,systemidentification,andnetworksandsignalprocessing.WerefertothebooksofBarnett[7],LancasterandTismenetsky[8],andBiniandPan[9].AmongthemethodsforthestudyofBezoutiansthepowerbasisisusuallygeneralizedtopolynomialcases.Ithasbeenshownin[10-11]thatmostpropertiesofclassicalBezoutian,suchastheBarnett-typeformula,theintertwiningrelationandthediagonalreduction,keepstillthesimilarformsforsomegeneralizedpolynomialBezoutians.

        1 Resultant matrices

        Thus, E-1Acanberegardedasacompanionmatrixofp(λ).Thepurposeofconstructingsuchacompanionmatrixismainlyfortheconvenienceofthecomputationoftheelements,notmerelyforitstheoreticalapplications.

        whichimplies

        (1)

        Nowweconsidertheresultantmatrixoftwopolynomials.Set

        (1) g(Cα)isaresultantmatrixoff(z)andg(z).

        (2)ThedegreeoftheGCDd(z)off(z)andg(z)isequalton-rank(g(Cα)).

        (3)Thecoefficientsofd(z)areproportionaltothelastrowofg(Cα)afterbeingreducedtorowechelonform.

        Forexample,let

        Thenthecompanionmatrixoff(x)is

        thus rank (g(Cα))=1, and the degree of the GCD off(x) andg(x) is equal to 3-1=2. According to Theorem 1(3),d(x) should be proportional to

        which is equal tog(x).

        can be determined by

        2 Bezoutians

        (2)

        For the computation of the elements of generalized Bezoutian, by [15] we have following formulas and ommit its proof. Here we still distinguish two different bases.

        Thus the cost of the algorithm iso(n2).

        Thus the cost of the algorithm iso(n2).

        Thus, by the definition (2), the last equality equals

        3 Properties and relationships of resultant matrices and Bezoutians

        3.1 Properties of resultant matrices

        respectively,alsokeepthesimilarrelationshipswiththeirtransposes.

        Theorem 6 Assume that notations are as above. Then the following relations are satisfied

        (3)

        (4)

        Proof Eqs.(3) can be checked by using a similar method as that in [15]. Here we omit the proof.

        Theorem 7 Assume that notations are as before. Then we have

        3.2 Relationships between Bezoutians and resultant matrices

        which implies

        (5)

        By those equalities we can generalize the Barnett’s formula

        to a general form. SinceB(p,1) is a special Bezout matrix withq(z)=1, then

        Thus, Eq.(5) implies

        (6)

        Theorem 8 Assume that notations are as before. Then the generalized Barnett’s formulas hold

        ThegeneralizedBarnett’sformulasaboveimplythefollowingresult.

        Corollary 3 Assume that notations are as before andJthe reverse unit matrix. Then

        Proof We only verify the first equality, the second one can be similarly proved and omitted. In view of Prop.2.11 in [5], we have

        whereCpdenotes the companion matrix ofp(z), andJis the reverse unit matrix. Multipling byBTandBfrom the left hand side and the right hand side on the last equality respectively, and using Eqs.(3) and (5), we have

        whereJα=BJBT.Theproofiscompleted.

        AnintertwiningrelationofthegeneralizedBezoutianswiththeresultantmatricesarefulfilled.

        Theorem 9 Assume that notation are as before. Then we have

        Proof We only prove the first equality. By [8], we have the following equality

        Using Eqs.(3) and (5), the remain is merely some elementary calculation.

        [1] Emiris I Z, Mourrain B. Matrices in elimination theory[J]. Symbolic Comput,1999,28(1/2):3-44.

        [2] Kajiya J T. Ray tracing parametric patches[J]. Computer Graphics, 1982,16:245-254.

        [3] Farouki R T, Goodman T N. On the optimal stability of the Bernstein basis[J]. Math Comp, 1996,65:1553-1566.

        [4] Farouki R T, Rajan V T. On the numerical condition of polynomial in Bernstein form[J]. Comp Aided Geom Design, 1988,5:1-26.

        [5] Heinig G, Rost K. Algebraic methods for Toeplitz-like matrices and operators[M].Basel:Birkhauser,1984.

        [6] Barnett S, Lancaster P. Some properties of the Bezoutian for polynomial matrices[J]. Linear and Multilinear Algebra, 1980, 9:99-110.

        [7] Barnett S. Polynomials and linear control system[M].NewYork:Marcel Dekker, 1983.

        [8] Lancaster P, Tismenetsky M. The theory of matrices[M]. 2nd ed.London:Academic Press, 1985.

        [9] Bini D A, Pan V. Numerical and algebraic computations with matrices and polynomials[M].Boston:Birkhauser,1994.

        [10] Mani J, Hartwig R E. Generalized polynomial bases and the Bezoutian[J]. Linear Algebra and Its Applications, 1997,251:293-320.

        [11] Wu H Z. More on polynomial Bezoutians with respect to a general basis[J]. Electronic Journal of Linear Algebra, 2010,21:154-171.

        [12] Winkler J R. A companion matrix resultant for Bernstein polynomials[J]. Linear Algebra and Its Applications 2003,362:153-175.

        [13] Golub G H, Van Loan C F. Matrix computations[M].Baltimore:John Hopkins University Press,1989.

        [14] Montaudouin Y D, Yiller W. The Cayley method in computer aided geometric design[J]. Comp Aided Geom Design, 1984,1:309-326.

        [15] Wu H Z, Sun J P. A generalized Bezout matrix under a special polynomial basis[J]. Journal of Hefei University:Natural Sciences, 2014,24(2):5-9.

        (責任編輯 朱夜明)

        雙線性變換函數(shù)生成基下的結(jié)式矩陣和Bezout矩陣

        吳化璋

        (安徽大學 數(shù)學科學學院,安徽 合肥 230601)

        雙線性變換函數(shù);友矩陣;結(jié)式矩陣;Bezout矩陣;Barnett公式

        10.3969/j.issn.1000-2162.2015.06.001

        Foundation item:Supported by the Natural Science Foundation of Anhui Province (1208085MA02)

        O151 Document code:A Article ID:1000-2162(2015)06-0001-08

        Received date:2015-02-16

        Author’s brief:WU Hua-zhang (1966-), male, born in Quanjiao of Anhui Province, professor of Anhui University,tutor for postgraduate.

        猜你喜歡
        結(jié)式安徽大學合肥
        合肥的春節(jié)
        巴基斯坦留學生的漢語動結(jié)式理解與輸出研究
        讀《安徽大學藏戰(zhàn)國竹簡》(一)札記
        結(jié)式循環(huán)矩陣的運算及性質(zhì)
        秦曉玥作品
        合肥:打造『中國IC之都』
        L'examen dans l'antiquitéet de nos jours
        法語學習(2016年4期)2016-04-16 19:42:50
        漢語動結(jié)式在維吾爾語中的表現(xiàn)形式
        語言與翻譯(2015年4期)2015-07-18 11:07:43
        生態(tài)合肥
        “NP V累了NP”動結(jié)式的補語趨向解讀
        久久综合狠狠综合久久综合88| 最新国产美女一区二区三区| 亚洲av性色精品国产| 国内自拍速发福利免费在线观看| 国产精品亚洲а∨无码播放不卡| 日本55丰满熟妇厨房伦| jiZZ国产在线女人水多| 日本一区二区三级在线| 少妇性bbb搡bbb爽爽爽| 亚洲免费观看在线视频| 日本精品久久久久中文字幕1| 区一区二区三免费观看视频 | 日本一区二区三区视频免费观看| 成人aaa片一区国产精品| 东北无码熟妇人妻AV在线| 蜜臀av一区二区三区人妻在线| 成熟妇女毛茸茸性视频| 女人被弄到高潮的免费视频| 欧美精品在线一区| av网站免费在线不卡| 老鸭窝视频在线观看| 亚洲18色成人网站www| 在线无码精品秘 在线观看| 深夜黄色刺激影片在线免费观看| 扒开腿狂躁女人爽出白浆| 风流少妇又紧又爽又丰满| 国产高清精品在线二区| 中文字幕一区二区人妻秘书| 中文字幕一区在线观看视频| 亚洲一区二区三区在线观看播放| 色视频不卡一区二区三区| 国产乱人伦av在线a麻豆| 国产美女网站视频| 在线看片免费人成视久网不卡| 日本无遮挡真人祼交视频| 热re99久久精品国产99热| 9丨精品国产高清自在线看| 久久中文字幕一区二区| 性大毛片视频| 亚洲精品中文字幕不卡在线| 日本韩国亚洲三级在线|