戚越舟, 蘇亞欣
(東華大學(xué)環(huán)境科學(xué)與工程學(xué)院, 上海 201620)
鐵原子與NO反應(yīng)的密度泛函理論研究
戚越舟, 蘇亞欣
(東華大學(xué)環(huán)境科學(xué)與工程學(xué)院, 上海 201620)
采用密度泛函理論(DFT)計算研究鐵原子與NO反應(yīng)的相關(guān)微觀反應(yīng)機理.全參數(shù)優(yōu)化了四重態(tài)和六重態(tài)反應(yīng)勢能面上各駐點的幾何結(jié)構(gòu),用頻率分析方法和內(nèi)稟反應(yīng)坐標(IRC)方法對過渡態(tài)進行了驗證,得到了該反應(yīng)的反應(yīng)勢能面曲線,并討論了勢能面的交叉情況.結(jié)果表明,該反應(yīng)為典型的兩態(tài)反應(yīng),反應(yīng)通道一中出現(xiàn)了一個勢能交叉點,反應(yīng)通道二中出現(xiàn)了兩個勢能交叉點,反應(yīng)通道三中出現(xiàn)了三個勢能交叉點.勢能面上的交叉點能夠有效降低反應(yīng)的活化能,增加反應(yīng)放熱,這在動力學(xué)和熱力學(xué)上都是有利的.
過渡金屬原子; 量子化學(xué); 反應(yīng)微觀機理; 勢能交叉點
近20年來,探索金屬催化劑的內(nèi)部電子特性,動力特性已經(jīng)成為一個非?;钴S的領(lǐng)域.而過渡金屬由于多相催化的特性而倍受關(guān)注,由此展開了大量的實驗和理論研究[1,2].例如,對于當(dāng)前煤燃燒過程中排放NOX的環(huán)境污染問題,大量的研究表明金屬能有效促進催化還原NO,包括K、Na、Ca等主族金屬以及Cu、Co、Ni、Fe等過渡金屬[3-7].在眾多的過渡金屬中,鐵系催化劑是一種有效脫除氮氧化物的理想催化劑,前期的大量的實驗研究[8-10]表明金屬鐵直接催化還原NO是一種高效的脫硝方法.Blagojevic等[11]研究了Fe+催化CO還原N2O的反應(yīng)路徑,F(xiàn)rancesca Rondinelli等[12]通過DFT理論也得到了Fe+和Mn+催化CO脫除N2O的反應(yīng)路徑,均發(fā)現(xiàn)Fe+能有效降低反應(yīng)的活化能.西北師范大學(xué)王永成等[13,14]研究了Fe+,F(xiàn)eO+消除N2O,發(fā)現(xiàn)鐵系催化劑對于反應(yīng)的決速態(tài)起關(guān)鍵的作用.但是當(dāng)前絕大多數(shù)關(guān)于鐵系催化劑脫除氮氧化物的量化模擬都集中在鐵離子,鐵的氧化物離子上,對于鐵原子本身的研究,Andreas Fiedler等[15]研究了Fe、N、O三種元素組成的同分異構(gòu)體,但是缺少了反應(yīng)的路徑和動力學(xué)的研究.本文以Fe+NO為研究體系,用密度泛函理論(DFT)計算方法,研究了反應(yīng)體系在四、六重態(tài)勢能面上的反應(yīng)機理,該研究對于人們理解金屬鐵催化脫硝的重要反應(yīng)提供了理論依據(jù).
密度泛函理論(DFT)已廣泛用于過渡金屬化學(xué)的理論計算,計算結(jié)果的可靠性已被研究學(xué)者所公認[16].文中采用Becke三參數(shù)交換泛函,并結(jié)合LYP相關(guān)泛函(即B3LYP方法)[17],對Fe,N,O采用6-31G(d)基組,對反應(yīng)體系勢能面上的所有反應(yīng)物、中間體、過渡態(tài)和產(chǎn)物的幾何構(gòu)型進行了全參數(shù)優(yōu)化,通過頻率分析證實了各反應(yīng)物、中間體和產(chǎn)物的能量為局部極小,各過渡態(tài)有唯一振動虛頻.對各勢能面上的每一個鞍點進行了內(nèi)稟反應(yīng)坐標(IRC)計算,確認了每個基元步驟過渡態(tài)的可靠性.為了獲取更為精確的相對能量值,在此幾何構(gòu)型基礎(chǔ)上進一步采用B3LYP/6-311+G(d,p)方法進行單點能計算.
本文所選用的計算方法廣泛用于體系中含有過渡金屬的電子結(jié)構(gòu)計算,Qiao Sun等[18]通過此計算方法研究鐵簇催化甲烷,Lichen Wang等[19]通過該方法研究了Fe(NO)n+的特性,Q. Sun等[20]通過該方法研究了納米鐵簇的特性,大量的模擬計算證明這是一種計算耗時合理,計算準確的方法[21,22].本文所有計算都在Gaussian 09程序中完成.
本文著重對脫硝基元反應(yīng)(Fe+NO→FeO+1/2N2)進行深入的研究.有過渡金屬參與的反應(yīng)中,高自旋態(tài)過渡金屬復(fù)合物常常具有多個未成對電子,由于受配體與金屬d軌道之間電子的交換作用等因素的影響,導(dǎo)致過渡金屬在催化反應(yīng)過程中很可能發(fā)生自旋翻轉(zhuǎn)而出現(xiàn)勢能面交叉現(xiàn)象,即在不同自旋多重度的兩個勢能面的交叉區(qū)附近出現(xiàn)自旋翻轉(zhuǎn)[23-25].本文以鐵原子與NO的反應(yīng)為研究體系,用密度泛函理論(DFT)計算方法,研究了反應(yīng)體系在四、六重態(tài)勢能面上的反應(yīng)機理,分別優(yōu)化了四重態(tài)和六重態(tài)反應(yīng)勢能面上所有駐點的幾何構(gòu)型,得到基元反應(yīng)的微觀進程,結(jié)果如圖1~6所示,四重態(tài)的構(gòu)型命名為C,TS,六重態(tài)的構(gòu)型命名為C`,TS`.其中所有的中間體以及過渡態(tài)均為平面結(jié)構(gòu),鍵角的單位為度,鍵長的單位為埃.表1為各反應(yīng)過渡態(tài)及中間體振動頻率分析的結(jié)果.表2為反應(yīng)通道上各駐點的能量,其中,Eb3lyp表示采用6-311+G(d,p)方法計算得到的節(jié)點能;Ezpe為零點能;Etotal為各駐點的總能量;Erel為相對能量.
表1 各反應(yīng)的中間體和過渡態(tài)的振動頻率
Table 1 vibration frequency of the intermediates and transition states for each reaction channel
反應(yīng)通道1Reactionchannel1四重態(tài)(cm-1)quartetstates(cm-1)六重態(tài)(cm-1)sextetstates(cm-1)C1199.94381.221386.45C1`269.65469.061422.48TS1-696.7710.9467.0TS1`-269.7574.321469.1C2378.8532.51467.45C2`431.87514.171223.12TS2-167.454591317TS2`-286.8312.591145.2C3`210.23549.981016.65反應(yīng)通道2Reactionchannel2四重態(tài)(cm-1)quartetstates(cm-1)六重態(tài)(cm-1)sextetstates(cm-1)C161.51451.131421.45C1`50.79345.831328.41TS1-181.8368.371350.33TS1`-1941.88487.61284.31C2217.58478.14676.00C2`210.23549.981016.65TS2`-90.21513.65664.96反應(yīng)通道3Reactionchannel3四重態(tài)(cm-1)quartetstates(cm-1)六重態(tài)(cm-1)sextetstates(cm-1)C1199.94381.221386.45C1`269.65469.061422.48TS1-696.7710.9467.0TS1`-269.7574.321469.1C2378.8532.51467.45C2`431.87514.171223.12TS2-632.63448.28844.49TS2`-493.57496.45801.75C3149.60377.15878.39C3`200.13344.99950.82
圖1 反應(yīng)通道一四重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 1 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 1 for quartet state
圖2 反應(yīng)通道一六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 2 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 1 for sextet state
圖3 反應(yīng)通道二四重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 3 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 2 for quartet state
圖4 反應(yīng)通道二六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 4 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 2 for sextet state
圖5 反應(yīng)通道三四重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 5 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 3 for quartet state
圖6 反應(yīng)通道三六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程Fig. 6 Optimized geometrical configurations of various species and micro-reaction pathways in the reaction of channel 3 for sextet state
3.1 反應(yīng)通道一
圖1、2所示為反應(yīng)通道一中Fe原子與NO在四,六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程.首先,鐵原子進攻NO的N端生成相應(yīng)的反應(yīng)初始復(fù)合物C1和C1`,此過程無需翻越任何勢壘.在四重態(tài)反應(yīng)勢能面上形成Fe,N,O鍵角呈136.1°的中間體C1,屬于Cs點群,電子組態(tài)為4A″,F(xiàn)e-N鍵鍵長為1.85埃,N-O鍵鍵長由1.14埃伸長到1.23埃,鍵級降低.這表明隨著Fe-N化學(xué)鍵的形成,N-O鍵逐漸變?nèi)?,鍵級的減小有利于N-O鍵的斷裂.六重態(tài)反應(yīng)勢能面上也發(fā)生類似的反應(yīng),形成Fe,N,O鍵角呈135.2°的中間體C1`,屬于Cs點群,電子組態(tài)為6A″,F(xiàn)e-N鍵鍵長為1.85埃,N-O鍵鍵長由1.14埃伸長到1.23埃.接著C1,C1`沿著反應(yīng)路徑,經(jīng)過相應(yīng)的過渡態(tài)TS1和TS1`,生成三角形狀產(chǎn)物復(fù)合物C2和C2`.在這個過程中,四重態(tài)反應(yīng)勢能面上C1需要克服8.97 Kcal/mol的勢壘,F(xiàn)e,N,O鍵角由136.1°減小到73.7°,同時生成了鍵長為1.89埃的Fe-O鍵.六重態(tài)反應(yīng)勢能面上的過程也相似,但是C1`需要克服38.1 Kcal/mol的勢壘,生成的Fe-O鍵鍵長為1.91埃.由于四重態(tài)反應(yīng)勢能面上的勢壘低,所以反應(yīng)更加容易反應(yīng).最后,C2沿著反應(yīng)路線,經(jīng)過過渡態(tài)TS2,N-O鍵最終斷開生成FeO和1/2的N2.而六重態(tài)勢能面上的C2`則需再經(jīng)歷一個過渡態(tài)TS2`生成C3`,N-O鍵鍵長由1.27埃伸長至1.31埃,鍵級降低,F(xiàn)e-O鍵由1.91埃縮短至1.85埃,同時Fe,O,N的鍵角增大到120°,此過程需要克服17.5Kcal/mol的勢壘.C`3最終分解成FeO和1/2的N2.從圖7中可以看出,反應(yīng)初始階段六重態(tài)勢能面上的中間體C1`比四重態(tài)上的中間體C1穩(wěn)定,C1的相對能量比C1`高4.43 Kcal/mol.初始階段,反應(yīng)更偏向高自旋態(tài).之后六重態(tài)的勢能面總是高于四重態(tài),六重態(tài)的能量比四重態(tài)的高,反應(yīng)主要是通過四重態(tài)的反應(yīng)路徑發(fā)生.
3.2 反應(yīng)通道二
圖3、4所示為反應(yīng)通道二中鐵原子與NO在四,六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程.首先,鐵原子進攻NO的O端生成反應(yīng)初始復(fù)合物C1和C1`,此過程無需翻越任何勢壘.在四重態(tài)反應(yīng)勢能面上形成Fe,N,O鍵角呈179.5°的中間體C1,屬于Cs點群,電子組態(tài)為4A″,F(xiàn)e-O鍵鍵長為1.83埃,O-N鍵鍵長由1.14埃伸長到1.23埃,鍵級降低.這表明隨著Fe-O化學(xué)鍵的形成,O-N鍵逐漸變?nèi)?,鍵級的減小有利于O-N鍵的斷裂.六重態(tài)反應(yīng)勢能面上也發(fā)生類似的反應(yīng),形成Fe,N,O鍵角呈179.5°的中間體C1`,屬于Cs點群,電子組態(tài)為6A″,F(xiàn)e-O鍵鍵長為1.91埃,N-O鍵鍵長由1.14埃伸長到1.21埃.接著C1,C1`沿著反應(yīng)路徑,經(jīng)過相應(yīng)的過渡態(tài)TS1和TS1`,生成復(fù)合物C2和C2`.在四重態(tài)反應(yīng)勢能面上,C1需要克服22.1 Kcal/mol的勢壘,F(xiàn)e,N,O鍵角由179.5°減小到120.1°,F(xiàn)e-O鍵鍵長由1.23埃伸長至1.31埃,這個過程需要克服22.1 Kcal/mol的勢壘,最終中間體C2的O-N鍵斷裂生成了FeO和1/2的N2;在六重態(tài)反應(yīng)勢能面上也發(fā)生類似的反應(yīng),而C1`需要克服6Kcal/mol的勢壘,相較而言六重態(tài)反應(yīng)勢能面上此過程更加容易發(fā)生.最后C2`沿著反應(yīng)路徑,經(jīng)過過渡態(tài)TS2`,O-N斷裂,最終生成了FeO和1/2的N2.從圖8中可以看出,反應(yīng)初始階段四重態(tài)勢能面上的中間體C1比六重態(tài)上的中間體C1`穩(wěn)定,C1的相對能量比C1`高13.3 Kcal/mol.初始階段,反應(yīng)更偏向低自旋態(tài).之后四重態(tài)的勢能面總是高于六重態(tài),四重態(tài)的能量比六重態(tài)的高,反應(yīng)主要是通過六重態(tài)的反應(yīng)路徑發(fā)生.
3.3 反應(yīng)通道三
圖5、6所示為反應(yīng)通道三中鐵原子與NO在四,六重態(tài)反應(yīng)勢能面上所有駐點的構(gòu)型及反應(yīng)的微觀進程.三角形狀產(chǎn)物之前的反應(yīng)大致與反應(yīng)通道一相同.之后C2,C2`沿著反應(yīng)路徑,經(jīng)過相應(yīng)的過渡態(tài)TS2和TS2`,N-O鍵斷裂,在四重態(tài)反應(yīng)勢能面上N,O的距離為3.38埃,F(xiàn)e-O鍵鍵長由1.89??s短至1.65埃,F(xiàn)e-N鍵鍵長由1.82埃伸長至1.91埃,鍵級降低.Fe,O,N之間的鍵角擴大至143.1°.這個過程使N-O鍵徹底斷裂,需要克服47.74 Kcal/mol的勢壘.最終中間體C3 的Fe-N鍵斷裂生成了FeO和1/2的N2.六重態(tài)反應(yīng)勢能面上也發(fā)生類似的反應(yīng).復(fù)合物C3`,N,O之間的距離由1.27埃伸長至2.81埃,F(xiàn)e-O鍵鍵長由1.91??s短至1.59埃,F(xiàn)e-N鍵鍵長由1.82埃伸長至1.91埃,鍵級降低.Fe,O,N之間的鍵角擴大至106.4°,需要克服68.7 Kcal/mol的勢壘,相較而言此過程四重態(tài)反應(yīng)勢能面上更加容易發(fā)生.我們發(fā)現(xiàn)C3和C3`的構(gòu)型變化很大原因很有可能是由于親電子性和極化的作用.從圖8中可以看出,反應(yīng)通道三的反應(yīng)比較復(fù)雜,勢能面上有多個交叉點,分別是在不同勢能面上反應(yīng).
對反應(yīng)路徑上的所有駐點進行了振動頻率分析,結(jié)果如表1所示,研究的振動分析計算結(jié)果表明:各反應(yīng)物、產(chǎn)物和中間體的振動分析結(jié)果是力常數(shù)矩陣本征值全為正,說明它們?yōu)閯菽苊嫔系姆€(wěn)定點.各過渡態(tài)的振動分析結(jié)果,力常數(shù)矩陣本征值均有且僅有唯一的負值.同時采用IRC計算驗證了過渡態(tài)的可信性,結(jié)果表明優(yōu)化得到的中間體和過渡態(tài)都是合理且可信的.
3.4 反應(yīng)勢能面的交叉點分析
為了更清楚了解Fe與NO的反應(yīng)機理,我們進一步探討反應(yīng)在四重態(tài)和六重態(tài)勢能面上的交叉行為如圖7~圖9所示.反應(yīng)通道一中:六重態(tài)中間體C1`比四重態(tài)中間體C1的能量低4.43 Kcal/mol,六重態(tài)過渡態(tài)TS1`比四重態(tài)過渡態(tài)TS1的能量高24.7 Kcal/mol;反應(yīng)通道二中:四重態(tài)中間體C1比六重態(tài)中間體C1`的能量低13.3 Kcal/mol,四重態(tài)過渡態(tài)TS1比六重態(tài)過渡態(tài)TS1`的能量高2.1 Kcal/mol,四重態(tài)產(chǎn)物能量比六重態(tài)產(chǎn)物的能量高25.1 Kcal/mol;反應(yīng)通道三中:六重態(tài)中間體C1`比四重態(tài)中間體C1的能量低4.43 Kcal/mol,六重態(tài)過渡態(tài)TS1`比四重態(tài)過渡態(tài)TS1的能量高20.2 Kcal/mol,六重態(tài)中間體C2`比四重態(tài)中間體C2的能量低2.45 Kcal/mol,六重態(tài)過渡態(tài)TS2`比四重態(tài)過渡態(tài)TS2的能量18.5 Kcal/mol,六重態(tài)中間體C3`比四重態(tài)中間體C3的能量高8.9 Kcal/mol.這就大概確定了反應(yīng)可能在反應(yīng)通道一C1`→TS1,反應(yīng)通道二C1→TS1`,C2→反應(yīng)產(chǎn)物,反應(yīng)通道三C1`→TS1,C2→TS2`,TS2`→C3的過程中發(fā)生了“系間竄越”,使得反應(yīng)在不同勢能面間發(fā)生了翻轉(zhuǎn).反應(yīng)通道一中起初在六重態(tài)勢能面上進行,然后經(jīng)過翻轉(zhuǎn)到四重態(tài)勢能面進行;反應(yīng)通道二起初在四重態(tài)勢能面上進行,然后經(jīng)過翻轉(zhuǎn)到六重態(tài)勢能面進行,最終生成四重態(tài)反應(yīng)產(chǎn)物;反應(yīng)通道三中起初在六重態(tài)勢能面上進行,然后經(jīng)過一次翻轉(zhuǎn)到四重態(tài)勢能面進行,接著第二次翻轉(zhuǎn)到在六重態(tài)勢能面上,最終生成四重態(tài)產(chǎn)物.根據(jù)Hammond假設(shè),這是一個典型的“兩態(tài)反應(yīng)”[25].反應(yīng)通道一中的勢能交叉點有效的降低活化能24.7 Kcal/mol,同時增加反應(yīng)放熱29.5 Kcal/mol. 反應(yīng)通道二中的第一個勢能交叉點有效降低活化能2.8 Kcal/mol,第二個勢能交叉點增加反應(yīng)放熱25.1 Kcal/mol.反應(yīng)通道三中第一個勢能交叉點有效降低活化能20.2 Kcal/mol;第二個勢能交叉點有效降低活化能18.5 Kcal/mol;第三個勢能交叉雖然不能有效降低反應(yīng)活化能但增加反應(yīng)放熱25.1 Kcal/mol.這顯然在動力學(xué)和熱力學(xué)上都是有利的.
表2 反應(yīng)通道上各駐點的能量
圖7 Fe+NO在反應(yīng)通道一中四重態(tài)和六重態(tài)的反應(yīng)勢能面圖Fig. 7 Diagram of PESs for the reaction of Fe+NO on the quartet and sextet states in channel 1
圖8 Fe+NO在反應(yīng)通道二中四重態(tài)和六重態(tài)的反應(yīng)勢能面圖Fig. 8 Diagram of PESs for the reaction of Fe+NO on the quartet and sextet states in channel 2
圖9 Fe+NO在反應(yīng)通道三中四重態(tài)和六重態(tài)的反應(yīng)勢能面圖Fig. 9 Diagram of PESs for the reaction of Fe+NO on the quartet and sextet states in channel 3
本文采用密度泛函理論的B3LYP方法對金屬鐵與NO的反應(yīng)機理進行了分子水平的模擬研究.分別研究了三個反應(yīng)通道上四、六重態(tài)反應(yīng)勢能面上的反應(yīng),結(jié)果表明金屬鐵原子能有效的把NO轉(zhuǎn)化為FeO和N2,同時該體系在三個反應(yīng)通道中進行時,都出現(xiàn)了勢能交叉點,不僅能有效地降低整個反應(yīng)過程中的勢壘,還有利于反應(yīng)動力學(xué)和熱力學(xué).本文為進一步研究金屬鐵有效催化脫除NO提供了一定的理論依據(jù).
[1] Bacic Z, Miller R E. Molecular clusters: Structure and dynamics of weakly bound systems[J].J.Phys.Chem., 1996, 100(31): 12945.
[2] Castleman A W, Bowen K H. Clusters: structure, energetics, and dynamics of intermediate states of matter[J].J.Phys.Chem., 1996, 100(31): 12911.
[3] García-García A, Illán-Gómez M J, Linares-Solano A,etal. Potassium-containing briquetted coal for the reduction of NO[J].Fuel, 1997, 76(6): 499.
[4] Illan-Gomez M J, Raymundo-Pinero E. Catalytic NOxreduction by carbon supporting metals[J].Appl.Catal. B:Environmental, 1999, 20: 267.
[5] Yamashita H, Yamada H, Tomita A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J].Appl.Catal., 1991, 78(1): L1.
[6] Ha Yhurst A N, Lawrence A D. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed [J].CombustFlame, 1997, 110 (3): 351.
[7] Zhong B J, Zhang H S. Experimental study of catalytic reduction of NO by lean coal chars[J].J.Eng.Thermophys., 2002, 23(2): 249 (in Chinese)[鐘北京,張懷山. 貧煤焦催化還原NO 的實驗研究[J]. 工程熱物理學(xué)報, 2002, 23(2): 249]
[8] Su Y X, Deng W Y, SU A L. NO reduction by methane over oxides and the mechanism[J].J.Fuel.Chem.Tech., 2013, 41(9): 1129 (in Chinese)[蘇亞欣, 鄧文義, 蘇阿龍. 甲烷在氧化鐵表面還原NO的特性與反應(yīng)機理研究[J]. 燃料化學(xué)學(xué)報, 2013, 41(9): 1129]
[9] Su Y X, Deng W Y, SU A L. NO reduction by methane on the surface of iron and iron oxides[J].J.Fuel.Chem.Tech., 2013, 41(11): 1393(in Chinese)[蘇亞欣, 任立銘, 蘇阿龍. 甲烷在金屬鐵及氧化鐵表面還原NO的實驗研究[J]. 燃料化學(xué)學(xué)報, 2013, 41(11): 1393]
[10] Su Y X, Su A L, Ren L M,etal. Effect of SO2on the reduction of NO by metheane over iron catalyst[J].J.Fuel.Chem.Tech., 2014, 42(3): 377 (in Chinese)[蘇亞欣, 蘇阿龍, 任立銘, 等. SO2對甲烷在金屬鐵表面還原NO的反應(yīng)影響[J]. 燃料化學(xué)學(xué)報, 2014, 42(3): 377]
[11] Blagojevic V, Orlova G, Bohme D K.O-atom transport catalysis by atomic cations in the gas phase: Reduction of N2O by CO [J].J.Am.Chem.Soc., 2005, 127(10): 3545.
[12] Rondinelli F, Russo N, Toscano M. On the origin of the different performance of iron and manganese monocations in catalyzing the nitrous oxide reduction by carbon oxide[J].Inorg.Chem., 2007, 46(18): 7489.
[13] Chen D P, Kong C, Han Y X,etal. Theoretical study of catalytic oxidation cycles of CO with N2O by Fe+in gas phase[J].J.At.Mol.Phys., 2013, 30(4): 517(in Chinese)[陳東平, 孔超, 韓艷霞. 氣相中Fe+催化CO與N2O循環(huán)反應(yīng)的理論計算研究[J]. 原子與分子物理學(xué)報, 2013, 30(004): 517]
[14] Gan Y Z, Wang Y C, Jin Y Z. Theoretical study of the mechanism for the cycle reaction of N2O and CH4catalyzed by Fe+(6D) to yield CH3OH[J].Sci.ChinaSer. B, 2013, (006): 763 (in Chinese)[甘延珍, 王永成, 金燕子. Fe+(6D)催化N2O和CH4制取甲醇循環(huán)反應(yīng)的理論探究[J]. 中國科學(xué): 化學(xué), 2013, (006): 763]
[15] Fiedler A, Iwata S. Variety of [Fe, N, O] isomers. A theoretical study[J].J.Phys.Chem. A, 1998, 102(20): 3618.
[16] Harvey J N. On the accuracy of density functional theory in transition metal chemistry[J].Annu.Rep.Prog.Chem.Sect. C:Phys.Chem., 2006, 102: 203.
[17] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev. B, 1988, 37(2): 785.
[18] Sun Q, Li Z, Wang M,etal. Methane activation on Fe4cluster: A density functional theory study[J].Chem.Phys.Lett., 2012, 550: 41.
[19] Wang L, Wang G, Qu H,etal. Infrared photodissociation spectroscopy of iron nitrosyl cation complexes: Fe (NO)n+(n= 1-5)[J].J.Phys.Chem. A, 2014, 118(10): 1841.
[20] Sun Q, Kandalam A K, Wang Q,etal. Effect of Au coating on the magnetic and structural properties of Fe nanoclusters for use in biomedical applications: A density-functional theory study[J].Phys.Rev. B, 2006, 73(13): 134409.
[21] Xiao L, Wang L. Methane activation on Pt and Pt4: A density functional theory study[J].J.Phys.Chem. B, 2007, 111(7): 1657.
[22] Sun Q, Altarawneh M, Dlugogorski B Z,etal. Catalytic effect of CuO and other transition metal oxides in formation of dioxins: theoretical investigation of reaction between 2, 4, 5-trichlorophenol and CuO[J].Environ.Sci.Technol., 2007, 41(16): 5708.
[23] Danovich D, Shaik S. Spin-orbit coupling in the oxidative activation of HH by FeO+. Selection rules and reactivity effects[J].J.Am.Chem.Soc., 1997, 119(7): 1773.
[24] Van Koppen P A M, Bowers M T, Fisher E R,etal. Relative energetics of CH and CC bond activation of alkanes: reactions of Ni+and Fe+with propane on the lowest energy (adiabatic) potential energy surfaces[J].J.Amer.Chem.Soc., 1994, 116(9): 3780.
[25] Schr?der D, Shaik S, Schwarz H. Two-State reactivity as a new concept in organometallic chemistry[J].Acc.Chem.Res., 2000, 33(3): 139.
Density functional theory study of the reaction of iron atom with NO
QI Yue-Zhou, SU Ya-Xin
(School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)
Density functional theory (DFT) calculations have been carried out to study the micro-mechanism for reaction of iron atom with NO. The geometry optimizations of reactants, transition states, intermediates and products of the reactions of sextet and quartet states were completely optimized, and all the transition states were verified by the vibrational analysis and the intrinsic reaction coordinate calculations. Then the potential energy surface (PES) were obtained and crossing points were investigated. Results showed that the reaction of iron atom with NO was a typical two-state reaction(TSR). One crossing point appeared in the reaction channels 1, Two crossing points appeared in the reaction channels 2, while three crossing points appeared in the reaction channels 3 between the quartet and the sextet potential energy surfaces, which would effectively reduce the activation energy and increase the release of reaction heat, play a significant and beneficial role in the kinetic and thermodynamic aspects of this catalytic reaction.
Transition metal atom; Quantum chemistry; Micro-mechanism of reaction; Crossing point
103969/j.issn.1000-0364.2015.12.005
2014-10-28
國家自然科學(xué)基金(51278095)
戚越舟(1989—), 男,碩士研究生,主要研究煙氣脫硝及量子化學(xué)模型.
蘇亞欣. E-mail: suyx@dhu.edu.cn
O641
A
1000-0364(2015)06-0924-07