孫啟玉 賈興旺 田亞平 (承德醫(yī)學院附屬醫(yī)院檢驗科,河北 承德 067000)
目前研究表明急性心血管事件發(fā)生的主要原因是冠狀動脈粥樣硬化(AS)斑塊的破裂、出血、血栓形成,而和冠狀AS的嚴重程度不成正比。冠狀AS斑塊的鈣化是其病理發(fā)生到一定程度的表現(xiàn)。鈣化使斑塊變硬、變脆,容易碎裂導致急性心血管事件的發(fā)生。
病理學上認為AS斑塊鈣化發(fā)生時,在鈣化與非鈣化交界面由于不同的組織密度使其容易受壓破裂?,F(xiàn)在越來越多的證據表明鈣化可作為AS斑塊穩(wěn)定性的獨立預測指標,對冠脈事件的發(fā)生有預測價值。Shemesh等〔1〕對穩(wěn)定型冠心病患者隨訪觀察發(fā)現(xiàn)CAC(CAC)積分隨時間進展變化。冠狀動脈鈣化對有癥狀患者的預測能力得到了廣泛研究。Georgiou等〔2〕對192例病人進行隨訪研究50個月,發(fā)現(xiàn)CAC積分和冠脈事件的發(fā)生密切相關,高積分病人發(fā)生不良事件的風險是低或零積分病人的13.2倍。在一項對458例有急性胸痛且排除急性冠脈綜合征(ACS)的病人研究中,有AS斑塊鈣化的病人比無鈣化者更易發(fā)生心血管不良事件,其危險比(HR)分別是86.96與58.06〔3〕。對穩(wěn)定型心絞痛病人,Rijlaarsdam-Hermsen 等〔4〕的研究表明,CAC積分為陰性的病人在隨訪44個月時無不良事件的發(fā)生,其陰性預測價值是100%。CAC對于無癥狀病人冠脈事件也有很好的預測能力。一項5 000余例患者的前瞻性觀察研究發(fā)現(xiàn),與CAC積分<100的患者相比,>100的患者4.3年后發(fā)生冠脈事件的相對危險度為9.5~10.7〔5〕。Budoff等〔6〕對無癥狀患者的研究也發(fā)現(xiàn)死亡率與CAC積分呈正相關。
鑒于大量有關AS斑塊鈣化與不良事件發(fā)生風險的文獻報道。2005美國心臟學會的一份關于臨床檢測女性冠狀動脈疾病的聲明寫到低CAC和低不良事件發(fā)生風險相關,高CAC預示高風險的不良事件。建議對Framingham評分為中度的病人用CAC來評價AS負荷〔7〕。歐洲心血管指南也寫到CAC積分是無癥狀患者未來發(fā)生心血管事件風險評價的重要指標,并獨立于傳統(tǒng)的風險因素〔8〕。
以前人們認為血管鈣化是磷酸鹽礦物質在壞死組織沉積形成的,近年來研究表明AS鈣化是一種與新骨形成極為相似的受調控的主動性代謝過程,其鈣鹽的主要成分是羥磷灰鈣,而不是原來認為的磷酸鈣。AS鈣化出現(xiàn)較早,亞臨床的AS早期就出現(xiàn)了骨相關蛋白的表達,當脂質條紋形成時,組織學上就可以檢測到鈣化的存在〔8〕。
血管平滑肌細胞(VSMC)表型的改變認為是AS鈣化的關鍵步驟。Bobryshev等〔9〕用電鏡觀察 ApoE基因敲除鼠 AS模型,發(fā)現(xiàn)AS脂質斑塊周圍的平滑肌細胞表現(xiàn)出軟骨樣細胞特征,在細胞間隙有許多含有羥磷灰石結晶的小囊泡出現(xiàn),認為平滑肌細胞分化為軟骨細胞,導致了斑塊鈣化的形成。發(fā)生表型轉換的平滑肌細胞可持續(xù)表達和鈣化相關的核因子(NF)-κB受體活化因子配體(RANKL)、核結合因子 α1(Cbfα1,Runx2)、骨橋蛋白(OPN)、骨鈣素、堿性磷酸酶及骨保護素(OPG)等〔10,11〕。這些蛋白調節(jié)骨基質的形成,參與鈣化。
炎癥和AS斑塊鈣化的發(fā)生有關。脂質過氧化產物的沉積及氧化應激參與粥樣斑塊的形成。炎癥反應導致大量活性氧簇(ROS)產生。體外研究表明H2O2可以通過激活Cbfα1促進VSMC由收縮型向成骨型轉化〔12〕??寡趸饔玫母呙芏戎鞍准唉?3多不飽和脂肪酸有抑制血管鈣化的作用〔13,14〕。氧化低密度脂蛋白能促進β-甘油磷酸鹽誘導的VSMC成骨樣轉化〔15〕。血管鈣化,礦物質基質的形成又可作用于單核細胞促進炎癥因子的釋放〔16〕。
高血糖、血脂是AS發(fā)生的危險因素,同時也是硬化斑塊鈣化的危險因素。糖尿病患者發(fā)生CAC比非糖尿病患者顯著增加〔17〕。高糖在體外可以通過增加VSMC中Cbfα1轉錄因子的表達,呈時間依賴性促進VSMC的成骨性轉化〔18〕。一項6 093例個體的研究表明高密度脂蛋白膽固醇(HDL-C)與CAC有很好的相關性,要高于低密度脂蛋白膽固醇(LDL-C)〔19〕。Orakzai等〔20〕對非高密度脂蛋白(Non-HDL-C)即包含致冠狀動脈硬化載脂蛋白B的所有顆粒(極低密度脂蛋白、低密度脂蛋白、乳糜顆粒、脂蛋白a等)和LDL-C、HDL-C、甘油三酯進行比較,認為Non-HDL-C和CAC相關性最強。研究表明血清膽紅素水平〔21〕及游離甲狀腺素水平〔22〕和CAC呈負相關,其水平降低是AS斑塊鈣化新的危險因素。
RANKL/OPG參與AS斑塊鈣化的研究較多。RANKL也稱為腫瘤壞死因子超家族成員(TNFSF)11,是前體破骨細胞分化、成熟的啟動因子,其主要生理功能之一是促進破骨細胞分化,刺激破骨細胞活化。在不穩(wěn)定動脈粥樣斑塊中存在RANKL的表達,來源于轉化的VSMC和內皮細胞,這對于斑塊中破骨細胞的生成和功能有重要作用〔23〕。RANKL可以和其跨膜受體RANK結合,通過細胞內信號轉導激活MAPK,NF-κB,調節(jié)多種細胞活性。這些細胞主要是單核細胞來源的破骨細胞前體細胞、T細胞、B細胞和樹突細胞〔24〕。RANKL的促破骨細胞作用使其表現(xiàn)為抗鈣化因子,能夠降低動脈粥樣斑塊的不穩(wěn)定性。然而Sandberg等〔25〕的研究表明RANKL可以增加單核細胞趨化因子(MCP)-1及基質金屬蛋白酶(MMP)的表達從而誘導斑塊的不穩(wěn)定性。因此RANKL在AS的確切機制有待研究。
OPG是破骨細胞生成抑制因子,在骨代謝調節(jié)中起關鍵性作用,可與RANKL高度親和而阻礙RANKL同RANK的結合。OPG基因敲除小鼠有嚴重的骨質疏松,同時2/3的小鼠腎動脈及主動脈中膜發(fā)生鈣化〔26〕。OPG能抑制維生素D誘導血管鈣化小鼠模型的動脈鈣化,而血清中鈣磷濃度沒有發(fā)生變化,表明OPG對血管鈣化的抑制作用不是通過降低血鈣或血磷水平達到的〔27〕。OPG也可抑制載脂蛋白(Apo)E基因缺陷小鼠動脈粥樣硬化斑塊的鈣化〔28〕,表明OPG能夠抑制鈣化,具有保護作用。Dhore等〔29〕對尸解標本的研究發(fā)現(xiàn),在血管骨樣組織鈣沉積周圍的細胞基質中可以檢測到OPG/RANKL,進一步證實OPG/RANKL系統(tǒng)參與 AS和鈣化的過程。Jono等〔30〕檢測了201例行冠狀動脈造影患者的血清OPG水平,研究結果顯示冠狀動脈狹窄的患者血清OPG水平明顯高于無冠狀動脈狹窄者,且隨著冠脈病變支數及嚴重程度增加。Mohammadpour等〔31〕的研究表明血清OPG/RANKL比值和CAC顯著相關,血清OPG/RANKL有可能成為新的預測心血管事件發(fā)生的指標。
OPN、胎球蛋白-A(FA)、人基質γ羧基谷氨酸蛋白(MGP)及瘦素(LP)是除OPG/RANKL系統(tǒng)外和斑塊鈣化有關且在血中可檢測到的蛋白因子。OPN在正常動脈不表達而在鈣化的動脈粥樣斑塊處高表達〔32〕。OPN抑制羥磷灰石的生長,增加其在酸性環(huán)境的分解〔33〕。體外實驗證明OPN敲除小鼠VSMC更易產生鈣化,表明OPN有抑制鈣化的血管保護作用〔34〕。Uz等〔35〕認為血清OPN水平可以評價可疑冠心病人冠狀動脈鈣化程度。Minoretti等〔36〕的研究表明血清OPN水平可以預測穩(wěn)定心絞痛患者不良心血管事件的發(fā)生,具有危險分層的價值。Georgiadou等〔37〕進一步證明血清OPN水平在缺血性心臟疾病有很好預測價值。
FA在肝臟表達后進入血液循環(huán),主要聚集在骨骼。FA的N端富含酸性氨基酸殘基,與堿性磷酸鈣結合形成可溶性無定形膠體微球,從而增加其溶解度,抑制血清過飽和的鈣磷鹽沉積。研究表明VSMC攝取FA后其鈣化能力降低〔38〕。在血液透析患者,低血清FA水平和CAC相關〔39〕。但另一項研究認為血清FA水平和CAC無關〔35〕。
MGP能夠直接抑制血管壁礦物質的沉積,也可通過抑制骨形態(tài)發(fā)生蛋白(BMP)-2和BMP-4的活性抑制VSMC的成骨性轉化〔40,41〕。MGP抑制血管鈣化的活性依賴于其谷氨酸殘基的羧基化,而維生素 K是催化這一反應的必需輔助因子〔42〕。MGP敲除小鼠動脈自發(fā)發(fā)生鈣化,其平滑肌細胞失去一些收縮型標志物,而Cbfa1、OPN及骨鈣素和這些成骨相關的蛋白表達增加〔43〕。一項臨床實驗表明對于可疑冠心病患者,血清MGP水平和CAC呈負相關〔44〕。但另一項研究卻表明血清MGP水平和AS的危險因素相關,而和動脈鈣化無關〔45〕。
LP是一種脂肪組織分泌的肽類激素,進入血液循環(huán)后作用于LP受體,參與糖、脂肪及能量代謝的調節(jié)。LP有增加血管內皮細胞氧自由基生成,促進泡沫細胞形成,誘導內皮細胞增生,MMP表達等多種生物學效應。促進AS發(fā)生發(fā)展〔46,47〕。體外研究表明LP可通過抑制糖原合成酶(GSK)-3β的活性,呈劑量依賴增加VSMC的成骨性轉化〔48〕。在ApoE敲除小鼠動物模型,給予腹腔注射LP能夠促進AS斑塊鈣化的發(fā)生〔49〕。對無臨床癥狀患者及2型糖尿病患者的研究表明血清LP水平獨立于傳統(tǒng)風險因素和 CAC 相關〔50,51〕。Iribarren 等〔52〕的研究表明血清LP水平和年老女性患者的CAC相關,但該作用不是獨立的,和血脂、血壓、胰島素抵抗等其他因素相關。
關于血清炎癥相關因子作為斑塊鈣化的指標有爭議。Hamirani等〔53〕總結了12篇有關血清炎癥因子和CAC的文章,測定的炎癥因子包括C反應蛋白(CRP)、MMP-9、纖維蛋白原、MCP-1、人抵抗素、脂蛋白相關磷脂酶A2(Lp-PLA2)、白細胞介素(IL)-6、腫瘤壞死因子(TNF)-α及成纖維細胞生長因子(bFGF),發(fā)現(xiàn)炎癥因子與斑塊鈣化的關系是微弱的,建議有計劃的大規(guī)模研究。Jenny等〔54〕對6 783例不同種族亞臨床癥狀患者的血IL-6,CRP,纖維蛋白原進行研究,發(fā)現(xiàn)三者和CAC都有一定相關性,但在排除冠心病風險因素后,只有IL-6和CAC相關。最近,一項對455例個體20種炎性因子的研究表明,IL-6、IL-8和 IL-13與 CAC明顯相關,而 CRP缺少聯(lián)系〔55〕。Li等〔56〕認為CAC和炎癥因子CRP的升高可能有著不同的病理生理機制,是兩者缺少相關性的原因。血清炎癥因子的改變和AS斑塊鈣化均與心血管事件的發(fā)生密切相關。
microRNAs(miRNAs)是一種小的內源性非編碼RNA分子,大約由21~25個核苷酸組成。這些小的miRNA通常靶向一個或者多個mRNA,在翻譯水平抑制或斷裂靶mRNAs調節(jié)基因的表達,參與細胞增殖、分化、遷移和調亡。已發(fā)現(xiàn)microRNAs和多種疾病相關。AS斑塊鈣化由多種蛋白因子參與調節(jié),和蛋白表達密切相關的microRNAs必然發(fā)揮重要作用。已發(fā)現(xiàn)microRNAs參與VSMC的表型轉化。
miR-204在心肌及 VSMC中表達。Cui等〔57〕培養(yǎng)小鼠VSMC細胞發(fā)現(xiàn)miR-204在β-甘油磷酸鹽誘導的VSMC鈣化過程中顯著下降,認為miR-204與鈣化發(fā)生相關。堿性磷酸酶(ALP)是破骨細胞分化前期的標志,骨鈣素是成骨細胞分化中期既骨基質形成階段的標志。抑制miR-204能夠增加VSMC的ALP、骨鈣素及Runx2的表達。相反,過表達miR-204能抑制VSMC的鈣化。Runx2是成骨細胞分化重要轉錄因子。進一步研究證明miR-204是通過下調Runx2抑制VSMC鈣化。miR-125b是除miR-145、miR-23、miR-143外在動脈表達豐富的microRNA之一。培養(yǎng)人冠狀動脈VSMC在成骨性轉化過程中miR-125b的表達明顯下降,抑制內源性miR-125b可以增加VSMC ALP的表達及基質的礦物質化。在體內,ApoE敲除誘導的小鼠動脈鈣化模型中,miR-125b含量顯著下降。miR-125b參與了VSMC的成骨性轉化,該作用可能是通過SP7轉錄因子實現(xiàn)的〔58〕。最近 Gui等〔59〕應用血管鈣化動物模型篩選出miR-135a、miR-762、miR-714和 miR-712為差異表達 microRNAs,并在體外培養(yǎng)VSMC中進行證實。這些microRNA的作用靶點為NCX1、PMCA1和 NCKX4,它們均為和Ca離子通道相關蛋白。miR-135a、miR-762、miR-714和 miR-712與 Ca及 Pi誘導的VSMC成骨性轉變相關。
AS斑塊鈣化的發(fā)生是多種蛋白因子及microRNAs相互作用的結果,對其發(fā)病機制的了解,有利于尋找血清標志物幫助臨床診斷及危險分層,并為靶向藥物治療提供線索,對于降低急性心血管事件的發(fā)生非常重要。
1 Shemesh J,Koren-Morag N,Apter S,et al.Accelerated progression of coronary calcification:four-year follow-up in patients with stable coronary artery disease〔J〕.Radiology,2004;233(1):201-9.
2 Georgiou D,Budoff MJ,Kaufer E,et al.Screening patients with chest pain in the emergency department using electron beam tomography:a follow-up study〔J〕.J Am Coll Cardiol,2001;38(1):105-10.
3 Nance JW Jr,Schlett CL,Schoepf UJ,et al.Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain〔J〕.Radiology,2012;264(3):679-90.
4 Rijlaarsdam-Hermsen D,Kuijpers D,van Dijkman PRM.Diagnostic and prognostic value of absence of coronary artery calcification in patients with stable chest symptoms〔J〕.Neth Heart J,2011;19(5):223-8.
5 Budoff MJ,Shaw LJ,Liu ST,et al.Long-term prognosis associated with coronary calcification:observations from a registry of 25,253 patients〔J〕.J Am Coll Cardiol,2007;49(18):1860-70.
6 Arad Y,Goodman KJ,Roth M,et al.Coronary calcifi cation,coronary disease risk factors,C-reactive protein,and atherosclerotic cardiovascular disease events:the St.Francis Heart Study〔J〕.J Am Coll Cardiol,2005;46(1):158-65.
7 Mieres JH,Shaw LJ,Arai A,et al.Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease:consensus statement from the Cardiac Imaging Committee,Council on Clinical Cardiology,and the Cardiovascular Imaging and Intervention Committee,Council on Cardiovascular Radiology and Intervention,American Heart Association〔J〕.Circulation,2005;111(5):682-96.
8 De Backer G,Ambrosioni E,Borch-Johnsen K,et al.European guidelines on cardiovascular disease prevention in clinical practice.Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice〔J〕.Eur Heart J,2003;24(17):1601-10.
9 Bobryshev YV.Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ:implications for diffuse intimal calcification〔J〕.J Pathol,2005;205(5):641-50.
10 Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification upregulation of cbfa1 and downregulation of smooth muscle lineage markers〔J〕.Circ Res,2001;89(12):1147-54.
11 Nakano-Kurimoto R,Ikeda K,Uraoka M,et al.Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition〔J〕.Am J Physiol Heart Circ Physiol,2009;297(5):H1673-84.
12 Byon CH,Javed A,Dai Q,et al.Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling〔J〕.J Biol Chem,2008;283(22):15319-27.
13 Parhami F,Basseri B,Hwang J,et al.High-density lipoprotein regulates calcification of vascular cells〔J〕.Circ Res,2002;91(7):570-6.
14 Abedin M,Lim J,Tang TB,et al.N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways〔J〕.Circ Res,2006;98(6):727-9.
15 Bear M,Butcher M,Shaughnessy SG.Oxidized low-density lipoprotein acts synergy istically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells〔J〕.J Cell Biochem,2008;105(1):185-93.
16 Nadra I,Mason JC,Philippidis P,et al.Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways:a vicious cycle of inflammation and arterial calcification〔J〕?Circ Res,2005;96(12):1248-56.
17 Rydén L.What are the risk factors for progression of coronary artery calcification in patients with type 2 diabetes〔J〕?Nat Clin Pract Cardiovasc Med,2008;5(7):370-1.
18 Chen NX,Duan D,O'Neill KD,et al.High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells〔J〕.Nephrol Dial Transplant.2006;21(12):3435-42.
19 Allison MA,Wright CM.A comparison of HDL and LDL cholesterol for prevalent coronary calcification〔J〕.Int J Cardiol,2004;95(1):55-60.
20 Orakzai SH,Nasir K,Blaha M,et al.Non-HDL cholesterol is strongly associated with coronary artery calcification in asymptomatic individuals〔J〕.Atherosclerosis,2009;202(1):289-95.
21 Zhang ZY,Bian LQ,Kim SJ,et al.Inverse relation of total serum bilirubin to coronary artery calcification score detected by multidetector computed tomography in males〔J〕.Clin Cardiol,2012;35(5):301-6.
22 Kim ES,Shin JA,Shin JY,et al.Association between low serum free thyroxine concentrations and coronary artery calcification in healthy euthyroid subjects〔J〕.Thyroid,2012;22(9):870-6.
23 Tintut Y,Demer L.Role of osteoprotegerin and its ligands and competing receptors in atherosclerotic calcification〔J〕.J Investig Med,2006;54(7):395-401.
24 Montecucco F,Steffens S,Mach F.The immune response is involved in atherosclerotic plaque calcification:could the RANKL/RANK/OPG system be a marker of plaque instability〔J〕?Clin Dev Immunol,2007;2007:75805.
25 Sandberg WJ,Yndestad A,Qie E,et al.Enhanced T-cell expression of RANK ligand in acute coronary syndrome:possible role in plaque destabilization〔J〕.Arterioscler Thromb Vasc Biol,2006;26(4):857-63.
26 Bucay N,Sarosi I,Dunstan CR,et al.Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification〔J〕.Genes Dev,1998;12(9):1260-8.
27 Price PA,June HH,Buckley JR,et al.Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D〔J〕.Arterioscler Thromb Vasc Biol,2001;21(10):1610-6.
28 Bennett BJ,Scatena M,Kirk EA,et al.Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/-mice〔J〕.Arterioscler Thromb Vasc Biol,2006;26(9):2117-24.
29 Dhore CR,Cleutjens JP,Lutgens E,et al.Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques〔J〕.Arterioscler Thromb Vasc Biol,2001;21(12):1998-2003.
30 Jono S,Ikari Y,Shioi A,et al.Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease〔J〕.Circulation,2002;106(10):1192-4.
31 Mohammadpour AH,Shamsara J,Nazemi S,et al.Evaluation of RANKL/OPG serum concentration ratio as a new biomarker for coronary artery calcification:a pilot study〔J〕.Thrombosis,2012;2012:306263.
32 Cho HJ,Kim HS.Osteopontin:a multifunctional protein at the crossroads of inflammation,atherosclerosis,and vascular calcification〔J〕.Curr Atheroscler Rep,2009;11(3):206-13.
33 Steitz SA,Speer MY,McKee MD,et al.Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification〔J〕.Am J Pathol,2002;161(6):2035-46.
34 Speer MY,Chien YC,Quan M,et al.Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro〔J〕.Cardiovasc Res,2005;66(2):324-33.
35 Uz O,Kardesoglu E,Yiginer O,et al.The relationship between coronary calcification and the metabolic markers of osteopontin,fetuin-A,and visfatin〔J〕.Turk Kardiyol Dern Ars,2009;37(6):397-402.
36 Minoretti P,F(xiàn)alcone C,Calcagnino M,et al.Prognostic significance of plasma osteopontin levels in patients with chronic stable angina〔J〕.Eur Heart J,2006;27(7):802-7.
37 Georgiadou P,Iliodromitis EK,Kolokathis F,et al.Osteopontin as a novel prognostic marker in stable ischaemic heart disease:a 3-year followup study〔J〕.Eur J Clin Invest,2010;40(4):288-93.
38 Reynolds JL,Skepper JN,McNair R,et al.Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification〔J〕.J Am Soc Nephrol,2005;16(10):2920-30.
39 El-Shehaby AM,Zakaria A,El-Khatib M,et al.Association of fetuin-A and cardiac calcification and inflammation levels in hemodialysis patients〔J〕.Scand J Clin Lab Invest,2010;70(8):575-82.
40 Zebboudj AF,Imura M,Bostrom K.Matrix GLA protein,a regulatory protein for bone morphogenetic protein-2〔J〕.J Biol Chem,2002;277(6):4388-94.
41 Yao Y,Watson AD,Ji S,et al.Heat shock protein 70 enhances vascular bone morphogenetic protein-4 signaling by binding matrix Gla protein〔J〕.Circ Res,2009;105(6):575-84.
42 Hackeng TM,Rosing J,Spronk HM,et al.Total chemical synthesis of human matrix Gla protein〔J〕.Protein Sci,2001;10(4):864-70.
43 Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification:upregulation of Cbfa1 and downregulation of smooth muscle lineage markers〔J〕.Circ Res,2001;89(12):1147-54.
44 Jono S,Ikari Y,Vermeer C,et al.Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography〔J〕.Thromb Haemost,2004;91(4):790-4.
45 O'Donnell CJ,Shea MK,Price PA,et al.Matrix Gla protein is associated with risk factors for atherosclerosis but not with coronary artery calcification〔J〕.Arterioscler Thromb Vasc Biol,2006;26(12):2769-74.
46 Park HY,Kwon HM,Lim HJ,et al.Potential role of leptin in angiogenesis:leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro〔J〕.Exp Mol Med,2001;33(2):95-102.
47 Yamagishi SI,Edelstein D,Du XL,et al.Leptin induces mitochondrial superoxide production andmonocyte themoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A〔J〕.J Biol Chem,2001;276(27):25096-100.
48 Zeadin MG,Butcher MK,Shaughnessy SG,et al.Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase(GSK)-3β〔J〕.Biochem Biophys Res Commun,2012;425(4):924-30.
49 Zeadin M,Butcher M,Werstuck G,et al.Effect of leptin on vascular calcification in apolipoprotein E-deficient mice〔J〕.Arterioscler Thromb Vasc Biol,2009;29(12):2069-75.
50 Qasim A,Mehta NN,Tadesse MG,et al.Adipokines,insulin resistance,and coronary artery calcification〔J〕.J Am Coll Cardiol,2008;52(3):231-6.
51 Reilly MP,Iqbal N,Schutta M,et al.Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes〔J〕.J Clin Endocrinol Metab,2004;89(8):3872-978.
52 Iribarren C,Husson G,Go AS,et al.Plasma leptin levels and coronary artery calcification in older adults〔J〕.J Clin Endocrinol Metab,2007;92(2):729-32.
53 Hamirani YS,Pandey S,Rivera JJ,et al.Markers of inflammation and coronary artery calcification:a systematic review〔J〕.Atherosclerosis,2008;201(1):1-7.
54 Jenny NS,Brown ER,Detrano R,et al.Associations of inflammatory markers with coronary artery calcification:results from the Multi-Ethnic Study of Atherosclerosis〔J〕.Atherosclerosis,2010;209(1):226-9.
55 Raaz-Schrauder D,Klinghammer L,Baum C,et al.Association of systemic inflammation markers with the presence and extent of coronary artery calcification〔J〕.Cytokine,2012;57(2):251-7.
56 Li JJ,Zhu CG,Yu B,et al.The role of inflammation in coronary artery calcification〔J〕.Ageing Res Rev,2007;6(4):263-70.
57 Cui RR,Li SJ,Liu LJ,Yi L,et al.MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo〔J〕.Cardiovasc Res,2012;96(2):320-9.
58 Goettsch C,Rauner M,Pacyna N,et al.miR-125b regulates calcification of vascular smooth muscle cells〔J〕.Am J Pathol,2011;179(4):1594-600.
59 Gui T,Zhou G,Sun Y,et al.MicroRNAs that target Ca(2+)transporters are involved in vascular smooth muscle cell calcification〔J〕.Lab Invest,2012;92(9):1250-9.