陳鵬++李筍??
摘 要 本文設(shè)計(jì)了一種亞式風(fēng)格的可重置執(zhí)行價(jià)格期權(quán);嚴(yán)格證明了可重置執(zhí)行邊界的存在性,以及連續(xù)區(qū)域與重置區(qū)域的單連通性;利用HartmanWatson分布,寫(xiě)出了可重置期權(quán)的定價(jià)公式,并利用此公式給出了可重置執(zhí)行邊界的一種新的數(shù)值算法.
關(guān)鍵詞 市場(chǎng)流動(dòng)性;亞式可重置期權(quán);重置執(zhí)行邊界;重置執(zhí)行紅利;新型遞歸積分法
中圖分類號(hào) F224.7 文獻(xiàn)標(biāo)識(shí)碼 A
One Resettable Striking Price Options
Design of Asian Style
CHEN Peng ,LI Sun
(College of Mathematic and Econometrics Hunan University , Changsha, Hunan 410082,China)
Abstract This paper designed one kind of resettable strike price options with Asian style, and proved strictly the existence of resetting boundary and the simple connectedness of continuation region and resetting region. Making use of HartmanWatson distribution, the pricing formula of resettable strike price options was written out, and a new numerical algorithm for resetting boundary utilizing this formula was given.
Key words market liquidity; Asian resettable options; resetting boundary; resetting premium; new recursive integral method
1 引 言
當(dāng)今世界,金融衍生產(chǎn)品主要以美式產(chǎn)品為主,因?yàn)樗鼈儽葰W式品有更大的交易靈活性,受到越來(lái)越多投資者青睞.美式產(chǎn)品很豐富,除了傳統(tǒng)的普通美式看漲、看跌期權(quán),人們創(chuàng)造了各種奇異性的美式期權(quán).比如,在金融期權(quán)領(lǐng)域有:美式亞式期權(quán)[1]、俄羅斯期權(quán)[2]、美式巴黎期權(quán)[3]、以色列期權(quán)[4]、不列顛期權(quán)[5]、各種抵押貸款等[6];在實(shí)物期權(quán)領(lǐng)域有各種早期執(zhí)行機(jī)會(huì)[7]、變更條約條款[8]等.盡管美式品日益成為主流,但部分投資者,仍然會(huì)選擇歐式品,比如大宗原料、能源進(jìn)出口條約,因?yàn)檫@里頭很大部分購(gòu)買者是風(fēng)險(xiǎn)對(duì)沖者,他們不關(guān)心價(jià)格的波動(dòng),只要能對(duì)沖掉風(fēng)險(xiǎn)就好;而另一部分人是純正的期權(quán)投資者,甘愿暴露在價(jià)格波動(dòng)的風(fēng)險(xiǎn)下,但又承擔(dān)不了美式期權(quán)昂貴的價(jià)格.
以普通歐式看漲為例,若在接近到期日前資產(chǎn)價(jià)格S遠(yuǎn)低于執(zhí)行價(jià)格K,則歐式期權(quán)價(jià)值幾乎為零,因?yàn)槭袌?chǎng)翻轉(zhuǎn)的機(jī)會(huì)不大.純正的看漲權(quán)購(gòu)買者陷入流動(dòng)性風(fēng)險(xiǎn),因?yàn)橄胭u掉期權(quán)也很難.為增加市場(chǎng)流動(dòng)性,金融工程師們?cè)O(shè)計(jì)了諸如shout floor[9],reset strike put(call)[10],multiple reset rights[11],geometric average trigger reset options[12]、the British put option等等具有內(nèi)生可抗流動(dòng)性風(fēng)險(xiǎn)條款的新期權(quán).這些期權(quán)中大部分本質(zhì)上來(lái)說(shuō)是另外一種美式期權(quán),只不過(guò)它賭的不完全是資產(chǎn)在未來(lái)某一個(gè)時(shí)刻價(jià)格,還有隨機(jī)化的參數(shù).這樣的期權(quán)具有更大的奇異性,需要更多的定價(jià)技巧.
本文設(shè)計(jì)的新期權(quán)屬于可變更合約條款類期權(quán),這一類產(chǎn)品設(shè)計(jì)思想是通過(guò)改變?cè)己霞s條款中的某些參數(shù)值,賦予投資者更多的選擇權(quán)利.在香港市場(chǎng)上常見(jiàn)的產(chǎn)品有shout floor、reset strike put(call),其中,reset strike put 就是在普通看跌期權(quán)基礎(chǔ)上,讓期權(quán)購(gòu)買者在合約期限內(nèi)有限次改變交割價(jià)格的一種新期權(quán),它能讓已經(jīng)進(jìn)入“死態(tài)”的期權(quán)“復(fù)活”,所以比普通的看跌權(quán)更昂貴.重置條款既可以是手動(dòng)的,也可以是自動(dòng)的[8,12],后者本質(zhì)上還是歐式權(quán),而前者卻是美式權(quán).重置條款也可以選擇其他參數(shù),比如延長(zhǎng)交易時(shí)間,這在實(shí)物期權(quán)領(lǐng)域很常見(jiàn);利率相關(guān)產(chǎn)品也可以考慮更改借貸款利率.[9-11]考慮了將交割價(jià)格置換為當(dāng)前價(jià)格的設(shè)計(jì),本文設(shè)計(jì)的新期權(quán)在文獻(xiàn)[10]基礎(chǔ)上擴(kuò)展,將交割價(jià)格置換為過(guò)去一段時(shí)間的平均值,這樣可以減少將來(lái)后悔的可能,這正是亞式風(fēng)格期權(quán)設(shè)計(jì)的思想.新產(chǎn)品能繼承文獻(xiàn)[10]中產(chǎn)品關(guān)于增強(qiáng)市場(chǎng)流動(dòng)性的功能,同時(shí),因?yàn)槭莵喪皆O(shè)計(jì),故比reset strike call更便宜[3].這就是本文選題的出發(fā)點(diǎn).本文采用手動(dòng)停止設(shè)計(jì),本質(zhì)是美式期權(quán).
2 模型假設(shè)
假設(shè)市場(chǎng)上存在兩種可交易資產(chǎn),風(fēng)險(xiǎn)資產(chǎn)和無(wú)風(fēng)險(xiǎn)資產(chǎn).無(wú)風(fēng)險(xiǎn)資產(chǎn)Bt一般假定就是貨幣市場(chǎng)賬戶,它的動(dòng)力學(xué)方程為:
參考文獻(xiàn)
[1] G PESKIR , N UYS. On Asian Options of American type[C]//Exotic Option Pricing and Advanced Levy Models. Eindhoven: John Wiley, 2005: 217-235.
[2] G PESKIR, A N SHIRYAEV. Optimal stopping and freeboundary problems[M]. Lectures in Mathematics ETH Zurich: Birkhauser,2006.endprint
[3] 郭宇權(quán).金融衍生產(chǎn)品數(shù)學(xué)模型[M].第2版.北京:世界圖書(shū)出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權(quán)定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2013,30(2):55-62.
[23]邢迎春.CARA效用函數(shù)下美式期權(quán)的定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2011,28(1):18-20.
[24]梅樹(shù)立.求解非線性BlackScholes模型的自適應(yīng)小波精細(xì)積分法[J].經(jīng)濟(jì)數(shù)學(xué),2012,29(4):8-14.
[25]科森多爾.隨機(jī)微分方程[M].第6版.北京:世界圖書(shū)出版公司北京公司,2006:139-140.endprint
[3] 郭宇權(quán).金融衍生產(chǎn)品數(shù)學(xué)模型[M].第2版.北京:世界圖書(shū)出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權(quán)定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2013,30(2):55-62.
[23]邢迎春.CARA效用函數(shù)下美式期權(quán)的定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2011,28(1):18-20.
[24]梅樹(shù)立.求解非線性BlackScholes模型的自適應(yīng)小波精細(xì)積分法[J].經(jīng)濟(jì)數(shù)學(xué),2012,29(4):8-14.
[25]科森多爾.隨機(jī)微分方程[M].第6版.北京:世界圖書(shū)出版公司北京公司,2006:139-140.endprint
[3] 郭宇權(quán).金融衍生產(chǎn)品數(shù)學(xué)模型[M].第2版.北京:世界圖書(shū)出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權(quán)定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2013,30(2):55-62.
[23]邢迎春.CARA效用函數(shù)下美式期權(quán)的定價(jià)[J].經(jīng)濟(jì)數(shù)學(xué),2011,28(1):18-20.
[24]梅樹(shù)立.求解非線性BlackScholes模型的自適應(yīng)小波精細(xì)積分法[J].經(jīng)濟(jì)數(shù)學(xué),2012,29(4):8-14.
[25]科森多爾.隨機(jī)微分方程[M].第6版.北京:世界圖書(shū)出版公司北京公司,2006:139-140.endprint