亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        梯形直覺(jué)模糊數(shù)排序方法及在多屬性決策中應(yīng)用

        2014-10-27 19:12:13南江霞
        經(jīng)濟(jì)數(shù)學(xué) 2014年3期

        南江霞

        摘 要 基于梯形直覺(jué)模糊數(shù)的值和模糊度兩個(gè)特征,一類梯形直覺(jué)模糊數(shù)的排序方法被研究.首先,給出了梯形直覺(jué)模糊數(shù)的定義、運(yùn)算法則和截集.其次,定義了梯形直覺(jué)模糊數(shù)關(guān)于隸屬度和非隸屬度的值和模糊度,以及值的指標(biāo)和模糊度的指標(biāo).最后,給出了梯形直覺(jué)模糊數(shù)的排序方法,并將其應(yīng)用到屬性值為梯形直覺(jué)模糊數(shù)的多屬性決策問(wèn)題中.

        關(guān)鍵詞 梯形直覺(jué)模糊數(shù);梯形直覺(jué)模糊數(shù)的排序;多屬性決策

        中圖分類號(hào) C934 文獻(xiàn)標(biāo)識(shí)碼 A

        A Ranking Method of Trapezoidal Intuitionistic Fuzzy

        Numbers and the Application to Decision Making

        NAN Jiangxia

        (School of Mathematics and Computing Science,Guilin University of Electronic Technology, Guilin, Guangxi 541004,China)

        Abstract The ranking of trapezoidal intuitionistic fuzzy numbers (TIFNs) was solved by the value and ambiguity based ranking method developed in this paper. Firstly, the concept of TIFNs was introduced, and arithmetic operations and cut sets over TIFNs were investigated. Then, the values and ambiguities of the membership degree and the non-membership degree for TIFNs were defined as well as the valueindex and ambiguityindex. Finally, a value and ambiguity based ranking method was developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes were expressed using TIFNs. A numerical example was examined to demonstrate the implementation process and applicability of the method proposed.

        Key words trapezoidal intuitionistic fuzzy number; ranking of trapezoidal intuitionistic fuzzy numbers; multiattribute decision making

        1 引 言

        Atanassov[1,2]提出的直覺(jué)模糊集(intuitionistic fuzzy)是模糊集的擴(kuò)展,引起許多學(xué)者的關(guān)注,取得了大量研究成果.直覺(jué)模糊集已經(jīng)被成功應(yīng)用到一些領(lǐng)域,如:多屬性決策[3,4]、醫(yī)療診斷[5]、模式識(shí)別[6]等領(lǐng)域.直覺(jué)模糊數(shù)是一類特殊的直覺(jué)模糊集,更容易表示一些實(shí)際問(wèn)題中的不確定的量.直覺(jué)模糊數(shù)受到了一些研究者的關(guān)注,已經(jīng)定義了幾種類形的直覺(jué)模糊數(shù)及其相應(yīng)的排序方法. Mitchell[7]將直覺(jué)模糊數(shù)定義為模糊數(shù)的全體,介紹了一個(gè)直覺(jué)模糊數(shù)的排序方法. Nayagam et al [8] 定義了一類直覺(jué)模糊數(shù),將Chen 與 Hwang[9]提出的模糊數(shù)的得分(scoring)推廣到直覺(jué)模糊數(shù),給出了直覺(jué)模糊數(shù)的排序方法. Grzegoraewski[10] 定義了一類直覺(jué)模糊數(shù)及其期望區(qū)間,并給出了一種直覺(jué)模糊數(shù)的排序方法. Shu 等[11] 通過(guò)增加一個(gè)非隸屬度,定義了一類三角直覺(jué)模糊數(shù),但沒(méi)有給出其排序方法. Nan[12]等研究了文獻(xiàn)[11]的三角直覺(jué)模糊數(shù)的均值排序方法,并將該方法應(yīng)用于直覺(jué)模糊矩陣對(duì)策問(wèn)題. Li[13]進(jìn)一步研究了三角直覺(jué)模糊數(shù)的比率排序方法,并將該方法應(yīng)用于多屬性決策問(wèn)題.Zhang[14]等研究了三角直覺(jué)模糊數(shù)的折中率排序方法,并將該方法應(yīng)用于多屬性決策問(wèn)題.梯形直覺(jué)模糊數(shù)是三角模糊數(shù)的推廣,王堅(jiān)強(qiáng)等[15]將文獻(xiàn)[11]中的三角直覺(jué)模糊數(shù)的定義推廣到梯形直覺(jué)模糊數(shù),并根據(jù)梯形直覺(jué)模糊數(shù)的期望值區(qū)間對(duì)此類梯形直覺(jué)模糊數(shù)進(jìn)行排序.萬(wàn)樹(shù)平[16]等研究方案屬性值為梯形直覺(jué)模糊數(shù)的多屬性群決策問(wèn)題,給出了一種基于可能性均值-方差的梯形直覺(jué)模糊數(shù)的排序方法.目前研究梯形直覺(jué)模糊數(shù)排序的文獻(xiàn)比較匱乏.因此,本文研究一類梯形直覺(jué)模糊數(shù)的排序方法,將該方法應(yīng)用到多屬性決策問(wèn)題中.本文提出的方法根據(jù)梯形直覺(jué)模糊數(shù)的值和模糊度(ambiguity)的指標(biāo),將梯形直覺(jué)模糊數(shù)的排序轉(zhuǎn)化為實(shí)數(shù)的比較,方法原理簡(jiǎn)單、計(jì)算量小、易于實(shí)現(xiàn).

        2 梯形直覺(jué)模糊數(shù)的基本概念

        2.1 梯形直覺(jué)模糊數(shù)的定義與運(yùn)算法則

        梯形直覺(jué)模糊數(shù)是特殊的直覺(jué)模糊數(shù),又是三角直覺(jué)模糊數(shù)和梯形模糊數(shù)的推廣,其表述簡(jiǎn)單,在模糊決策問(wèn)題中便于表示不確定的量.首先給出梯形直覺(jué)模糊數(shù)的定義為:

        5 小 結(jié)

        本文討論了梯形直覺(jué)模糊數(shù)的兩個(gè)特征:值與模糊度,定義了梯形直覺(jué)模糊數(shù)的值的指標(biāo)和模糊度的指標(biāo).基于這兩個(gè)指標(biāo)給出了梯形直覺(jué)模糊數(shù)的排序方法.并且將提出的排序方法用于解決屬性值為梯形直覺(jué)模糊數(shù)的多屬性決策問(wèn)題,說(shuō)明提出的排序方法容易實(shí)施且有直觀的解釋. 由于梯形直覺(jué)模糊數(shù)是梯形模糊數(shù)的推廣,其他已有的梯形模糊數(shù)的排序方法也可以拓展到梯形直覺(jué)模糊數(shù)的排序中,今后將研究更有效的梯形直覺(jué)模糊數(shù)的排序方法.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        在线高清精品第一区二区三区| 日本精品一区二区三区在线播放| 国产精品一级av一区二区| 久久国产精品国语对白| 7194中文乱码一二三四芒果| 亚洲一区在线二区三区| 欧美xxxxx高潮喷水| 久久和欧洲码一码二码三码| 99久久99久久精品国产片果冻| 先锋影音av资源我色资源| 久久这里有精品国产电影网| 国产一区二区三区再现| 一区二区三区日本高清| 性色视频加勒比在线观看| 国产成本人片无码免费2020| 久久精品视频在线看99| 国产91精品成人不卡在线观看| 不卡视频一区二区三区| 亚洲AV永久无码精品一区二国 | 免费大学生国产在线观看p| 亚洲a级视频在线播放| 久久性爱视频| 亚洲色自偷自拍另类小说| 亚洲成AV人片在一线观看| 国产精品一区二区三区四区亚洲 | 少妇被猛烈进入中文字幕 | 在线观看视频日本一区二区三区 | 精品国产一区二区三区av性色| 男男性恋免费视频网站| 亚洲人成网站在线观看播放| 久久国产A∨一二三| 麻婆视频在线免费观看| 国产白嫩护士被弄高潮| 亚洲欧美日本| 丁香九月综合激情| 丝袜美腿国产一区二区| 欧美伦费免费全部午夜最新| 日日噜噜夜夜狠狠久久无码区 | 亚洲成人精品久久久国产精品| 国产日韩欧美一区二区东京热| 亚洲精品无码久久久久秋霞|