亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        梯形直覺(jué)模糊數(shù)排序方法及在多屬性決策中應(yīng)用

        2014-10-27 19:12:13南江霞
        經(jīng)濟(jì)數(shù)學(xué) 2014年3期

        南江霞

        摘 要 基于梯形直覺(jué)模糊數(shù)的值和模糊度兩個(gè)特征,一類梯形直覺(jué)模糊數(shù)的排序方法被研究.首先,給出了梯形直覺(jué)模糊數(shù)的定義、運(yùn)算法則和截集.其次,定義了梯形直覺(jué)模糊數(shù)關(guān)于隸屬度和非隸屬度的值和模糊度,以及值的指標(biāo)和模糊度的指標(biāo).最后,給出了梯形直覺(jué)模糊數(shù)的排序方法,并將其應(yīng)用到屬性值為梯形直覺(jué)模糊數(shù)的多屬性決策問(wèn)題中.

        關(guān)鍵詞 梯形直覺(jué)模糊數(shù);梯形直覺(jué)模糊數(shù)的排序;多屬性決策

        中圖分類號(hào) C934 文獻(xiàn)標(biāo)識(shí)碼 A

        A Ranking Method of Trapezoidal Intuitionistic Fuzzy

        Numbers and the Application to Decision Making

        NAN Jiangxia

        (School of Mathematics and Computing Science,Guilin University of Electronic Technology, Guilin, Guangxi 541004,China)

        Abstract The ranking of trapezoidal intuitionistic fuzzy numbers (TIFNs) was solved by the value and ambiguity based ranking method developed in this paper. Firstly, the concept of TIFNs was introduced, and arithmetic operations and cut sets over TIFNs were investigated. Then, the values and ambiguities of the membership degree and the non-membership degree for TIFNs were defined as well as the valueindex and ambiguityindex. Finally, a value and ambiguity based ranking method was developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes were expressed using TIFNs. A numerical example was examined to demonstrate the implementation process and applicability of the method proposed.

        Key words trapezoidal intuitionistic fuzzy number; ranking of trapezoidal intuitionistic fuzzy numbers; multiattribute decision making

        1 引 言

        Atanassov[1,2]提出的直覺(jué)模糊集(intuitionistic fuzzy)是模糊集的擴(kuò)展,引起許多學(xué)者的關(guān)注,取得了大量研究成果.直覺(jué)模糊集已經(jīng)被成功應(yīng)用到一些領(lǐng)域,如:多屬性決策[3,4]、醫(yī)療診斷[5]、模式識(shí)別[6]等領(lǐng)域.直覺(jué)模糊數(shù)是一類特殊的直覺(jué)模糊集,更容易表示一些實(shí)際問(wèn)題中的不確定的量.直覺(jué)模糊數(shù)受到了一些研究者的關(guān)注,已經(jīng)定義了幾種類形的直覺(jué)模糊數(shù)及其相應(yīng)的排序方法. Mitchell[7]將直覺(jué)模糊數(shù)定義為模糊數(shù)的全體,介紹了一個(gè)直覺(jué)模糊數(shù)的排序方法. Nayagam et al [8] 定義了一類直覺(jué)模糊數(shù),將Chen 與 Hwang[9]提出的模糊數(shù)的得分(scoring)推廣到直覺(jué)模糊數(shù),給出了直覺(jué)模糊數(shù)的排序方法. Grzegoraewski[10] 定義了一類直覺(jué)模糊數(shù)及其期望區(qū)間,并給出了一種直覺(jué)模糊數(shù)的排序方法. Shu 等[11] 通過(guò)增加一個(gè)非隸屬度,定義了一類三角直覺(jué)模糊數(shù),但沒(méi)有給出其排序方法. Nan[12]等研究了文獻(xiàn)[11]的三角直覺(jué)模糊數(shù)的均值排序方法,并將該方法應(yīng)用于直覺(jué)模糊矩陣對(duì)策問(wèn)題. Li[13]進(jìn)一步研究了三角直覺(jué)模糊數(shù)的比率排序方法,并將該方法應(yīng)用于多屬性決策問(wèn)題.Zhang[14]等研究了三角直覺(jué)模糊數(shù)的折中率排序方法,并將該方法應(yīng)用于多屬性決策問(wèn)題.梯形直覺(jué)模糊數(shù)是三角模糊數(shù)的推廣,王堅(jiān)強(qiáng)等[15]將文獻(xiàn)[11]中的三角直覺(jué)模糊數(shù)的定義推廣到梯形直覺(jué)模糊數(shù),并根據(jù)梯形直覺(jué)模糊數(shù)的期望值區(qū)間對(duì)此類梯形直覺(jué)模糊數(shù)進(jìn)行排序.萬(wàn)樹(shù)平[16]等研究方案屬性值為梯形直覺(jué)模糊數(shù)的多屬性群決策問(wèn)題,給出了一種基于可能性均值-方差的梯形直覺(jué)模糊數(shù)的排序方法.目前研究梯形直覺(jué)模糊數(shù)排序的文獻(xiàn)比較匱乏.因此,本文研究一類梯形直覺(jué)模糊數(shù)的排序方法,將該方法應(yīng)用到多屬性決策問(wèn)題中.本文提出的方法根據(jù)梯形直覺(jué)模糊數(shù)的值和模糊度(ambiguity)的指標(biāo),將梯形直覺(jué)模糊數(shù)的排序轉(zhuǎn)化為實(shí)數(shù)的比較,方法原理簡(jiǎn)單、計(jì)算量小、易于實(shí)現(xiàn).

        2 梯形直覺(jué)模糊數(shù)的基本概念

        2.1 梯形直覺(jué)模糊數(shù)的定義與運(yùn)算法則

        梯形直覺(jué)模糊數(shù)是特殊的直覺(jué)模糊數(shù),又是三角直覺(jué)模糊數(shù)和梯形模糊數(shù)的推廣,其表述簡(jiǎn)單,在模糊決策問(wèn)題中便于表示不確定的量.首先給出梯形直覺(jué)模糊數(shù)的定義為:

        5 小 結(jié)

        本文討論了梯形直覺(jué)模糊數(shù)的兩個(gè)特征:值與模糊度,定義了梯形直覺(jué)模糊數(shù)的值的指標(biāo)和模糊度的指標(biāo).基于這兩個(gè)指標(biāo)給出了梯形直覺(jué)模糊數(shù)的排序方法.并且將提出的排序方法用于解決屬性值為梯形直覺(jué)模糊數(shù)的多屬性決策問(wèn)題,說(shuō)明提出的排序方法容易實(shí)施且有直觀的解釋. 由于梯形直覺(jué)模糊數(shù)是梯形模糊數(shù)的推廣,其他已有的梯形模糊數(shù)的排序方法也可以拓展到梯形直覺(jué)模糊數(shù)的排序中,今后將研究更有效的梯形直覺(jué)模糊數(shù)的排序方法.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        參考文獻(xiàn)

        [1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

        [2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.

        [3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.

        [4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.

        [5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.

        [6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.

        [7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.

        [8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.

        [9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.

        [10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.

        [11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.

        [12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.

        [13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.

        [14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.

        [15]王堅(jiān)強(qiáng), 張忠. 基于直覺(jué)模糊數(shù)的信息不完全的多準(zhǔn)則規(guī)劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.

        [16]萬(wàn)樹(shù)平, 董九英. 多屬性群決策的直覺(jué)梯形模糊數(shù)法[J]. 控制與決策, 2010, 25(5): 773-776.

        [17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.

        [18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數(shù)預(yù)測(cè)[J]. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 106-110.

        [19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint

        伊人激情av一区二区三区| 成人国产一区二区三区av| 日韩人妻av不卡一区二区三区 | 免费a级毛片18禁网站| 亚洲人成网站18禁止久久影院| 国内精品无码一区二区三区| 在线一区不卡网址观看| 精品一区二区三区人妻久久| 亚洲男人免费视频网站| 久久天天躁狠狠躁夜夜躁2014| 亚洲av无码乱码国产麻豆穿越| 国产精品自在在线午夜出白浆| 国产亚洲精品综合在线网站| 浓毛老太交欧美老妇热爱乱| 精品无码无人网站免费视频 | 国产免费资源| 日韩欧美精品有码在线观看 | 欧美在线 | 亚洲| 国产系列丝袜熟女精品视频| 国产一区二区三区亚洲天堂| 亚洲成年国产一区二区| 一本色道久久综合无码人妻| 欧美伊人网| 国产一区二区三区涩涩| 男奸女永久免费视频网站 | 日本亚洲视频一区二区三区| 精品人妻中文无码av在线| 亚洲AV无码一区二区三区ba| 中文字幕丰满人妻被公强| 久久久久亚洲av无码专区首| 亚洲av福利无码无一区二区| 国产精品流白浆喷水| 日本一区二区三区在线 | 乱人伦人妻中文字幕不卡| 人妻中文字幕一区二区三区| 国产精品免费一区二区三区四区| 欧美老熟妇欲乱高清视频| 色偷偷亚洲第一综合网| 日本久久久免费观看视频| 九一九色国产| 日本免费一区尤物|