亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Complete Moment Convergence for Arrays

        2014-10-27 18:39:55鄧總綱
        經(jīng)濟(jì)數(shù)學(xué) 2014年3期
        關(guān)鍵詞:總綱標(biāo)識(shí)碼分類號(hào)

        鄧總綱

        Abstract Let Xni;i≥1,n≥1 be an array of rowwise  mixing random variables. The authors discuss the complete moment convergence for  mixing random variables without assumptions of identical distribution and stochastic domination. The results obtained generalize and improve the corresponding theorems of Hu and Taylor (1997), Zhu (2006), Wu and Zhu (2010).

        Key words arrays of rowwise mixing random variables;complete moment convergence; complete convergence

        中圖分類號(hào) AMS(2010) 60F15 文獻(xiàn)標(biāo)識(shí)碼 A

        

        1 Introduction

        The concept of complete convergence was introduced by Hsu and Robbins[1] as follows: A sequence Xn;n≥1 of random variables is called to converge completely to the constant λ if

        ∑

        SymboleB@ n=1PXn-λ>ε<

        SymboleB@  for ε>0. (1)

        In view of the BorelCantelli lemma, this implies that Xn→λ almost surely. Therefore the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables. Hsu and Robbins[1] proved that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erd¨os[2] proved the converse.

        The result of HsuRobbinsErd¨os is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors. One of the most important generalizations is Baum and Katz[3] for the strong law of large numbers as follows: Let p≥1α and 12<α≤1. Let Xn;n≥1 be a sequence of i.i.d. random variables with EXn=0. Then the following statements are equivalent:

        The desired results (13) and (14) follow from the above statement. This completes the proof of Corollary 1.

        On the complete moment convergence for arrays of rowwise mixing random variables in the evaluation of risk estimation、advantage inspection (see Marciniak and Wesolowski (1999) and Fujioka (2011)), reliability (see Gupta and Akman (1998)), life test (see Mendenhall and Lehman (1960)), insurance, financial mathematics (see Ramsay (1993)), complex system (see Jurlewicz and Weron (2002)) and from financial and predict the actual problem and so on all have quite a wide range of applications.

        References

        [1] P L HSU, H ROBBINS. Complete convergence and the strong law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947,33:25-31.endprint

        [2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

        [3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

        [4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

        [5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

        [6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

        [7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

        [8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

        [2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

        [3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

        [4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

        [5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

        [6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

        [7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

        [8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

        [2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

        [3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

        [4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

        [5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

        [6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

        [7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

        [8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

        猜你喜歡
        總綱標(biāo)識(shí)碼分類號(hào)
        金華昆曲《荊釵記》總綱探析——兼論《荊釵記》的版本與演出問題
        戲曲研究(2022年3期)2022-05-10 08:08:24
        把奮力譜寫陜西新時(shí)代追趕超越新篇章作為全部工作的總綱
        A Study on the Change and Developmentof English Vocabulary
        Translation on Deixis in English and Chinese
        《弟子規(guī)》總綱的哲學(xué)思考
        Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
        Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
        潤(rùn)滑油(2014年3期)2014-11-07 14:30:02
        A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma
        The law of exercise applies on individual behavior change development
        Significance of 18F—FDG PET / CT imaging in the evaluation of the efficacy of lymphoma
        日韩精品综合在线视频| 免费特级毛片| 成人在线激情网| 亚洲国产精品日韩av不卡在线| 中文字幕av伊人av无码av| 无码区a∨视频体验区30秒| 免费观看又色又爽又黄的| 欧美色aⅴ欧美综合色| 国产精品久久久久久久专区| 国产桃色在线成免费视频| 亚洲av乱码一区二区三区女同| 性感熟妇被我玩弄到高潮| av网站大全免费在线观看 | a级国产乱理伦片| 久久精品无码中文字幕| 精品囯产成人国产在线观看| 2021精品国产综合久久| 蜜臀av中文人妻系列| 狼人av在线免费观看| 国产av剧情精品麻豆| 我和丰满妇女激情视频| 丰满少妇高潮惨叫久久久| 少妇愉情理伦片丰满丰满| 无码精品久久久久久人妻中字| 国产精品香蕉在线观看| 亚洲欧美日韩一区二区在线观看| 男子把美女裙子脱了摸她内裤| 中文字幕人妻互换激情| 极品少妇被黑人白浆直流| 日本精品一区二区三区福利视频 | 激情综合色五月丁香六月欧美| 香蕉视频在线精品视频| 国产精品无码无片在线观看| 亚洲AV伊人久久综合密臀性色| 国产福利小视频在线观看| 成人无码区免费AⅤ片WWW| 亚洲一区二区三区美女av| 精品国产自在现线看久久| 日本另类αv欧美另类aⅴ| 十八18禁国产精品www| 无码欧亚熟妇人妻AV在线外遇|