劉傳棟,苗秀蓮,賈少波,張廣征,單麗英
聊城大學(xué)生命科學(xué)學(xué)院 生態(tài)學(xué)與生物多樣性山東省重點(diǎn)實(shí)驗(yàn)室,聊城 252059
中國(guó)四種土壤跳蟲(chóng)對(duì)重金屬汞的響應(yīng)
劉傳棟,苗秀蓮,賈少波*,張廣征,單麗英
聊城大學(xué)生命科學(xué)學(xué)院 生態(tài)學(xué)與生物多樣性山東省重點(diǎn)實(shí)驗(yàn)室,聊城 252059
汞;跳蟲(chóng);半致死濃度;慢性毒性實(shí)驗(yàn);低劑量刺激效應(yīng)
近期由環(huán)境保護(hù)部和國(guó)土資源部發(fā)布的《全國(guó)土壤污染狀況調(diào)查公報(bào)》(2014年4月17日)表明,中國(guó)目前國(guó)土污染形勢(shì)嚴(yán)峻,其中重金屬對(duì)耕地的污染涉及糧食安全,尤其需要關(guān)注。我國(guó)污水灌溉中重金屬Hg含量的高低與相對(duì)應(yīng)的灌區(qū)土壤中重金屬的累積量多少基本一致,目前受重金屬污染的耕地已經(jīng)有1/6左右,如何進(jìn)行耕地重金屬污染的監(jiān)測(cè)、綜合防治和生態(tài)修復(fù),成為迫切需要考慮和解決的問(wèn)題[1-4]。土壤動(dòng)物作為土壤生態(tài)系統(tǒng)中的重要組成部分和土壤健康狀況的體現(xiàn)者,選擇其成員作為模式動(dòng)物是探索土壤生態(tài)系統(tǒng)毒理學(xué)的重要途徑。
1.1 儀器與試劑
儀器:RTOP多段編程人工氣候箱(杭州托普儀器有限公司),SZX12體視顯微鏡(Olympus公司),BX51正置顯微鏡(Olympus公司),BSA224S電子天平(Sartorius公司)。試劑:氯化汞(HgCl2)等化學(xué)試劑為國(guó)產(chǎn)分析純?cè)噭?/p>
1.2 實(shí)驗(yàn)材料
整個(gè)實(shí)驗(yàn)及先期培養(yǎng)均在上口徑120 mm、下口徑88 mm、高65 mm的專用培養(yǎng)瓶(透明聚丙烯容器)中進(jìn)行,培養(yǎng)瓶底部覆蓋一層0.5 cm厚的瓊脂培養(yǎng)基(1.5%),頂部有透明聚丙烯蓋封口。
1.3 實(shí)驗(yàn)方法
1.3.1 LC50急性毒性試驗(yàn)(存活試驗(yàn))
暴露期間喂食含毒酵母糊,其中Hg2+含量對(duì)應(yīng)6個(gè)實(shí)驗(yàn)濃度組分別為0.0、0.4、2.0、10、50、100 mg·kg-1干重。初始每隔12 h觀察一次,24 h后每隔1天觀察一次跟蹤觀察到第7天,并做好記錄。死亡的判定標(biāo)準(zhǔn)是觸之不動(dòng)。
1.3.2 28 d慢性毒性試驗(yàn)
根據(jù)預(yù)試驗(yàn)結(jié)果,設(shè)置6個(gè)濃度0.05、0.5、1.0、2.0、4.0、8.0 mg·L-1的染毒組和一個(gè)對(duì)照組(0 mg·L-1)進(jìn)行28 d慢性毒性試驗(yàn)。每組設(shè)3個(gè)重復(fù)。培養(yǎng)基染毒過(guò)程及暴露期間的實(shí)驗(yàn)方法與LC50急性毒性試驗(yàn)相同。同LC50急性毒性試驗(yàn),暴露期間喂食含毒酵母糊,其Hg2+干重含量分別對(duì)應(yīng)染毒組濃度。每周開(kāi)口通氣并補(bǔ)充少量蒸餾水。幼蟲(chóng)計(jì)數(shù)方法采用顯微拍照定格后人工識(shí)別計(jì)數(shù)。
1.4 數(shù)據(jù)處理
數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差(mean±SD)表示。采用SPSS Statistics 19.0統(tǒng)計(jì)分析軟件;在95%的置信水平進(jìn)行單因素方差分析(One-Way ANOVA),Duncan法對(duì)平均值進(jìn)行多重比較,p<0.05為差異顯著;采用Bliss法(機(jī)率單位加權(quán)回歸法)[14-15]計(jì)算汞(Hg2+)對(duì)跳蟲(chóng)的半致死濃度(LC50)。
2.1 LC50急性毒性實(shí)驗(yàn)
2.1.1 Hg急性毒性期間的跳蟲(chóng)行為觀察
2.1.2 Hg對(duì)4種跳蟲(chóng)的24 h-LC50和72 h-LC50
2.1.3 急性實(shí)驗(yàn)中四種跳蟲(chóng)7 d內(nèi)在不同Hg2+濃度下的存活情況
表1 Hg對(duì)四種跳蟲(chóng)24 h, 72 h的半致死濃度Table 1 24 h, 72 h-LC50 values of Hg to four species of Collembolans
表2 不同濃度Hg對(duì)曲毛裸長(zhǎng)()7 d存活影響的F值和p值Table 2 F values and p values of different concentrations of Hg on survival of S. curviseta for 7 d
圖1 不同濃度Hg對(duì)曲毛裸長(zhǎng)()7 d存活的影響注:圖柱上字母的不同表示差異達(dá)到 0.05 的顯著水平。Fig. 1 Effect of different concentrations of Hg on survival of S. curviseta for 7 dNote: Different letters on columns mean significant difference at p<0.05.
圖2 不同濃度Hg對(duì)小原等節(jié)()7 d存活的影響Fig. 2 Effect of different concentrations of Hg on survival of P. minuta for 7 d
暴露時(shí)間TimeofexposureF值Fvaluesp值pvalues12h168.750.0001d2064.500.0003d686.330.0005d893.10.0007d1014.600.000
表4 不同濃度Hg對(duì)四刺泡角()7 d存活影響的F值和p值Table 4 F values and p values of different concentrations of Hg on survival of C. duplicispinosa for 7 d
圖3 不同濃度Hg對(duì)四刺泡角()7 d存活的影響Fig. 3 Effect of different concentrations of Hg on survival of C. duplicispinosa for 7 d
圖4 不同濃度Hg對(duì)茉莉花長(zhǎng)角()7 d存活的影響Fig. 4 Effect of different concentrations of Hg on survival of Entomobrya sp. for 7 d
暴露時(shí)間TimeofexposureF值Fvaluesp值pvalues12h16.240.0001d31.380.0003d60.590.0005d91.090.0007d58.320.000
2.2 28 d慢性毒性試驗(yàn)
圖5 不同濃度Hg對(duì)茉莉花長(zhǎng)角()28 d的影響Fig. 5 Effect of different concentrations of Hg on survival of Entomobrya sp.for 28 days
圖6 不同濃度Hg對(duì)小原等節(jié)()28 d的影響Fig. 6 Effect of different concentrations of Hg on survival of P. minuta for 28 days
暴露時(shí)間TimeofexposureF值Fvaluesp值pvalues1d12.250.0007d6.980.00114d23.070.00021d13.100.00028d6.880.001
圖7 不同汞濃度下28 d時(shí)茉莉花長(zhǎng)角()和小原等節(jié)()的幼蟲(chóng)數(shù)量與成蟲(chóng)數(shù)量比注:折線圖上的**表示差異達(dá)到 0.01 的極顯著水平。Fig. 7 Ratios of live offspring to adults of Entomobrya sp. and P. minuta on Hg concentrations for 28 daysNote: ** means significant difference at p<0.01.
3.1 不同Hg2+濃度對(duì)跳蟲(chóng)7 d內(nèi)存活的影響
3.2 低濃度汞對(duì)跳蟲(chóng)存活和繁殖的影響
3.3 跳蟲(chóng)的24 h,72 h-LC50變化及其適應(yīng)性意義
[1] 宋 偉, 陳百明, 劉 琳. 中國(guó)耕地土壤重金屬污染概況[J]. 水土保持研究, 2013, 20(2): 293-298
Song W, Chen B M, Liu L. Soil Heavy Metal pollution of cultivated land in China [J]. Research of Soil and Water Conservation, 2013, 20(2): 293-298 (in Chinese)
[2] 宰松梅, 王朝輝, 龐鴻賓. 污水灌溉的現(xiàn)狀與展望[J]. 土壤, 2006, 38(6): 805-813
Zai S M, Wang Z H, Pang H B. Situation and prospect of sewage irrigation in agriculture [J]. Soils, 2006, 38(6): 805-813 (in Chinese)
[3] 王 靜, 林春野, 陳瑜琦, 等. 中國(guó)村鎮(zhèn)耕地污染現(xiàn)狀、原因及對(duì)策分析[J]. 中國(guó)土地科學(xué), 2012,26(2): 25-30,43
Wang J, Lin C Y, Chen Y Q, et al. Cultivated land pollution at township level in China: Situation, factors and measures [J]. China Land Sciences, 2012, 26(2): 25-30, 43 (in Chinese)
[4] 張乃明, 陳建軍, 常曉冰. 污灌區(qū)土壤重金屬累積影響因素研究[J]. 土壤, 2002, 34(2): 90-93
[5] 陳建秀, 麻智春, 嚴(yán)海娟, 等. 跳蟲(chóng)在土壤生態(tài)系統(tǒng)中的作用[J]. 生物多樣性, 2007, 15(2): 154-161
Chen J X, Ma Z C, Yan H J, et al. Roles of springtails in soil ecosystem [J]. Biodiversity Science, 2007, 15(2): 154-161 (in Chinese)
[6] Kim S W, An Y J. Jumping behavior of the springtail Folsomia candida as a novel soil quality indicator in metal-contaminated soils [J]. Ecological Indicators, 2014, 38: 67-71
[7] Santorufoa L, Gestelb V C, Maisto G. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils [J]. Geoderma, 2014, 226: 47-53
[8] 劉玉榮, 賀紀(jì)正, 鄭袁明. 跳蟲(chóng)在土壤污染生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用[J]. 生態(tài)毒理學(xué)報(bào), 2008, 3(4): 323-330
Liu Y R, He J Z, Zheng Y M. A review of application of springtails in ecological risk assessment of contaminated soils [J]. Asian Journal of Ecotoxicology, 2008, 3(4): 323-330 (in Chinese)
[9] US EPA. Framework for Ecological Risk Assessment [R]. Washington DC: US EPA. 1992. EPA/630/R-92/001
[10] Amorim M J B, Pereira C, Menezes-Oliveira V B, et al. Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida(Collembola) in soil [J]. Environmental Pollution, 2012, 160(1): 145-152
[11] An Y J, Kim S W, Lee W M. The collembola Lobella sokamensis juvenile as a new soil quality indicator of heavy metal pollution [J]. Ecological Indicators, 2013, 27: 56-60
[12] Hamda N T, Forbes V E, Stark J D, et al. Stochastic density-dependent matrix model for extrapolating individual-level effects of chemicals to the population: Case study on effects of Cd on Folsomia candida [J]. Ecological Modelling, 2014, 280: 53-64
[13] Liu Y R, Zheng Y M, Zhang L M, et al. Effects of mercury on reproduction, avoidance, and heat shock protein gene expression of the soil springtail Folsomia candida [J]. Environmental Toxicology and Chemistry, 2010, 29(3): 654-659
[14] 黎七雄, 汪暉, 肖清秋, 等. 半數(shù)致死量(LD50)Bliss法的評(píng)價(jià)及計(jì)算[J]. 數(shù)理醫(yī)藥學(xué)雜志, 1995, 8(4): 318-320
[15] 周一平. 用SPSS軟件計(jì)算新藥的LD50[J]. 藥學(xué)進(jìn)展, 2003, 27(5): 314-316
Zhou Y P. The calculation of LD50in new drugs with software SPSS [J]. Progress in Pharmaceutical Sciences, 2003, 27(5): 314-316 (in Chinese)
[16] 岳麗蕊, 賈少波, 趙巖, 等. 重金屬銅對(duì)3種跳蟲(chóng)的影響[J]. 生物學(xué)通報(bào), 2011, 46(1): 51-54
[17] 申開(kāi)麗, 俞潔, 林廣, 等. 低劑量刺激效應(yīng)在污染物風(fēng)險(xiǎn)評(píng)價(jià)中的意義及前景[J]. 環(huán)境與職業(yè)醫(yī)學(xué), 2012, 29(3): 183-186
Shen K L, Yu J, Lin G, et al. Importance and Potential application of hormetic effect in risk assessment of environmental pollutants [J]. Journal of Environmental & Occupational Medicine, 2012, 29(3): 183-186 (in Chinese)
[18] Calabrese E J. Evidence that hormesis represents an "overcompensation" response to a disruption in homeostasis[J]. Ecotoxicology Environment Safety, 1999, 42(2):135-137
[19] Stebbing A R. Growth hormesis: A by-product of control [J]. Health Physics, 1987, 52(5): 543-547
◆
ResponsesofFourSpeciesofChineseSoilCollembolatoHg
Liu Chuandong, Miao Xiulian, Jia Shaobo*, Zhang Guangzheng, Shan Liying
Shandong Key Laboratory of Ecology and Biodiversity, School of Life Sciences, Liaocheng University, Liaocheng 252059, China
15 May 2014accepted19 June 2014
To study the toxic effects of Hg on diverse species of Collembola, four Chinese dominant species of collembolans, Sinella curviseta, Ceratophysella duplicispinosa, Proisotoma minuta and Entomobrya sp. were exposed to six different concentrations of Hg for 24 h, 72 h LC50measurement. The LC50values for S. curviseta, C. duplicispinosa, P. minuta and Entomobrya sp. were calculated according to the Bliss method to be 92.42, 36.85, 34.93, and 47.56 mg·L-1, and 95% confidence limits were 68.57~168.6, 29.61~43.53, 25.57~44.94 and 34.33~65.11 mg·L-1, respectively, while the corresponding 72 h-LC50values were 21.92, 20.17, 18.44, and 15.99 mg L-1, and 95% confidence limits were 16.18~29.82, 6.64~29.81, 13.87~26.45 and 10.03~21.37 mg·L-1. At the same time, the Proisotoma minuta and Entomobrya sp. were exposed to Hg of six different lower concentrations for 28 d survival and reproduction experiment to determine the numbers of adults and offspring. The result shows that Entomobrya sp. and S. curviseta have higher tolerance for Hg, followed with P. minuta, while C. duplicispinosa ranks last. In addition, P. minuta display some hormesis at about 0.05 mg·L-1of Hg2+.
Hg; collembola; LC50; chronic toxicity test; hormesis
國(guó)家自然科學(xué)基金(No. 31272383) ;山東省自然科學(xué)基金(No. ZR2010CM018)
劉傳棟(1976-),男,碩士,研究方向?yàn)閯?dòng)物生態(tài)毒理學(xué),E-mail: lcliucd@189.cn;
*通訊作者(Corresponding author),E-mail: jiasbio@163.com
10.7524/AJE.1673-5897-20140515008
2014-05-15錄用日期:2014-06-19
1673-5897(2014)5-964-08
: X171.5
: A
賈少波(1959—),男,生態(tài)學(xué)博士,教授,主要研究方向?yàn)閯?dòng)物學(xué)及生態(tài)學(xué)。
劉傳棟, 苗秀蓮, 賈少波, 等. 中國(guó)四種土壤跳蟲(chóng)對(duì)重金屬汞的響應(yīng)[J]. 生態(tài)毒理學(xué)報(bào),2014, 9(5): 964-971
Liu C D, Miao X L, Jia S B, et al. Responses of four species of Chinese soil collembola to Hg [J]. Asian Journal of Ecotoxicology, 2014, 9(5): 964-971 (in Chinese)