亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Parameter optimization of electro-hydraulic proportionalsystem of PID based on the improved ant colony algorithm

        2014-09-05 05:47:40XiufenXU
        機(jī)床與液壓 2014年6期
        關(guān)鍵詞:比例控制臂架控制參數(shù)

        Xiu-fen XU

        Electrical and Mechanical Engineering College,Xinxiang Institute,Xinxiang 453000,China

        Parameteroptimizationofelectro-hydraulicproportionalsystemofPIDbasedontheimprovedantcolonyalgorithm

        Xiu-fen XU?

        ElectricalandMechanicalEngineeringCollege,XinxiangInstitute,Xinxiang453000,China

        VACA is a hybrid algorithm combined with the variable metric algorithm and ant colony optimization algorithm.For the electro-hydraulic proportional control system for PID parameter tuning problem,this paper puts forward the optimization of PID parameters based on VACA,and gives the specific implementation steps: establish mathematical model for electro-hydraulic control system,establish the simulation model of electro-hydraulic proportional control system of VACA-PID by using SIMULINK toolbox,simulation and verification.The results show that: the VACA-PID controller has good static and dynamic performance,can fully meet the electro-hydraulic proportional control system.

        Improved ant colony algorithm,Electro-hydraulic proportional control,PID,Optimization

        1.Introduction

        Concrete pump truck[1] is a kind of construction machinery with concrete pumps placed in the special purpose vehicle turf,to be able to walk independently and realize transmission and pouring concrete through special boom of high technical content.Pump truck boom is the core part of the electro-hydraulic control system and its dynamic and steady-state performance has far-reaching influences on the vehicle performance.Although traditional Z-N[2-4] setting algorithm can basically meet the requirements,it has some limitations because of the poor stability and low accuracy of setting.So we must adopt measures to improve the control effect.Based on VACA[5] to PID control parameter optimization,the passage forms the intelligent electro hydraulic proportional control system.

        Single section control system electro-hydraulic proportion control system is a position closed loop control system,its principle diagram is shown in Figure 1,including the electro-hydraulic proportional valve,valve controlled single rod hydraulic cylinder,conversion link (to convert cylinder expansion amount to boom Angle),obliquity sensor,etc.

        Figure 1.The principle diagram of the electro-hydraulic proportional control system

        2.The transfer function of the system

        Static and dynamic performance of the electro-hydraulic proportional position control system mainly depends on the electro-hydraulic proportional valve and valve control hydraulic cylinder components such as features.Mathematical model of transmission system function is established.

        2.1.Transferfunctionofelectro-hydraulicproportionaldirectionvalve

        According to the actual situation,the transfer function of electro-hydraulic proportional valve can be simplified as the second order oscillation link,its transfer function is:

        (1)

        In the formula:

        X: valve core displacement (m);

        Kq: the valve’s flow gain (m3·s-1·A-1);

        ωn:the valve’s inherent frequency (rad/s);

        ζn:valve damping ratio,usually is 0.5~0.7.

        2.2.Transferfunctionofvalvecontrolledsinglerodhydrauliccylinder

        1) The force balance equation of the hydraulic cylinder and the load

        (2)

        Y: the hydraulic cylinder piston displacement (m);

        Mt: piston and load equivalent to the total mass on the piston(kg);

        Bp: the piston and the viscous damping coefficient of load (N·s/m);

        FL: effect on the piston as accidental load (N);

        2) The flow continuity equation of the hydraulic cylinder:

        (3)

        In the formula:

        βl: effective bulk modulus (Pa);

        V0: cavity volume of any hydraulic cylinder (m3);

        3) Slide valve flow equation

        QL=Q1=KqX-KcPL

        (4)

        In the formula:

        Kq: valve frontal flow gain (m3·s-1·A-1);

        Kc: valve of flow pressure coefficient (m3·s-1·pa-1)

        For formula (2),(3),(4),make a Laplace transform,three basic equations can be obtained:

        A1PL=mtS2Y+BPSY+FL

        (5)

        (6)

        QL=KqX-KCPL

        (7)

        Based on the three basic equations,we can get the transfer function expression of valve control hydraulic cylinder

        (8)

        In the formula:

        ωh: valve control hydraulic cylinder natural frequency (rad/s);

        ζh: valve control hydraulic cylinder damping ratio;

        βe: effective bulk modulus (Pa);

        FL: effect on the piston arbitrary load (N);

        A1: rodless hydraulic cylinder cavity cross-section area (m2);

        A0: hydraulic cylinder rod cavity area (m2);

        V0: cavity volume of any hydraulic cylinder (m3).

        Take the individual parameters of valve control hydraulic cylinder into the equation above and available valve control cylinder transfer function can be got:

        (9)

        According to the type of the hydraulic cylinder piston displacement relative proportional valve core displacement and relative to the external load transfer function,it is shown as follows:

        (10)

        (11)

        3.The establishment of the PID algorithm based on VACA

        3.1.ThePIDcontrolparameterssetting

        PID[6-7] controller is a linear controller,according to the given valuer(t) and the actual output valuey(t) to control deviatione(t),namely:

        e(t)=r(t)-y(t)

        (12)

        The deviation of the ratio (P-proportion),integral (I-integral),differential(D-differential),by the linear combination of the control volume,controlled object,so that the PID controller,its control law (represented by a transfer function) for:

        (13)

        Combining the improved ant colony algorithm and PID together,we can optimize the three parameters of PID controller online.Based on ant colony algorithm of PID control system,structure is shown in Figure 2.

        Figure 2.The control program principle diagram of the improved ant colony algorithm

        3.2.VACA-PIDcontrolservosystemmodel

        Under the MATLAB7.0[8] interface,use Simulink to establish the corresponding VACA-PID control system and the module type,as shown in Figure 3.

        VACA algorithm process is shown in Figure 4.

        (b) the VAC-PID control modules

        3.3.Therealizationofthealgorithm

        9.10≤KP≤10.0;100.0≤Ti≤120;

        0≤Td≤0.50

        Figure 4.VACA flow chart of the algorithm

        3.4.Thesimulationanalysisandverification

        Improved ant colony algorithm for PID parameters optimization performance indicators are shown in Table 1.

        Table 1.PID parameters settings between Z-N optimal and VACA contrast

        We can see from the Figure 5,VACA-PID setting of electro-hydraulic proportional system steady state was achieved at 5.6 s and no overshoot.Because of the boom,a process can take a few minutes,and the control accuracy and response time of this system are fully able to meet the requirements.

        Figure 5.Two different optimization strategy step response curves

        4.Conclusion

        The simulation results show that PID parameters optimization method based on improved ant colony algorithm(VACA) can short the setting time and decrease overshoot.VACA control strategy has simple structure,good stability and easy to project implem-entation.It realizes the characteristics of electro-Hydraulic proportional System steady-state performance and dynamic performance optimization.

        [1]Zhao Ruonan.Concrete pump truck arm electro-hydraulic system PID control[D].Nanjing: YanShan university engineering master degree thesis,2012(5):27-30.

        [2]Zhang Hanlei.FESTO proportional hydraulic position control system design and performance simulation analysis[D].Guiyang: Gui Zhou university engineering master degree thesis,2011:55-58.

        [3]Yang Jing,Tong Zhixue,Liu Tao.Hydraulic machinery flashlight hydraulic proportion system fuzzy PID control study[J].machinery science and technology,2013,32(6): 834-838.

        [4]Wang Muye,Zhang Xuming.Stage lifting hydraulic pump controlled cylinder synchronization with hydraulic control system[J].Machine tool and hydraulics.2010,38(20): 52-54.

        [5]Yin Hongpeng,Chai Yi.PID control parameters optimization based on ant colony algorithm[J].Computer engineering and application,2007,43(17): 4-7.

        [6]Liu Yong,Wang Yong.Direct drive electro-hydraulic servo system PID correction compound controller study[J].machine tools and hydraulic,2010,38(17):8-11.

        [7]Quan Long.The control of the pump cylinder electro-hydraulic technology research status quo,problems and innovative solutions[J].Journal of mechanical engineering,2008,44(11): 87-92.

        [8]Huang Jian.Automatic control principle and its application[M].Beijing: Beijing higher education press,2009.

        基于改進(jìn)蟻群算法的電液比例系統(tǒng)PID參數(shù)優(yōu)化

        徐秀芬?

        (新鄉(xiāng)學(xué)院 機(jī)電工程學(xué)院,河南 新鄉(xiāng) 453000)

        VACA是變尺度算法融入蟻群優(yōu)化算法中而形成的一種混合算法。針對(duì)電液比例系統(tǒng)PID 控制參數(shù)整定問(wèn)題,提出了基于改進(jìn)蟻群算法的 PID 參數(shù)優(yōu)化方案,并給出了具體的實(shí)現(xiàn)步驟:建立臂架電液控制系統(tǒng)的數(shù)學(xué)模型,利用Simulink工具箱建立了電液比例控制系統(tǒng)的 VACA-PID的仿真模型,進(jìn)行了仿真和驗(yàn)證。結(jié)果表明: VACA-PID 控制器具有良好的靜、動(dòng)態(tài)性能,完全能達(dá)到電液比例控制系統(tǒng)的要求。

        改進(jìn)蟻群算法;電液比例控制;PID;優(yōu)化

        TM921.51

        2013-09-28

        ? Xiu-fen XU,E-mail: xxf_xf@163.com

        10.3969/j.issn.1001-3881.2014.06.025

        猜你喜歡
        比例控制臂架控制參數(shù)
        水下作業(yè)臂架力學(xué)特性分析
        高超聲速飛行器滑??刂茀?shù)整定方法設(shè)計(jì)*
        Birkhoff系統(tǒng)穩(wěn)定性的動(dòng)力學(xué)控制1)
        一種基于電液比例控制的叉車(chē)液壓系統(tǒng)
        一種工程制圖課程模型投影演示裝置的設(shè)計(jì)及其研究
        基于PI與準(zhǔn)PR調(diào)節(jié)的并網(wǎng)逆變器控制參數(shù)設(shè)計(jì)
        黑龍江電力(2017年1期)2017-05-17 04:25:08
        基于ANSYS的四連桿臂架系統(tǒng)全幅度應(yīng)力分析
        混凝土泵車(chē)臂架系統(tǒng)折疊型式和機(jī)構(gòu)分析
        折臂式舉高消防車(chē)臂架系統(tǒng)振動(dòng)特性研究
        烹飪
        人妻少妇无码精品视频区| 最新中文字幕乱码在线| 国产乱子伦农村xxxx| 国产美女av一区二区三区| 91九色极品探花内射| 日本一区二区三区亚洲| 国产内射爽爽大片视频社区在线| 亚洲av最新在线网址| 色噜噜狠狠色综合成人网| 欧美三级不卡视频| 婷婷激情六月| 国产高清不卡二区三区在线观看| 久久本道久久综合伊人| 正在播放强揉爆乳女教师| 精品人体无码一区二区三区 | 一区五码在线| 99麻豆久久精品一区二区| 日韩视频在线观看| 波多野吉衣av无码| 国产精品无码片在线观看| 国产精品一级黄色大片| 中文字幕乱码亚洲三区| 精品欧洲av无码一区二区14| 亚洲男人天堂2019| 日韩美女高潮流白浆视频在线观看| 一区二区三区在线视频爽| 麻豆精品一区二区综合av| 97色偷偷色噜噜狠狠爱网站| 黄瓜视频在线观看| 国产一级做a爱免费观看| 亚洲粉嫩av一区二区黑人| 男女打扑克视频在线看| 欧美又粗又长又爽做受| 中文在线а√天堂官网| 春色成人在线一区av| 亚洲三级香港三级久久| 天天综合网网欲色| 欧美最大胆的西西人体44| 国产成人精品一区二区视频| 亚洲综合国产成人丁香五月小说 | 人妻无码AⅤ中文系列久久免费|